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Abstract

Forecasting the unknown and detecting the known
threats' and targeted attacks? are the most concern of
network security especially in large scale environment.
We have presented an intrusion® detection and prediction
system using cooperative co-evolutionary immune system
for distributed data networks. This is an intelligent tech-
nique based on genetic algorithm and co-evolutionary im-
mune system where the detectors can discriminate the
existing incidents* and predicting the new incidents in a
distributed environment. We have prepared a prototype
of CoCo-IDP® in a Jini platform running grid comput-
ing® in distributed systems. Evaluation results show that,
the CoCo-IDP can adaptively converge for the best an-
swer and can detect or predict the incidents in a selected
boundary. Moreover, the system generates the flexible de-
tectors with diversity in a variable threshold. In compar-
ison with pure Immune System (IS), the obtained results
show that the proposed system has simpler rules, more
powerful detection and prediction capabilities with high
accuracy metric. We have compared the probability of
detection and false accuracy rate in KDD” database with
several well known methods for proof and validation of
our results.

Keywords: Cooperative co-evolutionary algorithm, grid
computing, intrusion prediction system

IThe possibility of trouble or danger.

2The process of accessing an uninvited visitor who snoops or
vandalizes the system/web site.

3A malicious traffic.

4An individual event that might trigger an attack.

5A cooperative co-evolutionary intrusion detection & prediction
system.

6A parallel processing approach in large scale computational
problems over a network of multiple distributed computers.

"The fifth international conference on Knowledge Discovery and
Data mining.

1 Introduction

Intrusion detection systems seek to examine all the traf-
fic in a network or system and determine if an attack
is in progress. Intrusion prediction systems forecast the
unidentified intrusions and try to prevent a compromise
before any real damage can be done. As the technol-
ogy has progressed, the lines between intrusion detection
and prediction have blurred somewhat, because tradi-
tional detection systems have incorporated the capabil-
ity not only to alert and advise but to take pro-active
steps to prevent a compromise. Traditional detection so-
lutions are necessary to prevent the transfer of malicious
codes, but are not sufficient to address the new genera-
tion of threats and targeted attacks. Security solutions
that proactively protect vital information assets in real
time, without waiting for new signature creation and dis-
tribution, are needed. The definition of IDP that we are
going to use is a system which has ability to detect the
known attacks and predict the unknown attacks to pre-
vent the new attacks from being successful [3, 7]. The
traditional form of IDS and prevention systems are either
signature-based or anomaly-based. Both require updates
to maintain their signature database or they must have a
period of time to develop a behavioral baseline to identify
accurately “suspicious” or anomalous activities [8]. In a
different approach, the neural networks have employed to
train the intelligent detection systems for recognition of
normal activities [15]. In similar research, immune sys-
tem is a new approach for provisioning of network secu-
rity with strong recognition capabilities [13]. Forrest, et.
al. introduce an evolving models of immune system in
solving the optimization problems [2, 4]. This method is
closely related to genetic algorithms (GA) to discriminate
between self® and non-self? in a limited scale environment.
In a different approach, Potter has explored several Co-
Co algorithms that improve optimization functions. He
presents a novel approach for concept learning in case that

8 A pattern that normally occurs in a protected system (body).
9A foreign pattern which is generated by viruses, bacteria or
other components in an un-healthy body.
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a specific model of co-evolutionary GA is used to create
a limited scale immune system [10, 11]. Here, we intro-
duce a new prediction system based on genetic algorithm
with Co-Co model using grid computational technique in
a distributed environment [1]. The motivation for this
approach lies on integrating the immune system and co-
operative co-evolutionary concept using an agent based
grid computing in a distributed environment as an intel-
ligent solution for tracking and predicting the un-wanted
security threats in a large scale data networks. The rest
of paper is organized as follows: Section 2 explains the
CoCo-IDP model. Section 3 presents the system param-
eters. Section 4 focuses on prototype systems. Section 5
shows the performance evaluation. Finally, we conclude
the paper in Section 6.

2 CoCo-IDP Model

In this section, we introduce architecture of our cooper-
ative co-evolutionary IDP system. In continue the struc-
ture and evaluation parameters are discussed.

2.1 The System Architecture

Immune system is a biological model which is applica-
ble to many networking and security problems. Genetic
algorithms are successful method for optimization prob-
lems. In GA, the population repeatedly modifies with
genetic operators in a search space and seeking for the
answer with the best fitness. GA initializes a population
to random individuals of digital values and over successive
generations, the population “evolves” toward an optimal
answer. On the other hand, the co-evolution algorithm
is an extended version of GA with multiple groups of
populations. Moreover, the cooperative co-evolutionary
method includes several genetically isolated groups that
evolve in a parallel model. The individual member from
each group collaborates with other members through a
representative population!® and improves their fitness ac-
cording to a specific objective function [1, 5, 6, 14]. We
have proposed an architecture for CoCo-IDP using Jini-
Grid environment in a distributed media as it is shown in
Figure 1. This system consists of several set of separated
worker agents where each set manage an individual group
and they are coordinating by a master agent. The number
of computational process depends on network model and
incident classification. Each CoCo-IDP class concentrates
on a specific set of incident (e.g. teardrop, buffer overflow
and so on) in DoS class. The implemented system is com-
posed of a cluster of servers where all tasks are distributed
in different hosts with sharing capability. Based on Figure
1, the initial population is stored in a population pool.
This population is divided into several sub-populations,
where each group evolves in its host and cooperates with
other host’s members. In the first level of process, a par-
ticular co-evaluation algorithm in each group cooperates

10A set of the best individuals in a group.
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with other groups under master agent management. Each
group generates a set of representative which has the best
fitness with all pre-selected incidents. The final set of rep-
resentative will generate from the entire representative set
in the second level of the process. As a result, based on
final representative set, the best detectors for all known
and unknown incidents are generated and they are stored
in the master agent. This is the procedure for generating
the detectors in CoCo-IDP system.

2.2 The System Structure

In this part, we introduce the structure of our pro-
posed method and mathematically analyze the system
parameters based on cooperative co-evolutionary algo-
rithm [1, 10, 11]. In co-co algorithm, when a detector
evolves in one group, it cooperates with members in other
groups. Thus, the selected representative members have
the best fitness compared to other members. As a re-
sult, the system will converge to non-similar detectors
in a population pool. This diversity is very important
for concentrating on different types of incidents. In our
prototype model, we have prepared a distributed system
supporting several groups of traffic. Any group may ex-
perience a set of incidents. The goal is to generate a set
of detectors which can trace the whole traffic and detect
all the known and predict all the unknown incidents. In
practice, each detector set focuses only on a particular
class of incidents (i.e. DOS, Probing and so on) and ig-
nores the rest of traffic. This process will repeat for all
type of the existing classes. Collection of the detectors
which are generated for detection forms the detector set.
This step completes the generation phase and prepares
the system for operational step. In operational process,
the algorithm will trace the whole traffic and investigates
for the events which have the best matching with exist-
ing detectors. The events which have an acceptable level
of fitness with existing incidents form the detected inci-
dents. On the other hand, the events with acceptable
fitness which are not in the existing incidents form the
predicted incidents. To implement this scenario, we have
proposed a triple segment string schema in creation of
detectors. A creator of detector (C-Detector) consists of
8 bits threshold, 64 bits pattern of binary, 64 bits mask
field and 4 bits incident type. In order to create a detec-
tor, the mask filed applies to the pattern field where the
value of “1” generates a corresponding bit and the value
of “0” generates a don’t care (X) bit. Thus we obtain the
detectors with three fields including the threshold field,
64 bits pattern field and finally the incident type field.
This structure will model a detector which binds a family
of events with common characteristics. We consider an
even pattern as a string of 64 bits. The content of string
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Figure 1: The architecture of CoCo-IDP in a distributed environment

includes a real traffic or existing incidents as follows:

T, {e1,e2,e3,€4,...€4}
T, = {t1,to,t3,ta,...tp}
Traffic = To+ Ty
= {e1,ea,e3,6e4,...0} + {t1,t2,t3,ta,...tp}
where T, represents group of incidents e; with “a” mem-

bers, and T} represents groups of normal traffic ¢; with
“b” members. Also, the d;; represent a detector and the
D; represents a set of detectors:

D = [Di]axn = [di,j]axn-

[}

Here, “n” is the maximum number of detectors for each
incident and this value may not be the same for all inci-
dents. The goal is to find the best set of detectors (M)
with m,; members (representative detectors) where the
m; has the best fitness in set of D; and can obtain the
maximum successful detection rate. To select the mem-
bers with the best fitness, we should calculate the match-
strength factor. We define S as the match-strength factor
between two binary strings of x and y where € D and
y € (T, and T}) with size of 64 bits. The value of S can
simply obtain by comparison of similar position bits in x
and y based on the following equation:

S(SU,y):Zl:{ (1)

i=1

if ;] # yi] or 2; =X
else.

Where [=64 and X refers to the do not care values.
In order to find the maximum fitness for incident e;, we
obtain a member which has the maximum match-strength
based on the following equation:

Smaaci(Dia ei) = S(dij’ ei)|5(dij76i)ZS(Dq,kvei)
fori=1--ra&forjk=1...nk+#j.

In set of detectors which are generated for existing in-
cidents, representative members give a set of members
which have the best fitness for each incident. We assume
m; has the maximum match-strength (best fitness) in set
of detectors for incident e; where:

In this process M defines a set of detectors with the best
fitness.

3 The System Parameters

For evaluation of our proposed system, we have intro-
duced the probability of detection ratio (PDR) and false
accuracy ratio (FAR) as the two evaluation parameters.
Probability of detection shows the successful detection of
a real incident where the probability of false accuracy ra-
tio refers to the probability of selecting a normal traffic
instead of an incident or vise versa. In order to calcu-
late the probability of detection ratio, we have defined
the following parameters:

T is a threshold level which is obtained by dividing the
decimal value of threshold field in C-detector to 255.
The result gives a real value between zero and one.

Hit is a detected target incident which refers to summa-
tion of all detected yes-incidents in set of T,.

We obtain the hit value based on the following equation:

if[Smaz; (M, €5)/ 2(mi)] = T (m,

. (1
Hit = i=1{ 0 else.
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Here T'(m;) is the threshold for member m; and Z(m;) is
obtained based on the following equation:

Z(mi) = Ej—l{ 0 else.

Probability of detection ratio is calculated based on
Equation (1).

PDR = Hit/a. (1)

On the other hand, the false rate (F') is sum of the
non-incidents that are detected as the incidents based on
the following equation:

L if[s(mi,ti)/Z(m;)] > T(m;)

__ya b
F=2iaXjna { 0 else.

The probability of false ratio is calculated based on
Equation (2).

EFR = F/b. (2)

The false accuracy ratio (F'AR) is obtained based on
the following equation:
B PFR
~ PFR+ PDR’

Equations (1) and (2) are defined the two important
evaluation parameters for detection procedure. For sys-

tem evaluation, we have considered the successful ratio
based on the following equation:

SR =PDR — FAR.

FAR

4 Prototype Systems

In this section, we have explained the technical specifica-
tion of IS and CoCo-IDP prototype systems with more
details. We also emphasis on structure of the detectors
and describe how the detectors are generated.

4.1 The IS Method

In IS prototype model, the system has implemented based
on genetic algorithms. The detectors are mapped into the
same form of symbolic representation as CoCo-IDP sys-
tem, while the IS system evolves in a fixed threshold. The
detectors are generated and stores in the system during
the initialization phase. In operational phase, the sys-
tem traces the events which have the best fitness with
generated detectors in a fixed threshold. When a detec-
tor matches or predict an incident, the detection process
will activate. In a successful procedure, the results will
store in the system; otherwise, it will remove within a
time interval. This technique creates strong pressure for
matching and discrimination between incidents and nor-
mal traffic. Moreover, the process distinguishes between
the known and the un-known incidents. As a result, dur-
ing the detection process, the detectors compete for suc-
cessful detection/prediction where the best detectors will
win the competition process.
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4.2 The CoCo-IDP Method

In CoCo-IDP model, we have implemented the prototype
system in a Jini-Grid platform running in a distributed
environment. Table 1 shows the training and testing in-
cidents which are using for detection and prediction pro-
cesses. In training phase, the system generates necessary
detectors to detect the existing training incidents. In the
next step, the representative detectors are generated for
detection and prediction in each class. The generated
detectors apply to the system and prepare the system
for detection and prediction procedure. It is possible to
extend the system for any arbitrary incident types and
concentrate on any known and unknown incidents. We
have considered a set of 22 incidents with 31 features in
data packets based on tables one and two. For implemen-
tation, the features and descriptions are interpreted into
64-bit binary string (event pattern). We have translated
each feature issue to a binary coding where we have used
the set of data in KDD database which are loaded in our
local database [9]. In our assumption, we have considered
four classes of incidents and the system generates a set
of dedicated detectors for each individual incident. Dur-
ing the second phase of generation, among the dedicated
detectors, the system generates a set of representative de-
tectors for each class. It should be noted that the set
of representative detectors have the best fitness among
all detectors in the class. The representative detectors
have the following characteristics: First, they can detect
all the training incidents in related classes. Second, they
can predict the testing incidents in each class. As a re-
sult, the set of representative detectors in all classes are
able to detect the training incidents and predict the test-
ing incidents in the system. For more details about two
categories of incidents, please refer to Table 1.

4.3 Structure of Rules and Detectors

In order to detect the incidents, we should generate the
detectors based on technical specification and features of
each incident. In this section, we explain how the de-
tectors are generated in CoCo-IDP and IS systems. In
specification of CoCo-IDP system, each detector consists
of different fields with related features (type of protocol,
duration, service, etc). All the fields, features and de-
scriptions are presented in Table 2. We have considered
31 fields with related features where each feature needs
one, two, three, four, six, eight, or 16 bits for representa-
tion. Then we have converted the information to a sepa-
rate rule-based representation using straightforward map-
ping. The CoCo-IDP system is operational in Jini-Grid
platform based on the algorithm presented in Figure 2.
It should be noted that the detectors in IS system are
also generated in a similar method. We have used four
classes of attack in KDD data set for training the sys-
tem. Moreover, in CoCo-IDP a variable detector-based
threshold method is employed where in the IS system,
all detectors have a fixed threshold value. To compare
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Table 2: Feature specification and descriptions
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Field | Feature Name Description No. Bits
1 duration Length (N. of sec.) of a connection 3
2 protocol_type Type of protocol, e.g. Tcp, Udp, etc. | 2
3 service Network service, e.g, http 6
4 src_bytes No. of data bytes from S to D 16
5 dst_bytes No. of data bytes from D to S 16
6 flag Normal or error status 4
7 land 1 if connection is f/to the same host 1
8 wrong_fragment No. of wrong fragments 3
9 urgent No. of urgent packets 3
10 hot No. of “hot” indicators 3
11 num_failed_logins | No. of failed login attempts 4
12 logged_in 1 if successfully logged in, else 0 1
13 num_compromised | No. of “compromised” conditions 3
14 root_shell 1 if root shell is obtained; 0 otherwise | 1
15 su_attempted 1 if su root attempted, else 0 1
16 num-_root No. of “root” accesses 4
17 num_file_creations | No. of file creation operations 4
18 num_shells No. of shell prompts 4
19 num_access_files No. of operations on AC files 4
20 num_outbound No. of outbound commands in ftp se. | 4
21 is_hot_login 1 if login belong to the hot list, else0 | 1
22 is_guess_login 1 if the login is a“guest” login; else 0 | 1
23 Count, No. of connections to the same host 4
24 serror_rate % of con. with “SYN” errors 4
25 same_srv_rate % of con. with “REJ” errors 4
26 diff_srv_rate % of con. to the same service 4
27 diff_srv_count % of con. to different services 4
28 srv_count N. of con. to the same services 4
29 srv_serror.rate % of con. with SYN errors 4
30 srv._rerror._rate % of con. that have “REJ” errors 4
31 srv_diff_host_rate % of con. to different hosts 4

the complexity of detectors, Table 3 measures the aver-
age number of necessary detectors and rules in the two
selected methods. The values in Table 3 are obtained by
running 15 iterations for twenty two different incidents
in KDD database system. The mean number of detec-
tors in CoCo-IDP is consistently less than mean number
in IS. Also the CoCo-IDP evolves for average number of
1.8440.59 detectors where for the IS system is 8.69 +0.52.
In addition, to compare the structure of rules and de-
tectors in both systems, we have considered the Smurf
attack!! as a typical example. A set of rules which are
generated during this step can only detect one type of ex-
isting incident and ignores other attacks. In the second
phase, for the set of generated detectors in each class, the
system will generate a set of representative detectors that
can detect the known incidents (training group) and pre-
dict the unknown incidents (testing group) in the same
class.

' The Smurf attack is a way of generating a lot of computer
network traffic to a victim host. It floods a target system via spoofed
broadcast ping messages.

The procedure and rules for recognition of Smurf attack
in CoCo-IDP and IS system are depicted in Figures 3 and
4 respectively.

Also technical parameters and features for the match-
ing functions are given in appendix A. It should be noted
that for detecting the Smurf attack in IS system, we need
at least 6 detectors where in CoCo-IDP at least two de-
tectors are necessary.

By comparison of the two rule-set in those Figures, it is
obvious that the CoCo-IDP has less number of rules with
significantly less complexity while they have more diver-
sity compare to IS system. Also the generated rules in
CoCo-IDP have more flexibility and can learn with more
concise information compared to the IS system. As a re-
sult, the rule sets in CoCo-IDP are more successful in
detection and prediction compare to the IS rules.

4.4 System Characteristics

We have implemented the prototype CoCo-IDP system
using a jini-grid platform in a set of distributed severs run-
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Table 1: Description of training and testing incidents
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Table 3: Mean number of necessary detectors in CoCo-IDP and IS systems

Class Incidents Mean Number of Detectors
1S CoCo-IDP
1-Smurf 6.7+0.41 2.240.60
2-Land 7.1£0.45 1.4+0.51
DoS 3-Neptune 9.6+0.60 1.63+0.67
4- Teardrop 9.7+0.50 1.84+0.78
5- Pod 5.240.25 1.8+1.03
6-Back 8.14+0.35 1.7+0.13
7-Guess_passd 6.8+0.40 2.0+0.66
8-Imap 9.5+0.90 2.3+0.94
9-Multihop 11.04+0.6 2.240.91
R2L 10- Ftp_write 9.64+0.63 1.1+0.31
11-Spy 8.7+0.71 1.04+0.00
12-Warezclient 10.7£0.5 1.8+1.03
13-Warezmaster | 8.1+0.45 2.1£0.23
14-Phf 9.240.75 1.9+0.43
15-BuferOflow 4.3+0.25 1.840.63
16-Landmodule 7.0+£0.62 1.440.69
U2R 17- Perl 8.840.65 1.54+0.52
18-Rootkit 9.440.64 1.8+1.03
19-Nmap 10.24+0.66 1.9£0.87
Probing | 20- Portsweep 11.04+0.63 2.7+0.67
21-Ipsweep 9.7£0.15 2.6£1.03
22-Satan 10.74+0.5 1.8+0.92
Average 8.6940.52 1.84+0.59

Training Incidents | Testing Incidents
Class (Detection) (Prediction)
1-Teardrop 1- Worm
2-Land 2- Udpstorm
DoS 3-Neptune 3- Processtable
4-Pod 4- Mailbomb
5-Back 5- Apache2
6-Smurf
7-Ipsweep 6- Saint
Probing | 8-Nmap 7- Mscan
9-Portsweep
10-Satan
11-Ftp_write 8- Named
12-Geuss_passwd 9- Xlock
R2L 13-Imap 10-Xsnoop
14-Multihop 11-Sendmail
15-Phf 12-Httptunnel
16-Spy 13-Snmpguess
17-Warezclient
18-Warezmaster
19-Buffer_overflow | 14-Snmpgetattack
U2R 20-Loadmodule 15-Xterm
21-Perl 16-Ps
22-Rootkit

ning Matlab software and supporting MDCE.!? We have
employed several Blade servers with windows operating
system. Also, we have used the KDD database records
with 31 fields and 132-bit length. The KDD records con-
sist of five classes: Normal, DoS'3, R2L!4, U2R'®and
Probing!®. In the database, the testing incidents have dif-
ferent probability of distribution from training incidents,
and there are specific incidents in data test which do not
exist in the training data.

We assume any un-known incident as a new event. This
model creates a scenario very similar to a real application.
In our prototype system, the data set contains 22 types of
training incidents with additional 17 types of testing data.
In the following section, we investigate the cooperation
of members in GA for ruling the system to a converged
solution. This evaluation proves that the CoCo-IDP al-
gorithm has a solution for detection/prediction problem.
Moreover, it is important to show the range of thresholds
which are acceptable for the best detection results. In
Co-Co algorithm, cooperation of the participated mem-

12Matlab Distributed Computing Engine

I3Denial of Service attack is an attempt to make a computer
resource unavailable to its intended users.

14Remote to Local is unauthorized access from a remote machine
(e.g. guessing password).

15User to Root is unauthorized access to local super user privi-
leges (e.g. various buffer overflows).

16Probing includes surveillance and other probing (e.g.
scanning).

port
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Algorithm CoCo-IDP
Input: self /non-self set, Output: set of detectors (rules)
{
Master agent initializes the worker agents;
Send the self / non-self set to the worker agents;
Create the detectors with random values [0, 1, X];
for (each group S in worker agent)

/*P(s) =population of S, neg_sel =negative selection algorithm*/
Initialize P(S) with neg_sel;
Evaluate init fitness of P(S) detectors;

}

While (termination condition)

{
for (each group S)
{

/*run one step from genetic algorithm */
Apply genetic operators to P(S), generate offspring detector;
for (each detector #i in S)

{
/* representative which have the best fitness*/
Form collaboration set of #i and other representatives;
Evaluate fitness by applying self and non-self set;
Assign fitness collaboration to the #i detector;
}
}
Master agent receives and synchronizes all the worker agents;
Create rep-set from representations of all groups;
Evaluate the fitness of rep-set by applying self and non-self sets;
if(evaluation of rep-set has stagnated)
{
for (each group S)
{
Check contribution of P(s);
if (S is unproductive)
Remove S;
}
Create a new P(S);
Initialize P(S), apply neg_sel and pruning algorithms;
Transfer self and non-self to new worker agent;
Evaluate fitness of new P(S);

}
}/*end of while*/
Return (rep-set); /* all representative set*/
} End

Figure 2: The CoCo-IDP algorithm

bers in the process is an important procedure for system
response. This method encourages the majority of popu-
lation for cooperation and the system does not stagnate
or deviate during the process [1].

4.5 Acceptable Affinity /Deviation (Vari-
ance 0) Rate

In fact, the acceptable affinity rate limits the system to an
acceptable deviation rate where the maximum deviation
refers to minimum matching boundary. The traditional
intrusion detection system focuses on an exact signature
matching or zero deviation (6 = 0) for detection proce-
dure. As the system becomes more intelligent, the ac-
ceptable deviation rate affects the decision criteria where
the certain levels of similarity replace with exact match-
ing condition. Thus, the intelligent system has capability
to detect the incidents within a reasonable boundary lim-
ited to maximum acceptable deviation. In the IS system,
the acceptable area is limited within a fixed threshold.
The value of threshold is constant for all the incidents
where outside this boundary the system is not able to
concentrate for a successful detection. On the other hand,
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Smurf-attack (incident)

{
Detector set = {
Rule 1=10111011100xxx ....1 0xx11x1110x001100
Rule 2= 0x 00x 11xx1001...... xxxx0x1x10xx01xlIx
Rule 3= xx xxxI111xxxIl ...xx11xI1xx0x0111001
Rule 4= xx xOx01111xxx ...... Ix00x1100x101xxIx
Rule 5= xx 11010001 1x.x..... xx Ox 1 1 xx 01 xx 11 Ixx
Rule 6= x1 x00x00000xx......x 0x I xxxx0x0 111 x xx
b
Threshold = 0. 7 (Fixed)
for all rules in detector set

If Matching (Detector, Incident)>Threshold
then Detection;
If incident exists in testing incident;
then Prediction;
else Non-incident;

Figure 3: A rule-set for Smurf-attack in IS

Smurf-attack (incident)

{

Detector set = {
Rule 1:1x0xxx010x0xx1100....... 0x00011xx1110xx, T=0.56
Rule 2:100x0xxx11xx11xx1...... 0x1x11100xx1xx0, T=0.87

b

for all rules in detector set
{
If Matching (Detector, Incident)>Threshold (i)

If incident exists in the Training Incidents
then Detection;
If incident exists in testing incident;
then Prediction;
else Non-incident;

Figure 4: A Rule-set for Smurf-Attack in CoCo-IDP

for CoCo-IDP the scenario is different and the threshold
is more flexible. The threshold level is wider while the
maximum level might be different for each type of in-
cident. This is the result of technical specification and
constraints in generating the system rules. As a result,
the detectors in CoCo-IDP have more diversity, more ca-
pability in training and more flexibility compared to IS
rules. Moreover, the detectors in CoCo-IDP are able to
trace a suspicious incidents with less degree of similar-
ity to the reference patterns compared to the IS system.
This characteristic expands the border of activity for the
detection algorithms and increases more opportunity for
tracking the existing incidents. To show the acceptable
area, we have prepared a prototype system similar to the
previous model.

Figure 5 shows the maximum border (zero means 100%
matching and maximum refers to limit of acceptable mis-
matching) for most predictive accuracy in Co-Co-IDP
prototype system where the border is limited to 0.09 in IS
system. The results show that CoCo-IDP has more flexi-
bility and can concentrate on the events with less degree
of similarity as well as more prediction accuracy compare
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to the IS system.

4.6 Average Detection/Prediction Pro-
cess Speed

The detection processing time is a key issue in any intru-
sion detection/prediction system. Detection period de-
pends on several factors such as algorithm agility, pro-
cessing method, accuracy rate and so on. In any real time
detection system, the detection period should be negligi-
ble compared to system initialization and training phase.
On the other hand, the processing technique and com-
promise between accuracy and agility are noticeable. In
our evaluation, we have considered the IS system running
by one agent in a single processor system and CoCo-IDP
system running by multi agents in a multi host system
(distributed environment). Figure 6 compares the detec-
tion/prediction speed for the both systems.

As it is shown in Figure 6, in a limited number of
population, the centralize system has more agility for de-
tection. On the other hand, by increasing the number
of population, the CoCo-IDP detection/prediction period
will increase smoothly while it will increase sharply in the
IS system. This analysis confirms the effect of CoCo-IDP
method for implementation in a distributed environment.
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4.7 System Parameters and Actual Oper-
ational Procedure

To represent the profile, attack scenario and parameters
of the system; based on all features and specifications of
the known incidents (Table 2), the system creates the ded-
icated rules and detectors in the predefined structure and
formats (Subsections 2.2 and 4.3). The set of rules and de-
tectors are corresponding to all expected known attacks
in different class of incidents. Then, the system gener-
ates representative detectors for all existing classes. With
this preparation, the system is ready for actual detec-
tion/prediction process in the real network environment.
The generated detectors apply to the system and prepare
the algorithm for detection/prediction in the network.
The system investigates in the existing traffic to find the
minimum acceptable similarity between the events and
detectors; in this case, the events will candidate as the
suspicious incidents. Thus, the algorithm concentrates to
find the best fitness member through the rule-set proce-
dure in consecutive process of GA algorithm. Finally, the
system decides a decision of detection, prediction or Non-
incident based on structure of the CoCo-IDP algorithm
(Subsection 4.3).

5 Performance Evaluation

In this section we have evaluated the capability of IS and
CoCo-IDP systems for detection of known and prediction
of the un-known incidents. In continue, we have compared
the CoCo-IDP system with several well known detection
methods for validation of the results.

5.1 System Evaluation

In this part, we have evaluated the capability for detec-
tion/prediction of IS and CoCo-IDP systems in opera-
tional mode. We have implemented the system based on
Section 2, generated the rules and detectors based on Sec-
tion 4. The final representative detectors are obtained
from a set of dedicated detectors which are generated for
training incidents. The selected representative detectors
can cover 4 classes of incidents including the DOS, R2L,
U2R, and Probing based on Table 1. The representative
detectors are able to concentrate on detecting the train-
ing or predicting the testing incidents. The systems are
operational in a set of distributed servers for CoCo-IDP
and in a centralize server for IS model. We have applied
the same data to both systems and measured the number
of detected/predicted incidents.

It should be noted that the training incidents in each
class can be detected by dedicated detectors where the
representatives detectors are able to detect and predict
all the training and testing incidents. Figure 7 compares
the successful detection rate in IS and CoCo-IDP systems
for 22 training incidents. On the other hand, Figure 8
compares the set of successful prediction rate in CoCo-
IDP and IS systems for 17 testing incidents.
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Figure 7: Comparison between detection rate in IS and
CoCo-IDP systems
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Figure 8: Comparison between prediction rate in IS and
CoCo-IDP systems

The results in both evaluation show that the CoCo-
IDP detectors are more successful in both detection and
prediction compared to IS system. In this evaluation,
the following issues are noticeable: the generated rules
in CoCo-IDP have more flexibility in value of thresholds
and the system can investigate in more events which have
less fitness value compare to IS system. Moreover, the
CoCo-IDP concentrates on members with the best fitness
and selects its candidates through representative members
rather than the ordinary members. Also the CoCo-IDP
system can remove the non cooperative members during
the detection period and does not stagnate in the recur-
sive loops. On the other hand, the capability for coop-
eration in distributed environment speed up the detec-
tion process for more successful decision. As a result,
for both evaluation factors, the CoCo-IDP system is rel-
atively more successful compare to the IS system.

5.2 Confirm the Evaluation Results

Evaluation results show that the CoCo-IDP method is a
successful technique for intrusion detection and predic-
tion in a distributed system. To confirm validation of the
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results in detection using a standard confirmation tech-
nique, we have prepared a comparison scenario with sev-
eral well known detection methods using predictive accu-
racy metric as well as the detection method in [1]. The
predictive accuracy and false accuracy rate are two impor-
tant parameters for precise evaluation of the prototype
systems. In validation procedure, we have used 10-fold
cross-validation technique. The technique involves ran-
domly dividing the complete data set into 10 disjoint sets
with equal size where we use one subset as a test set and
the rest as the training set. We have given the predefined
parameters for the random traffic and execute the proce-
dures for several consecutive trials. In initial process, the
CoCo-IDP uses a training data to learn and generate the
detectors with a specific detector-based threshold. Once
the process is completed, the generated detectors are ap-
plied to the system and the successful detections are mea-
sured. In experiment, each class of detector has to recog-
nize the related incidents in a class (i.e. Smurf, Teardrop,

- in DOS class) and ignores the other incidents as well
as the normal traffic. The CoCo-IDP executes the proce-
dures for 100 consecutive generations. Here, we execute
all the selected systems for 100 trials and applied the test-
ing data to calculate the predictive accuracy values for
CoCo-IDP and other reference methods.

Tables 4 and 5 compare the predictive accuracy and
false accuracy rate for several well known methods in a
similar scenario based on KDD data base [12]. We have
compared the probability of detection as well as the false
alarm rate with other methods. The concept of our greedy
technique for tracking the incidents with low matching
rate will increase the suspicious events and improves the
successful detection rate. It certifies the robustness of our
system for detecting the incidents with relatively small
fitness compare to the other available techniques.

6 Conclusions

Intrusion Detection and Prediction provide the capabil-
ity of both detecting and predicting against any security
threats. Detection system monitors abnormal traffic pat-
tern and reports the suspicious events; however, it is un-
able to predict any unknown incident. The prediction is
an intelligent process that learns and adapts the system
for distinguishing the unknown threats. We have pre-
sented a detection/prediction system based on a cooper-
ative co-evolutionary immune system and a grid comput-
ing technique in a distributed data networks. We have
implemented a pure immune system (IS) and a CoCo-
IDP system as the prototype models and compared the
key parameters of both systems. The results show that
the CoCo-IDP system is more successful in both detection
and prediction with higher accuracy metric compared to
the IS system. Also the system has learning capability to
recognize the suspicious events with less fitness compare
to the IS system. The probability of detection and the
false accuracy rate in the proposed system are compared
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Table 4: Comparison of the PD parameters in several methods

% GAU | NEA | RBF | LEA | HYP | ART | C0Co-ISD | CoCO-IDP

DOS | 824 |97.1 | 73.0 | 97.2 | 972 | 97.0 | 98.2 98.41

R2L 9.6 3.4 5.9 0.1 0.1 3.7 6.8568 6.22

U2R 22.8 | 22 6.1 6.6 8.3 6.1 8.368 9.14

Probe | 90.2 | 88.8 | 93.2 | 83.8 | 84.8 | 77.2 | 98.7417 98.73
Table 5: Comparison of the FAR parameters in several methods

% GAU | NEA | RBF | LEA | HYP | ART | C0Co-ISD | CoCO-IDP

DOS | 0.9 0.3 0.2 0.3 0.3 0.4 0.07391 0.04123

R2L 0.1 0.01 | 0.3 0.003 | 0.005 | 0.004 | 0.088 0.079

U2R | 0.5 0.006 | 0.04 | 0.03 | 0.009 | 0.001 | 1.8433 0.98

Probe | 11.3 | 0.5 18.8 | 0.3 0.4 0.2 0.3449 0.3145
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with several well known methods where those comparisons
confirm the advantage of CoCo-IDP system.
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Appendix A

CoCo-IDP Detector Function:

Matching(event pattern, incident)

Protocol-type = ICMP|UDP;
Service=|ecr_i|domain_u|finger|whois|domain|hostnames|
name|timel|echol;

Src_byte = Bit(1,2,3,5)=1; Wrong_fragment=1;
Is_hot_login=1;

THEN Smurf-attack.

IS Detector Function:

Matching(event pattern, incident)

Protocol-type = ICMP|UDP;
Service=|eco.i|finger|domain_u|timel|; Flag = S1|So;
Src_byte = Bit(3,4,6) = 1; Wrong_fragment = 1;
Logged_in = 1;

Root_shell = 1; Su_attemped = 1; Is_hot_login = 1;
Is_guess_login = 1; Count >= 100; Rerror_rate >= 0.5;
Dst_host_rerror_rate >= 0.5;

THEN Smurf-attack.
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