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Abstract

Elliptic Curve Cryptography provides a secure means of
exchanging keys among communicating hosts using the
Diffie Hellman Key Exchange algorithm. Encryption and
Decryption of texts and messages have also been at-
tempted. This paper presents the implementation of ECC
by first transforming the message into an affine point
on the EC, and then applying the knapsack algorithm
on ECC encrypted message over the finite field GF(p).
In ECC we normally start with an affine point called
Pm(x,y). This point lies on the elliptic curve. In this pa-
per we have illustrated encryption/decryption involving
the ASCII value of the characters constituting the mes-
sage, and then subjecting it to the knapsack algorithm.
We compare our proposed algorithm with RSA algorithm
and show that our algorithm is better due to the high
degree of sophistication and complexity involved. It is al-
most infeasible to attempt a brute force attack. Moreover
only one parameter, namely the Knapsack vector ai alone
needs to be kept secret. On the contrary in RSA, three
parameters such as the modulus n, its factors p and q
need to be kept secret.

Keywords: Discrete logarithm, elliptic curve cryptogra-
phy (ECC), knapsack algorithm, public key cryptography,
RSA algorithm

1 Introduction

Most of the products and standards that use public-key
cryptography for encryption and digital signatures use
RSA today. Recently, Elliptic Curve Cryptography has
begun to challenge RSA. The principal attraction of ECC,
compared to RSA, is that it appears to offer better secu-
rity for a smaller key size, thereby reducing processing
overhead. Elliptic curve cryptography makes use of ellip-
tic curves in which the variables and coefficients are all re-
stricted to elements of a finite field. In ECC we normally
start with an affine point called Pm(x,y). These points
maybe the Base point (G) itself or some other point closer
to the Base point. Base point implies it has the smallest

x,y co-ordinates, which satisfy the EC. A character in a
message is first transformed into an affine point of the
elliptic curve by using it as a multiplier of Pm. That is,
if the ASCII value of a character is A, then we deter-
mine P ′

m=A(Pm). This is one step towards introducing
sophistication and complexity in the encryption process.
The newly evaluated P ′

m is a point on the EC, determined
by applying the addition and doubling strategy of ECC
technique. Then as per ECC algorithm, P ′

m is added with
kPB, where k is randomly chosen secret integer and PB

is the public key of user B, to yield (P ′

m+kPB). This
now constitutes second part of the encrypted version of
the message. The other part, namely, kG, which is the
product of the secret integer and the Base point, con-
stitutes the first part. Thus the encrypted message is
now made up of two sets of coordinates, namely, (kG,
P ′

m+ kPB). In this paper we have assigned kG=(x1,y1)
and (P ′

m+kPB)=(x2,y2). Not satisfied with the complex-
ity involved in determining the encryption, we wish to
introduce further complexity by applying the Knapsack
concept to the encrypted version. The whole idea behind
these rigorous exercises is to make decryption totally im-
possible, even if the Base Point G, secret integer k, the
affine Point Pm are known to the crypt analyst. Now
to recover the information from the encrypted version,
first the knapsack process has to be reversed. Then we
apply the decryption process of ECC, by applying the
private key of recipient (nB) on the first element (kG).
This is subtracted from the second element to recover
P ′

m. Lastly by using the discrete logarithm concept, it is
possible to evaluate the ASCII value and thereby recover
the plaintext. The encrypted contents may be stored in
CD/DVD or transmitted over the Net to a beneficiary.
This promises to afford maximum security from intruders
and hackers.

The originality of this paper rests on the following
points. 1) Transforming the ASCII value of a character
of the message into an affine point on the EC. 2) Knap-
sack algorithm introduces further non-linearity in the en-
cryption. Other points such as applying ECC for encryp-
tion/Decryption, invoking the discrete logarithm concept
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to recover the ASCII value are already existing and well
documented. As far as the authors knowledge go no such
attempt seems to have been presented so far. For the
sake of comparison of the knapsack based ECC encryp-
tion/decryption, another public key algorithm, namely
RSA, is used to encrypt/decrypt the same message. Un-
like the ECC procedure, this yields only one integer for
each character of the message. The time and space impli-
cations for both the schemes are discussed and analyzed.
The paper justifies that despite the harsher requirements
of time and space for the ECC methods, it is far superior
due to the resistance it offers to any brute force attack.

Some recent works on application of ECC are cited
here.Aydos et al. [1] Discusses the results of implemen-
tation of ECC over the field GF(p) on an 80 MHz, 32
bit RAM microprocessor. Kristin et al. [8] provides
an overview of ECC for wireless security. It focuses on
the performance advantages in the wireless environment
by using ECC instead of the traditional RSA cryptosys-
tem. Ray et al. [3] explains the design of a generator,
which automatically produces a customized ECC hard-
ware that meets user-defined requirements. Cilardo et
al. [4] explains the engineering of ECC as a complex in-
terdisciplinary research field encompassing such fields as
mathematics, computer science and electrical engineering.
McIvor et al. [10] introduces a novel hardware architec-
ture for ECC over GF(p). Chen et al. [2] presents a high
performance EC cryptographic process for general curves
over GF(p). The standard specifications for public key
cryptography are defined in [13].

The idea for extending knapsack algorithm to encryp-
tion/decryption was derived by Diffie [5]. The ECC con-
cept is very well documented and illustrated by Williams
Stallings [14]. In [15], Access control in sensor networks is
used to authorize and grant users the right to access the
network and data collected by sensors. This paper de-
scribes a public key implementation of access control in
a sensor network. Kevin et al. [6], presents a brute-force
attack on ECC implemented on UC Berkley’s Tiny OS
operating system for wireless sensor networks. The at-
tack exploits the short period of the pseudorandom num-
ber generators used by cryptosystem to generate private
keys. The paper, Moon [11] proposed a more efficient and
novel approach of a scalar point multiplication method
than existing double and add by applying redundant re-
coding, which originates from radix-4 Booths algorithm.
Hedabou [7], proposes a heuristic analysis on the security
of Joye and Tymen’s technique. The paper Lee et al. [9],
proposes 3 algorithms to perform scalar multiplication on
EC defined over higher characteristic finite fields such as
OEA (Optimal Extension Field). Yongliang et al. [16]
shows that Aydos et al.’s protocol is vulnerable to man-
in the-middle attack from any attacker but not restricted
on the inside attacker. They proposed a novel ECC based
wireless authentication protocol.

Shi et al. [12], investigates whether some architectural
parameters such as word size may affect the choice of al-
gorithms when implementing ECC with software. They

have identified a set of algorithms for ECC implementa-
tion for low-end processor.

2 Proposed Method Description

The Weiestrass equation defining an elliptic curve over
GF(p), for q > 3, is as follows:

E : y2 = x3 + ax + b, (1)

where x, y are elements of GF(p), and a, b are integer
modulo p, satisfying

4a3 + 27b2 6= 0 mod p. (2)

Here p is known as modular prime integer. An elliptic
curve E over GF(p) consist of the solutions (x, y) defined
by Equations (1) and (2), along with an additional ele-
ment called O, which is the point of EC at infinity. The
set of points (x, y) are said to be affine coordinate point
representation.

The basic Elliptic curve operations are point addition
and point doubling. Elliptic curve cryptographic primi-
tives [13] require scalar point multiplication. Say, given a
point P (x, y) on an EC, one needs to compute kP , where
k is a positive integer. This is achieved by a series of dou-
bling and addition of P . Say, given k = 386, entails the
following sequence of operations (refer to Table 1).

P, 2P, 3P, 6P, 12P, 24P, 48P, 96P, 192P, 193P, 386P.

Let us start with P(xP , yP ). To determine 2P , P is
doubled. This should be an affine point on EC. Use the
following equation, which is a tangent to the curve at
point P .

S = [(3x2

P + a)/2yP ] mod p.

Then 2P has affine coordinates xR, yR given by

xR = (S2 − 2xP ) mod p,

yR = [S(xP − xR) − yP ] mod p.

Now to determine 3P , we use addition of points P and
2P , treating 2P = Q. Here P has coordinates (xP , yP )
and Q = 2P has coordinates (xQ, yQ). Then

xR = (S2 − xP − xQ) mod p,

yR = (S(xP − xR) − yP ] mod p.

Therefore we apply doubling and addition depending
on a sequence of operations determined for k. Every point
xR, yR evaluated by doubling or addition is an affine point
(points on the Elliptic Curve).

The proposed algorithm is shown in Algorithm 1.
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Table 1: A series of doubling and addition of P

P 2P 3P 6P 12P 24P 48P 96P 192P 193P 386P
- Doubling Addition Doubling Doubling Doubling Doubling Doubling Doubling Addition Doubling

Algorithm 1 KnapsackBasedECC (UAlice,UBob, Pm)

1: Begin
2: Initiate the connection with UAlice and UBob

3: if (UAlice and UBob is legitimate user) then

4: UBob = {PBob, nBob}//Key pair for UBob

5: UAlice = {PAlice, nAlice}//Key pair for UAlice

6: UBob = Send (PBob, UAlice);//Send the Public key
of UBob to UAlice

7: UAlice = Send (PAlice, UBob);//Send the Public key
of UAlice to UBob

8: UBob = Send (UAlice, Public information);
9: UAlice = Send (UBob, Public information);

10: end if

11: //Encryption – Alice encrypt the message and send
it to Bob

12: if (Encryption = TRUE) then

13: Calculate the Pm’: Pm’ = G.Pm,
where Pm is the ASCII value of Plain Text and G
is the base point of EC

14: Calculate the kPBob value
15: Calculate the Pm’ + kPBob = (x2, y2)
16: Calculate the kG = (x1, y1)
17: S[x1]= Knapsack value (x1);
18: S[y1]= Knapsack value (y1);
19: S[x2]= Knapsack value (x2);
20: S[y2]= Knapsack value (y2);
21: Send (UBob, Cm=((S[x1], S[y1]), (S[x2], S[y2])));
22: end if

23: //Decryption – Bob decrypt the message fromAlice
24: if (Decryption = TRUE) then

25: x1 = Inverse Knapsack value (S[x1]);
26: y1 = Inverse Knapsack value (S[y1]);
27: x2 = Inverse Knapsack value (S[x2]);
28: y2 = Inverse Knapsack value (S[y2]);
29: kG = (x1, y1);
30: Pm’ + kPBob = (x2, y2);
31: Calculate nBobkG = nBob(x1, y1);
32: Calculate Pm’ = Pm’ + kPBob –nBob kG;
33: Calculate the Pm value from Pm’ using discrete log-

arithm
34: end if

35: End//End Algorithm KnapsackBasedECC

3 Implementation Details Of Our

Proposed Algorithm

Once the defining EC is know, we can select a base point
called G. G has [x, y] coordinates which satisfy the equa-

tion y2 = x3 + ax+ b. The Base point has the smallest x,
y values which satisfy the EC.

The ECC method requires that we select a random
integer k(k < p), which needs to be kept secret. Then
kG is evaluated, by a series of additions and doublings, as
discussed above. For purpose of this discussion we shall
call the source as host A, and the destination as host B.
We select the private key of the host B, called nB. k and
nB can be generated by random number generators to
give credibility. That would be digressing away from the
main discussion. Hence we make suitable assumptions for
these two parameters. The public key of B is evaluated
by

PB = nBG. (3)

Suppose A wants to encrypt and transmit a character
to B, he does the following. Assume that host A wants to
transmit the character ‘S’. Then the ASCII value of the
character ‘S’ is used to modify Pm as follows: P ′

m= SPm.
Pm we said is an affine point. This is selected different
from the Base point G, so as to preserve their individual
identities. P ′

m is a point on the EC. The coordinates of
the P ′

m should fit into the EC. This transformation is
done for two purposes. First the single valued ASCII is
transformed into a x,y co-ordinate of the EC. Second it is
completely camouflaged from the would-be hacker. This
is actually intended to introduce some level of complexity
even before the message is encrypted according to ECC.

As the next step of ECC, we need to evaluate kPB,
here PB is a public key of user B. Determining this prod-
uct involves a series of doubling and additions, depending
on the value of k. For a quick convergence of the result,
we should plan for optimal number of doubles and addi-
tions. The encrypted message is derived by adding P ′

m

with kPB, that is, P ′

m+kPB. This yields a set of x2, y2

coordinates. Then kG is included as the first element of
the encrypted version. kG is another set of x1, y1 coordi-
nates. Hence the entire encrypted version for purposes of
storing or transmission consists of two sets of coordinates
as follows:

Cm = (kG, P ′

m + kPB)

kG −→ x1, y1

P ′

m + kPB −→ x2, y2.

Thus far the modified plaintext has been encrypted by
application of the ECC method. The modification of the
plaintext in conjunction with Pm is a new innovation of
this paper. However the authors have gone a step fur-
ther, to make the encryption more secure, by proposing
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the extension of the knapsack procedure. As far as our
knowledge goes, this is perhaps the first attempt at apply-
ing the Knapsack algorithm to ECC encrypted message.
This introduces thorough diffusion and confusion to shat-
ter any attempt at brute force attacks.

Knapsack requires that we generate a series of vectors
called ai. There are several ways of generating these vec-
tors. For the sake of illustration we shall take the first
value as 1, and subsequent values as multiples of n Say

ai = 1, n, n2, n3, · · · , nm1 ≤ i ≤ m.

Here, n may be assumed as some random integer less
than 10, or computed involving the p and k integers. Here
p is a prime integer used in the modular arithmetic, k is
the secret integer and m is the length of the binary bit
string.

Next let us explore how the co-ordinates of the en-
crypted message are subjected to Knapsack process. Say,
xi, is one of the coordinate points, which can be repre-
sented in its binary form as:

xi = b1, b2, · · · , bm1 ≤ i ≤ m.

As per the knapsack algorithm we calculate a cumula-
tive sum S[x1],

S[x1] =
m∑

i=1

aixi.

In the final encrypted version the co-ordinate xi is re-
placed by its equivalent S[x1]. Similarly other coordinates
like y1, x2, y2 are transformed by the knapsack algorithm,
so that the encrypted message shall now be represented
as

Cm = ((S[x1], S[y1]), (S[x2], S[y2])).

Recall that this two pairs of integers represent just
one character in a message. Depending on the number
of characters in the message, there will be as many such
pairs of integers. This is either stored in archival device
like CD/DVD or transmitted to a beneficiary through the
Net.

The recipient B has all relevant information for revers-
ing the knapsack procedure and to recover bit pattern
of the coordinates. For example B knows the ai series,
his own secret key nB, the base point G, a, b, p values of
the EC. B receives the encrypted message, Cm=((S[x1],
S[y1]), (S[x2], S[y2])). Let us discuss how to reverse the
Knapsack process, by taking one example. Consider

S[x1] =

m∑

i=1

aixi,

which is the knapsack representation of x1. The x1 value
is recovered in an iterative fashion as follows:

S[x1] − nm.

If this value is positive i.e., S[x1] - nm > 0, then a
binary bit 1 is assigned at the (m)th position. The cur-
rent value is S[x1] = S[x1] - nm. If however the value is

negative, then a 0 bit is assigned and the S[x1] remains
unchanged.

Now subtract nm−1 from the current S[x1]. Depending
upon whether it is +ve or -ve, assign 1 or 0 at the relevant
bit position. Continue this subtraction until the ai series
is exhausted. This will recover the binary bit pattern of
x1. These procedures are repeated for y1, x2, and y2.

Recall that kG is represented by x1, y1, and P ′

m+ kPB

is represented by x2, y2. In order to pull out P ′

m from
P ′

m+kPB, B applies his secret key nB and multiplies kG
so that,

nBkG = kPB.

Subtract this from P ′

m+ kPB, to get P ′

m as follows:

P ′

m = P ′

m + kPB − nBkG.

This subtraction is another ECC procedure involving
doubling and addition. But the only difference is that
the negative term will have its y co-ordinate preceded
by a minus sign. With this subtle change in mind, the
expression of determining the slope, new values of xR, yR

are the same. Wherever y figures, it is substituted as -y.
This will yield P ′

m.
Using the discrete logarithm concept the ASCII value

of ‘S’ can be retrieved as follows, P ′

m= S Pm.

4 Implementation Of The Pro-

posed Algorithm

The Elliptic Curve is

y2 mod 487 = (x3 − 5x + 25) mod 487.

The base point G is selected as (0, 5). Base point
implies that it has the smallest x, y co-ordinates which
satisfy the EC. Pm is another affine point, which is picked
out of a series of affine points evaluated for the given
EC. We could have retained G itself for Pm. However
for the purpose of individual identity, we choose Pm to
be different from G. Let Pm =(1,316). The choice of
Pm is itself an exercise involving meticulous application
of the ECC process on the given EC. Further we need to
generate the secret integer k, and the private key nB of the
recipient B. We have at our disposal a series of random
number generators. But that would be digressing from
the main path of thought. Hence we shall assume that
k = 225, and nB = 277.

Plaintext is “S”, whose ASCII value is 83. Therefore,

PB = nBG = 277(0, 5) = (260, 48)

P ′

m = 83(1, 316) = (475, 199)

kPB = 225(260, 48) = (212, 151)

P ′

m + kPB = (475, 199) + (212, 151) = (51, 58)

kG = 225(0, 5) = (99, 253).

Encrypted version of the message is: ((99, 253),
(51, 58)), where x1 = 99, y1 = 253, x2 = 51, and y2 = 58.
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Table 2: Knapsack based ECC encryption

Character Encryption before Encryption after Knapsack
knapsack applied Applied

kG, P ′

m+kPB

S=83 (99,253),(51,58) (18756,82031),(3756,656)
A=65 (99,253),(116,280) (18756,82031),(656,3751)
V=86 (99,253),(427,287) (18756,82031),(472006,488126)
E=69 (99,253),(135,341) (18756,82031),(96876,406901)

Apply knapsack algorithm using ai vector

ai = 1, 5, 25, 125, 625, 3125, 15625 (where n = 5)

x99 = 99 −→ 1100011 [binary value of 99].

Therefore

S[x1] =
m∑

i=1

aixi

[99] = 1 + 5 + 0 + 0 + 0 + 3125 + 15625

= 18756.

Similarly

S[253] = 82031

S[51] = 3756

S[58] = 656.

Hence the transmitted message is (18756, 82031),
(3756, 656). The recovery of bit pattern for x99 is done as
follows:

18756− 15625 = 3131 −→ 1

3131− 3125 = 6 −→ 1

6 − 625 = −ve −→ 0

6 − 125 = −ve −→ 0

6 − 25 = −ve −→ 0

6 − 5 = 1 −→ 1

1 = 1 −→ 1.

Therefore, x99 = 1100011 (read from bottom up). Simi-
larly other coordinates are recovered by applying reverse
knapsack algorithm. Thus we are able to recover the en-
crypted version

(99, 253), (51, 58).

From this Pm should be retrieved, using B’s private key
nB.

277(99, 253) = (212, 151)

P ′

m = (51, 58)− (212, 151) = (475, 199).

Now apply discrete logarithm concept to get the ASCII
value of “S”.

S(1, 316) = (475, 199).

Therefore, S = 83. Thus we retrieve the character “S”.
Detailed working for the remaining characters is given in
the Appendix A.

5 Discussions and Conclusions

A plaintext message ’SAVE’ is taken for implementing the
algorithm proposed in this paper. Each character in the
message is represented by its ASCII value. Each of these
ASCII value is transformed into an affine point on the
EC, by using a starting point called Pm. This Pm may
be selected to be different from the Base point G. Trans-
formation of the plaintext ASCII value by using an affine
point is one of the contributions of this work.The purpose
of this transformation is two fold. Firstly a single digit
ASCII integer of the character is converted into a set of
co-ordinates to fit the EC. Secondly the transformation in-
troduces non-linearity in the character thereby completely
camouflaging its identity. This transformed character of
the message is encrypted by the ECC technique. ECC
itself is a very secure algorithm for encryption. However,
not satisfied with it, we apply the knapsack algorithm,
so that the entire encrypted version turns into an ensem-
ble of confusing integers, thereby discouraging a potential
cryptanalyst from attempting a brute force attack. Ap-
plying Knapsack algorithm to the ECC encrypted mes-
sage is another new contribution of this work, which has
not been attempted so far.

The table below shows the results for the message
”SAVE”. Encryption with Knapsack incorporated is
shown in Table 2 and Decryption with Knapsack reversed
is shown in Table 3

Table 3: Knapsack based ECC decryption

Reversal of knapsack Decryption Discrete
Logarithm

99,253,51,58 475,199 83
99,253,116,280 298,182 65
99,253,427,287 68,91 86
99,253,135,341 83,111 68

The above table shows encryption of ‘SAVE’ by using
ECC technique. The results before and after applying
Knapsack algorithm are shown. Decryption of ECC en-
crypted message is itself quite a formidable task, unless
we have knowledge about the private key nB, the secret
integer k, the affine point Pm. Now by extending the
Knapsack algorithm to the ECC encrypted message, we
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Table 4: RSA encryption and decryption

M C = M e mod n M = Cd mod n
S=83 458 83
A=65 401 65
V =86 260 86
E=69 345 69

Table 5: Execution time

Execution Time
(Both Encryption and Decryption)

With Knapsack ∼ 60.9 ms
With out Knapsack ∼ 55.6 ms

introduce thorough confusion and diffusion. Thereby the
message becomes absolutely secure.

The strength of Knapsack algorithm lies in the selec-
tion of the ai vectors. As said earlier, there are infinite
ways of selecting these vectors. All the series available
in the world such as Taylor’s series, Maclaurin’s series or
fanciful generations like

ai −→ 1, n, (n + 1)1, (n + 2)2, (n + 3)3, · · · , (n + p)p,

can be used. The limit to this selection is left to the
imagination of the researcher. Even assuming that the
opponent knows all the relevant parameters such as pri-
vate key nB, the secret integer k, and the modular prime
value p, he will not be able to figure out the ai vectors.
More than that the ‘n’ used in the ai is another hurdle to
be crossed. Thus, this work introduces two new concepts,
such as the transformation of the ASCII into an affine
point on the EC, and extending the Knapsack algorithm,
which makes ECC algorithm one of the most challenging
and formidable one, among all the encryption strategies.
This is one of the most secure schemes for storing massive
personal and sensitive data for archival purposes, such as
National registry.

The same message ‘SAVE’ is also encrypted using the
public key cryptography scheme called RSA. The RSA
used a public key e = 31, private key d = 159 and modulus
value n = 667. It yields the following result as shown in
the Tables 4 and 5.

The RSA took 36.26ms to do the encryption and
decryption. The same message with Knapsack based
ECC approach took 60.9 ms to perform Encryp-
tion/Decryption. This is 24.64ms more than time taken
for RSA. The storage space required for writing the ECC
results on to the CD/DVD is more than twice, as com-
pared to the space required for RSA results. The following
table illustrate the execution time taken for with knap-
sack and with out knapsack.

Then the question arises why use ECC strategy at all!
In using the Knapsack based ECC algorithm we need
to keep only the ai vectors secret. The crypt analyst

may know all other values. The decryption process is to-
tally infeasible in Knapsack based ECC and is worthwhile
for storing/transmitting sensitive data of national signif-
icance. The RSA algorithm is equally secure. But many
values like modulus operator n, and its prime factors like
p,q need to be kept secret. Moreover RSA needs use of
numbers of 120 digits for ‘n’ for better security.

6 Future Scope

What further work can be done as an extension of the
present work? There is plenty of scope to toy with the
selection of the ai vector. Depending on the amount of
memory requirement, one can analyze the use of Knap-
sack based ECC in small memory devices like smart cards
and mobile devices. One can try using random and pseudo
random number generators for choosing the secret integer
k, and the private key nB. ECC is a vase field where there
is large scope for higher research.
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Appendix A

Plaintext is “A”, whose ASCII value is 65. Therefore,

PB = nBG = 277(0, 5) = (260, 48)

P ′

m = 65(1, 316) = (298, 182)

kPB = 225(260, 48) = (212, 151)

P ′

m + kPB = (298, 182) + (212, 151) = (116, 280)

kG = 225(0, 5) = (99, 253)

Encrypted version of the message is: ((99, 253),
(116, 280)), where x1 = 99, y1 = 253, x2 = 116, y2 = 280.

Apply knapsack algorithm using ai vector

ai = 1, 5, 25, 125, 625, 3125, 15625 (where n = 5)

x280 = 280 −→ 100011000 [binary value of 280].

Therefore

S[x1] =

m∑

i=1

aixi

S[280] = 1 + 0 + 0 + 0 + 625 + 3125 + 0 + 0 + 0

= 3751.

Similarly

S[253] = 82031

S[116] = 656

S[99] = 18756.

Hence the transmitted message is (18756,82031),
((656,3751). The recovery of bit pattern for x280 is done
as follows:

3751 − 390625 = −ve −→ 0

3751− 78125 = −ve −→ 0

3751− 15625 = −ve −→ 0

3751 − 3125 = 626 −→ 1

626 − 625 = 1 −→ 1

1 − 125 = −ve −→ 0

1 − 25 = −ve −→ 0

1 − 5 = −ve −→ 0

1 = 1 −→ 1.

Therefore, x280 = 100011000 (read from bottom up).
Similarly other coordinates are recovered by applying re-
verse knapsack algorithm. Thus we are able to recover
the encrypted version: (99, 253), (116, 280).

From this Pm should be retrieved, using B’s private
key nB.

277(99, 253) = (212, 151)

P ′

m = (116, 280)− (212, 151) = (298, 182).

Now apply discrete logarithm concept to get the ASCII
value of “A”.

A(1, 316) = (298, 182).

Therefore, A = 65. Thus we retrieve the character “A”.
Plaintext is “V”, whose ASCII value is 86. Therefore,

PB = nBG = 277(0, 5) = (260, 48)

P ′

m = 86(1, 316) = (68, 91)

kPB = 225(260, 48) = (212, 151)

P ′

m + kPB = (68, 91) + (212, 151) = (427, 287)

kG = 225(0, 5) = (99, 253).

Encrypted version of the message is: ((99, 253),
((427, 287)), where x1 = 99, y1 = 253, x2 = 427,
y2 = 287. Apply knapsack algorithm using ai vector

ai = 1, 5, 25, 125, 625, 3125, 15625, 78125 (where n = 5)

x253 = 253 −→ 11111101 [binary value of 253].
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Therefore,

S[x1] =
m∑

i=1

aixi

S[253] = 1 + 5 + 25 + 125 + 625 + 3125 + 0 + 78125

= 82031.

Similarly,

S[99] = 18756

S[427] = 472006

S[287] = 488126.

Hence the transmitted message is (18756, 82031),
(472006, 488126). The recovery of bit pattern for x253

is done as follows:

3751− 390625 = −ve −→ 0

82031− 78125 = 3906 −→ 1

3906 − 15625 = −ve −→ 0

3906− 3125 = 781 −→ 1

781 − 625 = 156 −→ 1

156 − 125 = 31 −→ 1

31 − 25 = 6 −→ 1

6 − 5 = 1 −→ 1

1 = 1 −→ 1.

Therefore, x253 = 11111101 (read from bottom up). Sim-
ilarly other coordinates are recovered by applying reverse
knapsack algorithm. Thus we are able to recover the en-
crypted version: (99, 253), (427, 287).

From this Pm should be retrieved, using B’s private
key nB:

277(99, 253) = (212, 151)

P ′

m = (427, 287)− (212, 151) = (68, 91).

Now apply discrete logarithm concept to get the ASCII
value of “V”.

V (1, 316) = (68, 91).

Therefore, A = 86. Thus we retrieve the character “V”.
Plaintext is “E”, whose ASCII value is 69. Therefore,

PB = nBG = 277(0, 5) = (260, 48)

P ′

m = 69(1, 316) = (83, 111)

kPB = 225(260, 48) = (212, 151)

P ′

m + kPB = (83, 111) + (212, 151) = (135, 341)

kG = 225(0, 5) = (99, 253).

Encrypted version of the message is: ((99, 253),
(135, 341)), where x1 = 99, y1 = 253, x2 = 135, y2 = 341.
Apply knapsack algorithm using ai vector:

ai = 1, 5, 25, 125, 625, 3125, 15625, 78125 (where n = 5)

x135 = 135 −→ 10000111 [binary value of 253].

Therefore,

S[x1] =

m∑

i=1

aixi

S[135] = 1 + 0 + 0 + 0 + 0 + 3125 + 15625 + 78125

= 96876.

Similarly,

S[253] = 82031

S[99] = 18756

S[341] = 406901.

Hence the transmitted message is (18756, 82031),
(96876, 406901). The recovery of bit pattern for x135 is
done as follows:

3751− 390625 = −ve −→ 0

96876− 78125 = 18751 −→ 1

18751− 15625 = 3126 −→ 1

3126− 3125 = 1 −→ 1

1 − 625 = −ve −→ 0

1 − 125 = −ve −→ 0

1 − 25 = −ve −→ 0

1 − 5 = −ve −→ 0

1 = 1 −→ 1.

Therefore, x135 = 10000111 (read from bottom up). Sim-
ilarly other coordinates are recovered by applying reverse
knapsack algorithm. Thus we are able to recover the en-
crypted version:

(99, 253), (135, 341).

From this Pm should be retrieved, using B’s private key
nB.

277(99, 253) = (212, 151)

P ′

m = (135, 341)− (212, 151) = (83, 111).

Now apply discrete logarithm concept to get the ASCII
value of “E”.

E(1, 316) = (83, 111).

Therefore, E = 69. Thus we retrieve the character “E”.
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