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Abstract

We propose a new definition for quasi-trusted relays. Our
quasi-trusted relays are defined as follows: (1) being hon-
est enough to correctly follow a given multi-party finite-
time communication protocol; (2) however, being under
the monitoring of eavesdroppers. From the new defi-
nition, we first develop a simple 3-party quasi-trusted
model called Quantum Quasi-Trusted Bridge (QQTB)
model. In this model, the origin Alice and the desti-
nation Bob are assumed out of range of Quantum Key
Distribution (QKD). Carol is a quasi-trusted relay that
can share QKD links with Alice and Bob. We show that
QQTB protocol allows Alice and Bob, in cooperation with
Carol, to securely establish secret keys. The originality of
QQTB protocol is that we do not need invoke entangled
photon pairs. Then, we extend QQTB model to Quan-
tum Quasi-Trusted Relay (QQTR) model that is capa-
ble of securely distributing secret keys over arbitrarily
long distances. Although QQTB model requires entan-
gled photon sources, the originality is that we do not
invoke entanglement swapping and entanglement purifi-
cation as in [5, 6, 15].

Keywords: Controlled-NOT (C-NOT) gate, quantum cir-
cuit, quantum Key Distribution (QKD), QKD relaying
model, quasi-trusted model, unconditional security

1 Introduction

The limited range of Quantum Key Distribution (QKD)
link is one of the most headache-questions to many re-
searchers for a long time. The earliest QKD protocol [2]
is the BB84 protocol that was proposed by Bennett and
Brassard in 1984. Then, this protocol is proven to be un-
conditionally secure [4, 16, 17, 22], and promises many
worthful applications. Unfortunately, QKD owns unde-
sirable restrictions over range and rate [8, 11]. In order to
improve QKD’s range approaches can be roughly divided
into two categories. The first one focus on improvements
over direct QKD links, for instance, perfecting quantum
sources and quantum detectors. The second one is to de-

velop QKD relaying methods. This paper addresses the
latter one. For simplicity, we only address perfect quan-
tum devices, free-error quantum channels to focus on the
“relaying” aspect.

Our main contributions are (1) the proposal of a
new concept called quasi-trusted relay, (2) the Quantum
Quasi-Trusted Bridge (QQTB) model allows to extend up
to two times the QKD range without invoking entangle-
ments, (iii) the Quantum Quasi-Trusted Relay (QQTR)
model that allows to securely distribute shared keys over
arbitrarily long distances without invoking entanglement
swapping and entanglement purification as in [5, 6, 15].

The remainder is organized as follows. Section 2 gives
an overview of previous works on QKD relaying model and
introduces our motivation. Section 3 reminds background
concepts and states helpful propositions that are used
to build two proposed models afterward. We define our
“quasi-trusted” concept in Section 4. Section 5 presents
the Quantum Quasi-Trusted Bridge (QQTB) model and
its secure protocol that is capable of extending up to two
times the range of single-photon based QKD schemes.
Section 6 develops the Quantum-Trusted Relay (QQTR)
model that is capable of securely distributing shared keys
over arbitrarily long distances. We conclude in Section 7.

2 Related Work and Motivation

2.1 Related Work

Since the range of QKD is limited, QKD relaying meth-
ods are necessary. Those become indispensable when one
wants to build QKD networks as in recent years. All
current QKD relaying models introduce some undesir-
able features. The most practical QKD relaying model
is trusted model. It has been applied in two famous QKD
networks, DAPRA and SECOCQ [1, 7, 9, 19]. The draw-
back is that all the relaying nodes must be perfectly se-
cured. Such an assumption is critical since passive attacks
on intermediate nodes are difficult to be detected by the
origin and destination nodes. Few “trusted” intermedi-
aries can lead to terrible security holes in practice.
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It must say that the idea of the quasi-trusted QKD re-
laying model is not new. Works of [12, 13, 14] were based
on such an idea. Compared with our work the “quasi-
trusted” property has been characterized differently and
analyzed in a different context: each node was assumed to
be trusted with a high probability p ∼ 1, and the main fo-
cus was the global security of a very large network. In this
paper, we propose a different “quasi-trusted” that is char-
acterized by: (1) being honest enough to correctly follow a
given multi-party finite-time communication protocol, (2)
however, being under the monitoring of eavesdroppers.

Theoretically, the most strong QKD relaying models
so far are the ones that are based on Entanglement Swap-
ping (ES) operation [5, 6, 15]. ES-based relaying mod-
els allow to achieve an arbitrarily long distance QKD.
The idea is roughly described as follows. One can in-
crementally build a longer distance EPR pair from two
shorter distance EPR pairs by a number of complex quan-
tum operations as entanglement purification, entangle-
ment swapping, etc. Thus, one can create shared EPR
pairs for two target nodes (origin and destination) regard-
less of their distance. After having shared EPR pairs, ori-
gin and destination can do an entanglement-based BB84
protocol to establish the secret key. ES-based relaying
models are considered as untrusted model since they allow
effectively detecting malicious operations on intermediate
nodes. Although ES-based relaying models introduce a
beautiful result in theory, unfortunately, the nowadays
technologies is not ready to implement such models in
practice.

2.2 Motivation

Manipulating entangled-photon pairs is hard. Compared
with single-photon based approaches, entanglement-based
ones seem to be surcharged by unavoidable decoherence of
entanglement over transmission and by time. Indeed, ES-
relaying models require using quantum memory devices
that do not exist so far. This fact encourages us looking
for new relaying methods that can mitigate the abuse of
using entangled photon pairs.

In this paper, we first propose the Quantum Quasi-
Trusted Bridge (QQTB) model that is capable of extend-
ing up to two times the critical QKD range without invok-
ing entangled photon pairs. Then, we propose the Quan-
tum Quasi-Trusted Relay (QQTR) model that could be
considered as an extended-QQTB version. The QQTR
model is capable of securely distributing shared keys over
arbitrarily long distances. This model requires entangled
photon sources, but does not need to invoke entanglement
swapping and entanglement purification as in [5, 6, 15].
This implies that we can avoid the difficulties arising from
keeping entanglement coherence in a long time. This is
significant since quantum memory devices are not ready
so far.

3 Background

3.1 The Controlled-NOT (C-NOT) Gate

Our models need to use the quantum controlled-NOT (C-
NOT) gate (see Figure 1). Original BB84 protocols do
not need this gate. However, the C-NOT gate is one of
the most popular two-qubit quantum gates and advanced
QKD protocols require this gate [10, 18, 20]. We consider
the basis |+〉 = {|0〉, |1〉}. By definition, the C-NOT gate
flips the second (target) qubit if the first (control) qubit
is |1〉 and does nothing if the control qubit is |0〉.

|y〉 |x ⊕ y〉

|x〉|x〉

Figure 1: The two-qubit controlled-NOT (C-NOT) gate,
also called the XOR gate.

We also consider the basis |×〉 = {|0̃〉, |1̃〉} where |0̃〉 =
|0〉+|1〉√

2
and |1̃〉 = |0〉−|1〉√

2
. Note that the two bases |+〉 and

|×〉 are maximally conjugate.

Proposition 1. If two input qubits of the C-NOT gate
are prepared in one common basis, then:

1) If the common input basis is |+〉, then the XOR of
two input qubits appears at the second output.

2) If the common input basis is |×〉, the XOR of two
input qubits appears at the first output.

Proof. The two basis states of the basis |+〉 are |0〉 and
|1〉, corresponding to two logical values 0 and 1, respec-
tively. Similarly, the two basis states of the basis |×〉
are |0̃〉 = |0〉+|1〉√

2
and |1̃〉 = |0〉−|1〉√

2
, corresponding to two

logical values 0 and 1, respectively.
We have directly the statement of Proposition 1 from

the definition of the C-NOT gate (see Figure 1).
We now observe the case in which two input qubits are

prepared in basis |×〉.

CNOT |0̃〉|0̃〉 = CNOT
|0〉 + |1〉√

2

|0〉 + |1〉√
2

7→ 1

2
(|0〉(|0〉 + |1〉) + |1〉(|1〉 + |0〉)) = |0̃〉|0̃〉

CNOT |1̃〉|0̃〉 = CNOT
|0〉 − |1〉√

2

|0〉 + |1〉√
2

7→ 1

2
(|0〉(|0〉 + |1〉) − |1〉(|1〉 + |0〉)) = |1̃〉|0̃〉

CNOT |0̃〉|1̃〉 = CNOT
|0〉 + |1〉√

2

|0〉 − |1〉√
2

7→ 1

2
(|0〉(|0〉 − |1〉) + |1〉(|1〉 − |0〉)) = |1̃〉|1̃〉

CNOT |1̃〉|1̃〉 = CNOT
|0〉 − |1〉√

2

|0〉 − |1〉√
2

7→ 1

2
(|0〉(|0〉 − |1〉) − |1〉(|1〉 − |0〉)) = |0̃〉|1̃〉
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We realize that the C-NOT gate now changes the roles
of two input qubits. If the second qubit is |1̃〉 then it flips
the first qubit. Otherwise, it does nothing. The XOR
(in basis |×〉) is at the first output, not as described in
Figure 1.

Proposition 2. If the two input qubits of the C-NOT
gate are prepared in the two different bases, one in |+〉
and other in |×〉, then

1) If the first and second qubits are prepared in |×〉 and
|+〉, respectively, then the output is an entanglement.

2) If the first and second qubits are prepared in |+〉
and |×〉, respectively, then the C-NOT gate does not
change the values but can change the global phase of
input qubits.

Proof. If the first and second qubits are prepared in |×〉
and |+〉, respectively, then we have:

CNOT |0̃〉|0〉 = CNOT
|0〉 + |1〉√

2
|0〉 7→ 1√

2
(|0〉|0〉 + |1〉|1〉)

CNOT |1̃〉|0〉 = CNOT
|0〉 − |1〉√

2
|0〉 7→ 1√

2
(|0〉|0〉 − |1〉|1〉)

CNOT |0̃〉|1〉 = CNOT
|0〉 + |1〉√

2
|1〉 7→ 1√

2
(|0〉|1〉 + |1〉|0〉)

CNOT |1̃〉|1〉 = CNOT
|0〉 − |1〉√

2
|1〉 7→ 1√

2
(|0〉|1〉 − |1〉|0〉)

Obviously, the output is an entanglement (Bell states).

If the first and second qubits are prepared in |+〉 and
|×〉, respectively, then:

CNOT |0〉 |0〉+ |1〉√
2

7→ 1√
2
(|0〉|0〉 + |0〉|1〉) = |0〉 |0〉 + |1〉√

2

CNOT |0〉 |0〉 − |1〉√
2

7→ 1√
2
(|0〉|0〉 − |0〉|1〉) = |0〉 |0〉 − |1〉√

2

CNOT |1〉 |0〉+ |1〉√
2

7→ 1√
2
(|1〉|1〉 + |1〉|0〉) = |1〉 |0〉 + |1〉√

2

CNOT |1〉 |0〉 − |1〉√
2

7→ 1√
2
(|1〉|1〉 − |1〉|0〉) = −|1〉 |0〉 − |1〉√

2

Obviously, the C-NOT gate does not change the values
of input qubits. It changes only the global phase if the

first and second input qubits are |1〉 and |0〉−|1〉√
2

, respec-

tively.

3.2 A Simple Quantum Circuit

We use the C-NOT gate to build the quantum circuit
CNOT-M as described in Figure 2. It has two inputs
and two outputs. The two input qubits first go through
a C-NOT gate, and then are measured independently in
two different bases |×〉 and |+〉. The final outcome is two
classical bits. From Proposition 1, we directly derive the
following proposition.

C-NOT

M|×〉

M|+〉

|â〉

|b̂〉

Figure 2: The CNOT-M circuit: the pair (|â〉, |b̂〉), where

â = {a, ã} and b̂ = {b, b̃}, goes through a C-NOT gate be-
fore being measured independently in two bases {|0̃〉, |1̃〉}
and {|0〉, |1〉}.

Proposition 3. If two input qubits |â〉 and |b̂〉 are pre-

pared in one common basis (|âb̂〉 = |ab〉 or |ãb̃〉), then the
CNOT-M circuit reveals no information other than the
XOR a⊕ b.

1) If |âb̂〉 = |ab〉 (in the common basis |+〉) then the
second output is (a⊕ b) and the first output is either
0 or 1 with equal probabilities, where a = {0, 1} and
b = {0, 1}.

2) If |âb̂〉 = |ãb̃〉 (in the common basis |×〉) then the
first output is (a⊕ b) and the second output is either
0 or 1 with equal probabilities, where a = {0, 1} and
b = {0, 1}.

3.3 EPR Pairs - Bell States

A Bell state (or an EPR pair) is defined as a maximally en-
tangled quantum state of two qubits. These qubits could
be spatially separated, however, they always exhibit per-
fect correlations. Assume that Alice and Bob share one
of four Bell states |Φ+〉 = 1√

2
(| ↑A↑B〉+ | ↓A↓B〉). If Alice

and Bob measure their qubits in any common basis, then
Alice will get a random logical output either 0 or 1 with
each probability of 50% but the output of Bob is always
parallel with that of Alice (the same value).

If we take into account the logical values of two bases
|+〉 and |×〉 then we can describe four Bell states that
form an orthogonal basis for the quantum state of two
qubits as follows:

|Φ+〉 =
1√
2
|00〉 + |11〉 =

1√
2
|0̃0̃〉 + |1̃1̃〉

|Φ−〉 =
1√
2
|00〉 − |11〉 =

1√
2
|0̃0̃〉 − |1̃1̃〉

|Ψ+〉 =
1√
2
|01〉 + |10〉 =

1√
2
|0̃1̃〉 + |1̃0̃〉

|Ψ−〉 =
1√
2
|01〉 − |10〉 =

1√
2
|0̃1̃〉 − |1̃0̃〉

4 Quantum Quasi-trusted (QQT)
Relays

Let us observe a three-party communication scenario as
follows. The origin Alice wants to establish a secret key



International Journal of Network Security, Vol.9, No.3, PP.233–241, Nov. 2009 236

with the destination Bob. They want to achieve the un-
conditional security. However, the distance between them
exceeds the limited range of QKD. Carol is an intermedi-
ate node that can share QKD links with Alice and Bob.
It seems reasonable that Alice and Bob can choose a
node Carol who is honest enough to correctly follow a
given three-party communication protocol. Vulnerability
is Carol can be eavesdropped by the malicious person Eve.
In such a scenario, we call Carol a quasi-trusted relay.

Definition 1 (QQT relay). A Quantum Quasi-Trusted
(QQT) relay is a person or a station that can perform
simple quantum operations as measurement, C-NOT,
etc., and holds the following conditions:

1) Finite-Time Trust: The relay is honest enough to cor-
rectly follow a given finite-time communication pro-
tocol. After the given protocol has been finished, the
relay can be corrupted.

2) Under Eavesdropping: The relay can always be under
the monitoring of eavesdroppers.

5 Quantum Quasi-trusted Bridge
(QQTB) Model

5.1 Description

Definition 2 (QQTB model). The QQT-bridge
(QQTB) model is a three-party communication model in
which the QQT relay Carol acts as a bridge that helps two
long-distance nodes Alice and Bob to securely establish a
shared key. The Figure 3 roughly describes the QQTB
model.

The QQTB model uses an implicit assumption that
Eve cannot eavesdrop the origin Alice and the destina-
tion Bob. Such an assumption is trivial since if Alice (or
Bob) is eavesdropped then there is no solution. Our defi-
nition of the QQTB model also implies that Eve is allowed
to perform classical and quantum attacks over channels
Alice-Carol and Carol-Bob, even over Carol’s site. At the
first glance, we realize that the most dangerous vulnera-
bility is from Carol’s site. Indeed, although two channels
Alice-Carol and Carol-Bob are secured by QKD (see Fig-
ure 3), if information appears clearly at Carol’s site then
Eve can easily read it (see the Under-Eavesdropping con-
dition of Definition 1).

CarolAlice Bob
QKD linkQKD link

Figure 3: QKD bridge: Alice and Bob are out of the QKD
range; they want to use Carol as a bridge to communicate
securely the session key.

5.2 QQTB Protocol

The challenge is how we can design secure three-party
communication protocols that hold the conditions of the

QQT relay (see Definition 1). We develop a simple idea
that is based on the one-time pad unbreakable encryption
scheme. The idea is described as follows. We try to create
the situation in which Alice, Carol and Bob own three
pads A,C,B, respectively. These pads hold C = A ⊕ B

(a bit-wise XOR operation). Note that Carol owns C and
knows no more than C = A ⊕ B. When Alice wants to
send to Bob a secret key K, she sends K ⊕ A to Carol.
Carol receives K⊕A, computes K⊕A⊕C = K⊕B, and
sends the result to Bob. Bob receives K ⊕ B, computes
K⊕B⊕B to obtain K. In such a situation, even though
Carol owns C = A⊕B, she cannot reveal K. Besides, the
key K is unconditionally secured over channel since we
use the one-time pad scheme. Obviously, Carol holds the
Under Eavesdropping condition (see Definition 1). We try
to use the Finite-Time Trust condition of Carol to go to
such a situation.

The Quantum Quasi-Trusted Bridge (QQTB) protocol
consists of 4 steps.

Step 1. Preparing, exchanging, and measuring qubits.

1) Alice creates 2n random bits ra1, . . . , ra2n and
chooses a random 2n-bit string bA. For each bit
rai, she creates a corresponding quantum state
|r̂ai〉 = |rai〉 (in basis {|0〉, |1〉}) if bA[i] = 0,
or |r̂ai〉 = |r̃ai〉 (in basis {|0̃〉, |1̃〉}) if bA[i] = 1.
Alice sends |r̂a1, r̂a2, . . . , r̂a2n〉 to Carol.

2) Similarly, Bob creates 2n random bits
rb1, . . . , rb2n, a 2n-bit strings bB, then

generates and sends |r̂b1, r̂b2, . . . , r̂b2n〉 to
Carol.

3) Carol receives two 2n-qubit strings from Alice
and Bob in a synchronous manner. It means
that she receives one by one all the 2n pairs

(|r̂ai〉, |r̂bi〉). To receive a pair (|r̂ai〉, |r̂bi〉),
Carol randomly turns into either Check-Mode
(CM) or Message-Mode (MM).

• In the CM, Carol measures independently

|r̂ai〉 and |̂rbi〉 in random bases |+〉 or |×〉.
She gathers two classical bits and keeps
track of their corresponding bases.

• In the MM, Carol uses the CNOT-M cir-
cuit (see Figure 2) to measure the pair

(|r̂ai〉, |r̂bi〉). She gathers both the output
values.

After the receiving finished, the CM and
MM’s choices roughly result in two n-position
strings: the check-position string CP =
cp1, . . . , cpn and the message-position string
MP = mp1, . . . ,mpn.

Step 2. Checking for the presence of Eve.

1) For the channel between Alice and Carol: Alice
and Carol communicate their bases used in the
check-positions CP and the corresponding val-
ues. They discard positions where their bases
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are different. They compare values at remain-
ing positions. If some of these values disagree,
then the channel was compromised. In this case,
they inform Bob to abort the whole transaction.

2) For the channel between Bob and Carol: Bob
and Carol do similarly as Alice and Bob in the
checking process above.

Step 3. Creating the pads for Alice, Carol and Bob.

1) Alice and Bob announce their bases in positions
MP = mp1, . . . ,mpn. If their bases are differ-
ent at mpi, then they inform Carol to discard
this position together.

2) At each remaining position, Carol discards the
first output (of the CNOT-M circuit) if the com-
mon basis of Alice and Bob is |+〉. Otherwise,
she discards the second output.

3) The remaining values of Alice, Carol and Bob
result in three pads A = A1, . . . , Am;C =
C1, . . . , Cm;B = B1, . . . , Bm for Alice, Carol
and Bob, respectively. These pads hold Ci =
Ai ⊕Bi, i ∈ [1, . . . ,m],m ∼ n

2 .

Step 4. Transmitting the key K.

1) Carol announces publicly C = C1, . . . , Cm.

2) Alice creates the random m-bit key K. She
sends K ⊕A⊕ C = K ⊕B to Bob.

3) Bob receives K⊕B, computes K = K⊕B⊕B.

We show why our protocol is secure. At the step 1,

when a pair (|r̂ai〉, |r̂bi〉) synchronously arrives to Carol,
she randomly turns into either the Check-Mode (CM) or
the Message-Mode (MM). Since Eve does not know in
advance the choices of Carol, she cannot treat differently

the pairs (|r̂ai〉, |r̂bi〉). Thus, the error-rate on the check
bits must behave like that on the message bits. In the
other hand, the error-check procedures in the channels
(Alice, Carol) and (Carol, Bob) work exactly as that of
the BB84 protocol. By that, QQTB protocol’s security
is exactly that of the BB84 protocol. This implies that
the QQTB protocol is unconditionally secure. Readers
interested in security proof of BB84 are invited to read [3,
4, 16, 17, 22].

5.3 Discussion

Compared with the trusted model, the QQTB model
seems stronger in realistic scenarios. The trusted model
implicitly requires nodes being secured in an infinite time.
The QQTB model only requires that the nodes are trusted
in a finite time. Besides, if nodes in trusted model are
eavesdropped then the security is compromised. In con-
trast, the QQTB model allows to defeat eavesdropping op-
erations on intermediate nodes, provided that these nodes
correctly follow the protocol.

The QQTB model is weaker than entanglement-based
relaying models since it can extend up to two times the
QKD range. Besides, entanglement-based relaying mod-
els are the untrusted model while the QQTB model can-
not be considered as untrusted one. Indeed, since the
bridge Carol participates in the check for the presence of
Eve, she can cheat the protocol. Such a situation can
be considered as man-in-middle attack. Fortunately, we
can defeat such an attack by using the Wegman-Carter
authentication [23].

Our QQTB protocol does not need entangled photon
pairs. This helps to avoid difficulties arising from the de-
coherence of entangled-photons in practice. However, our
protocol must deal with the synchronization problem that
may be not simple in practice. Besides, using a CNOT
gate can also be considered as a practical disadvantage
compared with the original BB84 protocols.

6 Quantum Quasi-trusted Relay

(QQTR) Model

In QQTB model, we implicitly address single-photon
based models to avoid difficulties arising from entangled
photon pairs. The question is whether we can extend this
model based only on single-photon up to arbitrarily long
distances? We observe the scenario in which there is Dave
in the right of Bob. Bob plays the role of untrusted re-
lay as Carol. The goal now is that Alice can convey a
secret to Dave, not to Bob. Assume that the distances
between Alice, Carol, Bob and Dave are the critical dis-
tance of single-photon transmission on that arrival qubits
are correctly detected. This means that Alice cannot send
directly single photons to Bob or Dave, and Dave cannot
send directly single photons to Carol or Alice. Thus, Al-
ice and Dave cannot make together a quantum contact at
one sole intermediate location as in the QUB model. Be-
sides, no classical contact can help unless Alice and Dave
pre-possess a secret key that has the length at least equal
to that of the transmitting secret [21]. As a result, we
can conclude that the single-photon based QUB model
cannot extend more than two times of the limited single
photon based QKD range. This makes sense of the word
“bridge” in the QQTB model: two bridges cannot be built
successively.

6.1 Description

The QQTR model is roughly described as Figure 4. The
QQTR model needs entangled-photon sources. Between
the origin Alice and the destination Bob we arrange N
Carols C1, . . . , CN and N + 1 Bells B1, . . . , BN+1 (see
Figure 4). C1, . . . , CN , B1, . . . , BN+1 are quasi-trusted
nodes. This creates 2N +2 segments. The concrete value
of N depends on the distance between Alice and Bob.
Without loss of generality, we assume that the lengths of
2N segments are the same and the common length allows
quantum devices working correctly and effectively.
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as Fig. 2)

Bell 1 Bell 2

Carol 1
(Quantum circuit

(EPR source) (EPR source) (EPR source)

(Quantum circuit
Carol 2

(Quantum circuit
Carol N

Alice Bob

Bell N+1

as Fig. 2) as Fig. 2)

Figure 4: Bell 1,.., Bell N are EPR-pair sources. Carol 1,
.., Carol N act as Carol in the enhanced-QQTB protocol.

6.2 QQTR Protocol

For convenience, we also use C0 and CN+1 to denote Alice
and Bob, respectively. The QQTR protocol consists of 5
steps:

Step 1. Preparing, exchanging, and measuring qubits.

1) Each Bi, i ∈ [1, N + 1], prepares n Bell states
(|Φ+〉)n.

2) Each Bi, i ∈ [1, N + 1], sends the first half of
each Bell state to Ci−1 (the previous site), the
second half to Ci (the next site).

3) Alice (or C0) and Bob (or CN+1), each one re-
ceives n qubits. They randomly and indepen-
dently choose bases to measure their qubits.

4) Each Ci, i ∈ [1, N ], receives 2n qubits from Bi

and Bi+1 in a synchronous manner. This means
that she receives n times, and for each time she
receives a qubit pair: one qubit from Bi and
another one from Bi+1. She uses the CNOT-M
circuit (see Figure 2) to measure each incom-
ing qubit pair. She keeps the measured values
and the corresponding bases. Briefly, Ci acts
exactly as Carol in the Message-Mode of the
QQTB protocol.

Step 2. Sifting.

1) Alice and Bob announce their bases.

2) If the bases are different at the position i, then
Alice, Bob, C1, . . . , CN discard this position.

3) For each remaining position i, C1, . . . , CN dis-
card the first or the second output (of the
CNOT-M circuit) if the common basis of Alice
and Bob is |+〉 or |×〉, respectively.

4) The remaining values result in N + 2 2m-
bit strings a = a1, . . . , a2m; c(i) =
c(i)1, . . . , c(i)2m, i = 1 . . .N ; b = b1, . . . , b2m for
Alice, C1, . . . , CN , and Bob, respectively. These
N + 2 strings hold ⊕N

i=1c(i)j = aj ⊕ bj , j ∈
[1, 2m], 2m ∼ n

2 .

Step 3. Checking for the presence of Eve.

1) Alice, Bob, and C1, . . . , CN randomly agree
m out of 2m positions to check the pres-
ence of Eve. This results in two m-position
strings: the check-position string CP =
cp1, . . . , cpm and the message-position string
MP = mp1, . . . ,mpm.

2) Alice, Bob, C1, . . . , CN announce values at
check positions CP : a = acp1 , . . . , acpm

; b =
bcp1 , . . . , bcpm

; c(i) = c(i)cp1 , . . . , c(i)cpm
, i ∈

[1, N ], respectively. They check if ⊕N
i=1c(i)cpj

=
acpj

⊕ bcpj
or not. If some of negative checks,

they abort the protocol.

Step 4. Creating the pads for Alice, C1, . . . , CN , Bob.

1) The values at m positions MP result in
N + 2 m-bit pads: PA = PA

1 , . . . , P
A
m ;

PC(i) = P
C(i)
1 , . . . , P

C(i)
m , i ∈ [1, N ]; and PB =

PB
1 , . . . , P

B
m for Alice, C1, . . . , CN , and Bob, re-

spectively. These pads hold ⊕N
i=1P

C(i) = PA ⊕
PB.

Step 5. Transmitting the key K.

1) Each Ci, i ∈ [1, N ] announces publicly PC(i).

2) Alice creates the random m-bit key K, m ∼ n
4 .

She sends K⊕PA⊕N
i=1P

C(i) = K⊕PB to Bob.

3) Bob receives K ⊕ PB, retrieves K = K ⊕PB ⊕
PB.

6.3 Correctness, Security and Discussion

Correctness. One could claim that is it true that
⊕N

i=1c(i)j = aj ⊕ bj, j ∈ [1, 2m], 2m ∼ n
2 in the Step 2

(sifting)? We will observe the process that creates a com-
mon bit (at position j) for Alice and Bob. The input are
N + 1 EPR pairs from N + 1 Bell’s sites. Besides, Alice
and Bob must measure the received qubits in one com-
mon basis. The Bell state at the site Bell i (Bi) can be
represented as (up to 1√

2
),

|Φ+〉
B

(1)
i

B
(2)
i

=
1∑

n=0

|n, n〉
B

(1)
i

B
(2)
i

=
1∑

n=0

|ñ, ñ〉
B

(1)
i

B
(2)
i

(1)

where B
(1)
i (B

(2)
i ) is the first (second) qubit of Bell i;

{|0〉, |1〉} and {|0̃〉, |1̃〉} denote the bases |+〉 and |×〉, re-
spectively. Note that (also up to 1√

2
)

|n〉 =

1∑

m=0

(−1)nm|m̃〉, |ñ〉 =

1∑

m=0

(−1)nm|m〉

Initially, the global state is

|Ψ0〉 = ⊗N+1
i=1 |Φ+〉

B
(1)
i

B
(2)
i

(2)

where ⊗ denotes the tensor product.
Using Equation (1) we can re-write Equation (2) in

basis |+〉 as

|Ψ0〉 =

1∑

{ni}=0

⊗N+1
i=1 |ni, ni〉B(1)

i B
(2)
i

or in basis |×〉 as
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|Ψ0〉 =

1∑

{ni}=0

⊗N+1
i=1 |ñi, ñi〉B(1)

i
B

(2)
i

After distributing the qubits: B
(1)
1 → C0(A), B

(2)
i →

Ci, B
(1)
i+1 → Ci (for i = 1, . . . , N), B

(2)
N+1 → CN+1(B), we

have

|Ψ0〉 =

1,1∑

{ni}=0,
nN+1=0

|n1〉A
(
⊗N

i=1 |ni, ni+1〉C(1)
i

C
(2)
i

)
|nN+1〉B

(3)
in basis |+〉 or

|Ψ0〉 =

1,1∑

{ni}=0,
nN+1=0

|ñ1〉A
(
⊗N

i=1 |ñi, ñi+1〉C(1)
i

C
(2)
i

)
|ñN+1〉B

(4)
in basis |×〉.

After all the Ci perform the CNOT on their qubit pairs,
Equations (3) and (4) become,

|Ψ1〉 =

1,1∑

{ni}=0,
nN+1=0

|n1〉A ⊗
(
⊗N

i=1 |ni, ni ⊕ ni+1〉C(1)
i

C
(2)
i

)

⊗|nN+1〉B

≡
1∑

{ni,nN+1,mi}=0

|n1〉A ⊗
(
⊗N

i=1 (−1)nimi |m̃i, ni

⊕ni+1〉C(1)
i

C
(2)
i

)
⊗ |nN+1〉B . (5)

or

|Ψ1〉 =

1,1∑

{ni}=0,
nN+1=0

|ñ1〉A ⊗
(
⊗N

i=1 | ˜ni ⊕ ni+1, ñi+1〉C(1)
i

C
(2)
i

)

⊗|ñN+1〉B

≡
1∑

{ni,nN+1,mi+1}=0

|ñ1〉A

⊗
(
⊗N

i=1 (−1)ni+1mi+1 | ˜ni ⊕ ni+1,

mi+1〉C(1)
i

C
(2)
i

)
⊗ |ñN+1〉B. (6)

In the case where both Alice and Bob measure their
qubits in basis |+〉 while each Ci measures her qubits

C
(1)
i and C

(2)
i in |×〉 and |+〉 respectively, Equation (5)

collapses into (up to a global phase factor)

ψ1 = |n1〉A
(
⊗N

i=1 |m̃i, ni ⊕ ni+1〉C(1)
i

C
(2)
i

)
|nN+1〉B

where n1,mi, ni, ni+1 and nN+1 randomly take on either

0 or 1. Obviously, the outcome of C
(2)
i yields

⊕N
i=1(ni ⊕ ni+1) = n1 ⊕ n2 ⊕ n2 ⊕ . . .⊕ nN ⊕ nN ⊕ nN+1

= n1 ⊕ nN+1

In the case where both Alice and Bob measure their
qubits in basis |×〉 while each Ci always does as before,
Equation (6) collapses into (up to a global phase factor)

ψ1 = |ñ1〉A
(
⊗N

i=1 | ˜ni + ni+1,mi+1〉C(1)
i

C
(2)
i

)
|ñN+1〉B

where n1,mi, ni, ni+1 and nN+1 randomly take on ei-

ther 0 or 1. Obviously, the outcome of C
(1)
i yields again

⊕N
i=1(ni ⊕ ni+1) = n1 ⊕ nN+1.
Note that n1, nN+1, ni ⊕ ni+1 are outcomes of Alice,

Bob, and Carol Ci, respectively. Thus, the equation
stated at the end of Step 2 is proven.

Security. We distinguish possible attack types of Eve.

1) Type 1: Quantum attack on sites Bell 1,.., Bell N+1
(B1, . . . , BN+1).

2) Type 2: Quantum attack on sites Carol 1, .., Carol
N (C1, . . . , CN ).

3) Type 3: Quantum attack on channel. Eve could do
quantum attacks on 2n + 2 segments between Alice
and Bob.

4) Type 4: Classical attack, eavesdropping on sites
C1, . . . , CN .

The attack Type 1 implies imperfect EPR sources: the
qubit pairs could be entangled with Eve’s probes. In [15],
fortunately, Lo and Chau have proven that we can effec-
tively check perfect EPR sources by executing random-
hashing verification schemes. As a result, we could con-
clude that our QQTR protocol is secure to this attack
type.

Note that C1, . . . , CN reveal no information than the
XOR results. Indeed, their output choices (the first or
second one) depend on the random coincidence of the ba-
sis choices of Alice and Bob. This implies that all the
single states (qubits) in the channels (attack Type 3) and
the C1, . . . , CN (attack Type 2) are unknown to Eve. By
the no-cloning theorem, Eve will make additional distur-
bances if she tries to get information from these states [3].
In the step 3 of the QQTR protocol, we check the pres-
ence of Eve by evaluating disturbances as in the BB84
protocol. Thus, we conclude that our QQTR protocol is
secure to the attack Types 2 and 3.

Our protocol also is secure to the attack Type 4 since
the classical values a, b were not revealed outside Alice
and Bob’s sites. The knowledge on c(1), . . . , c(N) cannot
derive with certainty the values of a, b. Here, we can say
that the principle of the QQTR protocol is exactly that
of the single-photon QQTB protocol. This is the spirit of
our “quasi-trusted” concept.

Discussion. Our QQTR protocol uses the C-NOT gate
and EPR pairs. At the first glance, one can say that it
is the idea of quantum repeater based on entanglement
swapping and entanglement purification. But this is not
so. In our protocol, EPR pairs are collapsed into single
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photons immediately after having traversed a segment.
At the end of the phase exchanging qubits, Alice and Bob
do not keep any EPR pair. Instead of using quantum
entanglement to conserve the coherence between qubits,
we use the global classical information (XOR value) from
that one cannot derive exactly partial informations.

Theoretically, our QQTR model is weaker than
entanglement-based relaying models. These models allow
to check the presence of Eve regardless of the security of
intermediate nodes. Our QQTR model requires the in-
termediate nodes (relays) to be trusted in a finite-time in
order to collaborate together to check the presence of Eve
(at EPR sources, or on the channels) and protect the par-
tial secrets owned by Alice and Bob. If intermediate nodes
are corrupted and do not correctly follow our QQTR pro-
tocol then the security can be corrupted. However, if all
the intermediate nodes correctly follow the QQTR pro-
tocol then Alice and Bob obtain unconditionally secure
keys.

We realize that in the QQTR protocol the number of
secure bits m does not depend on the number of segments
2N + 2: m ∼ n

4 where n is the number of EPR states
transmitted from each EPR source (see the Step 5 of the
QQTR protocol).

7 Conclusion

We proposed quasi-trusted QKD relaying models. The
quasi-trusted property is characterized by: (1) being hon-
est enough to correctly follow a given multi-party finite-
time communication protocol; (2) however, being under
the monitoring of eavesdroppers. The heart of our works
is the CNOT-M circuit (see Figure 2) and Proposition 3
introduced in Section 3.2.

We distinguished single-photon and entanglement
based models. We showed that our single-photon based
model is only capable of extending up to two times the
limited range of QKD. Our entanglement based model is
capable of extending up to an infinite length of QKD.
Both models give perfect security provided that interme-
diate nodes correctly follow the communication protocol.

Such quasi-trusted models seem reasonable in practice.
They can bring significant advantages in scenarios where
there is no quantum memory devices as today.
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