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Abstract

Special form of finite fields (FFs), called vector FFs
(VFFs), is defined in the vector spaces over the ground
finite field GF (p) using particular types of the multiplica-
tion operation over vectors. Implementation of the cryp-
tographic algorisms based on elliptic curves (ECs) over
VFFs provides significantly higher performance than the
implementation of the EC-based algorithms, in which the
ECs are defined over the ground fields and extension fi-
nite fields of polynomials.
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1 Introduction

The most computationally efficient digital signature (DS)
algorithms are based on elliptic curves (ECs) over finite
fields [6, 9]. The well known DS standards ECDSA [5] and
GOST R 34.10-2001 [4] specify EC-based algorithms over
the ground fields GF (p). However in many cases of the
practical use of DS algorithms there are required the DS
schemes providing higher performance in hardware and in
software. To meet such requirements there have been pro-
posed different approaches to accelerated the EC-based
cryptographic algorithms [7, 8]. These approaches can
be categorized into two groups: i) high-level algorithm
that manage the ECs selection and ii) low-level algorithm
that manage the finite field operation. Especially much
attention in these researches is paid to the EC-based al-
gorithms implementation using the finite fields GF (2m),
GF ((2m)

s
), and GF (pm), because of their efficiency in

hardware implementation [1, 2, 3].

This paper proposes another approach to acceleration
of the EC-based cryptographic algorithms. The new ap-
proach consists in implementing the ECs using new form
of the extension fields GF (pm) [10], which provides higher
computational efficiency of the multiplication in the finite
field and efficacy of the parallelization of the multiplica-
tion operation.

In second section, using so called expansion coefficients
we introduce special type of the multiplication operation

in the finite m-dimension vector space defined over the
ground field GF (p). It is shown theoretically that in cases
m = 2 and m = 3 one can select the prime values p and
the expansion coefficients such that the fields GF (pm)
are formed. Section 3 extends the conditions of the vector
finite fields formation to values m > 3 and illustrates with
computational experiments that the vector finite fields are
formed in the cases m|p − 1 while the equation xm = τ ,
where τ is the expansion coefficient, has no solution in the
field GF (p). Section 4 compares computational efficiency
of the field multiplication in the polynomial fields GF (pm)
and vector fields GF (pm). Section 5 concludes the paper.

In the paper the following specific term is used: The
kth-power element in some finite field GF (pd), where d ≥
1, is an element a ∈ GF (pd) for which the equation xk = a
has solutions in GF (pd).

2 Finite Fields in Vector Spaces

2.1 Finite Vector Spaces

Let us consider the set of the m-dimension vectors

ae + bi + · · · + cz,

where e, i, . . . z are some formal basis vectors and
a, b, . . . c ∈ GF (p), are coordinates. Vector can be also
represented as a set of its coordinates (a, b, . . . , c). The
terms τv, where τ ∈ GF (p) and v ∈ {e, i, . . . , z}, are
called components of the vector. The vectors are also
denoted as a sequence of their coordinates:

ae + bi + · · · + cz = (a, b, . . . , c).

The addition of two vectors (a, b, . . . , c) and (x, y, . . . w)
is defined as addition of the coordinates corresponding to
the same basis vector:

(a, b, . . . , c) + (x, y, . . . , w) = (a + x, b + y, . . . , c + w).

The multiplication of two vectors (a, b, . . . , c) and
(x, y, . . . w) is defined as pair-wise multiplication of all
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components of the vectors in correspondence with the fol-
lowing formula

(ae + bi + · · · + cz) ◦ (xe + yi + · · · + wz)

= ae ◦ xe + bi ◦ xe + · · · + cz ◦ xe + ae ◦ yi

+bi ◦ yi + · · · + cz ◦ yi + · · · + ae ◦ wz + bi ◦ wz

+ · · ·+ cz ◦ wz

= axe ◦ e + bxi ◦ e + · · · + cxz ◦ e + aye ◦ i

+byi ◦ i + · · · + cyz ◦ i + · · · + awe ◦ z

+bwi ◦ z + · · · + cwz ◦ z,

where ◦ denotes the vector multiplication operation. In
the final expression each product of two basis vectors is
to be replaced by some basis vector v or by a vector
τv (τ ∈ GF (p)) in accordance with some given table
called basis-vector multiplication table (BVMT). There
exist different variants of the BVMTs that define asso-
ciative and commutative multiplication of vectors, but in
this paper there is used the BVMT of some general type
presented by Table 1. For arbitrary values m, µ ∈ GF (p),
and τ ∈ GF (p) Table 1 defines the vector multiplication
that is a commutative and associative operation. The
coefficients µ and τ in Table 1 are called the expansion
coefficients.

2.2 Vector Finite Fields GF (p2)

In the case m = 2 the general representation of the BVMT
possessing commutativity and associativity can be de-
scribed as follows

e ◦ i = i ◦ e = i, e ◦ e = e, i ◦ i = τe,

where different values τ ∈ GF (pd) define different variants
of the multiplication operation. Each of these variants
defines a finite ring of the two-dimension vectors. Let
us consider a nonzero element of the vector ring Z =
ae + bi. The element Z−1 = xe + yi is called inverse of
Z, if Z−1Z = e = (1, 0), where 1 and 0 are the identity
and zero elements in GF (pd). In accordance with the
multiplication definition we can write

Z−1Z = (ax + τby)e + (bx + ay)i = 1e + 0i.

For given (a, b) there exists a pair (x, y) satisfying the last
equation, if

a2 − τb2 6= 0.

The last condition holds for all vectors (a, b), except (0,0),
if τ is not the second-power element in the field GF (p).
In this case the vector space is a field GF (p2) the multi-
plicative group of which has the order

Ω = p2 − 1 = (p − 1)(p + 1).

If τ is the second-power element in the field GF (p),
then the characteristic equation a2 − τb2 = 0 is satisfied
for each value b ∈ 1, 2, . . . , p − 1 at two different values a.

In this case we have a finite group in the vector space, the
group order being equal to

Ω = p2 − 2(p − 1) − 1 = (p − 1)2.

Example 1. For p = 1003001, µ = 1, and τ = 3 (3 is
not the second-power element in GF (1003001)) the vec-
tor 1e + 2i has the order ω = 1006011006000 and is a
primitive element of the multiplicative group of the field
GF (10030012). For p = 1003001, µ = 1, and τ = 4 there
is formed the the non-cyclic finite vector group having the
order Ω = 1006009000000, in which the vector 1e+2i has
the order ω = 1003000. The last value is the maximum
possible order of the elements in this vector group (this
fact has been established with computation experiments).

2.3 Vector Finite Fields GF (p3)

In the case m = 3 the general representation of the BVMT
possessing commutativity and associativity is shown in
Table 2, where µ ∈ GF (p) and τ ∈ GF (p) are the expan-
sion coefficients. In accordance with the multiplication
operation defined by Table 2 for vectors Z = ae + bi + cj
and X = xe + yi + wj we can write

Z ◦ X = (ax + τµcy + τµbw)e + (bx + ay + µcw)i+

+(cx + τby + aw)j = 1e + 0i + 0j.

If the last equation has solution relatively unknown X
for all nonzero vectors Z, then the vector space will be
a vector finite field GF (p3d). From the last equation the
following system of equations can be derived







ax + τµcy + τµbw = 1
bx + ay + µcw = 0
cx + τby + aw = 0.

From this system the following characteristic equation can
be get

a3 − 3τµbc · a + τ2µb3 + τµ2c3 = 0 (1)

Let us consider Equation (1) relatively the unknown
value a. Denoting B = (τ2µb3 + τµ2c3)/2 and using the
well known formulas [11] for cubic equation roots we get
the expression for the Equation (1) roots in the following
form

a = A′ + A′′, where,

A′ =
3

√

B +
√

B2 − (τµbc)3 = 3

√

−τµ2c3,

A′′ =
3

√

B −
√

B2 − (τµbc)3 = 3

√

−τ2µb3.

Thus, if both of the values τµ2 and τ2µ are not the third-
power elements in the field GF (p), then the characteristic
Equation (1) has no solutions relatively unknown a for all
possible pairs (b, c), except (b, c) = (0, 0). In this case
the vector space is a field GF (p3). In general the analysis
of the characteristic Equation (1) leads to the following
cases.
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Table 1: The basis-vector multiplication table of the general type

◦ −→e −→ı −→
−→
k −→u . . . −→z

−→e e i j k u . . . z
−→ı i τj τk τu τ . . . τz τµe
−→ j τk τu τ . . . τz τµe µi
−→
k k τu τ . . . τz τµe µi µj
−→u u τ . . . τz τµe µi µj µk

. . . . . . τz τµe µi µj µk µu
−→z z τµe µi µj µk µu µ . . .

Table 2: The BVMT in the general case for m = 3
◦ −→e −→ı −→
−→e e i j
−→ı i τj µτe
−→ j µτe µi

Case 1. The value p is such that 3 does not divide p− 1.
Then each nonzero element of the field GF (p) is the
cubic residue and only for Ω = (p−1)2(p+1) different
vectors there exist inverses and we have non-cyclic
finite vector group having order Ω. Experiment has
shown the maximum vector order is ωmax = (p −
1)(p+1) (the fact due to computational experiments).
In this case the finite vector spaces are not fields.

Case 2. The value p is such that 3|p − 1. This case is
divided into the following two cases.

Case 2a. Each of the products τ2µ and τµ2 is a
cubic non-residue in the field GF (p). Then for
each nonzero vector Z there exists its inverses
and the vector space is a field GF (p3) multi-
plicative group of which has the order

Ω = p3 − 1 = (p − 1)(p2 + p + 1).

Selecting properly the prime value p one can get
prime q|Ω such that q = 1

3 (p2 + p + 1). Thus,
in the case of the field formation in the finite
vector spaces it is possible to get vector sub-
groups of the prime order that has the size that
is significantly larger that the size of the GF (p)
field order. Such cases are very interesting for
designing fast DS algorithms based on using the
finite groups in vector spaces.

Case 2b. Each of the products τ2µ and τµ2 is a
cubic residue in the field GF (p). In this case
only for Ω = (p− 1)3 different vectors there ex-
ist inverses and we have non-cyclic finite vector
group having order Ω. The maximum vector
order is ωmax = p − 1 (the experimental fact).

Case 3. For τ = 0 and µ 6= 0 or for τ 6= 0 and µ = 0,
or for τ = 0 and µ = 0 we have degenerative case,
when the characteristic equation has the form a3 ≡

0 mod p and unique solution a = 0 for all pair of the
values (b, c). In this case the vector space contains
a vector group of the order Ω = p2(p − 1). This
group is non-cyclic and the maximum vector order is
ωmax = p(p − 1) = Ω/p (the experimental fact).

Example 2. Suppose p = 103 (i.e. 3|p−1). Then for µ =
1, and τ = 0 there is formed a vector group of the order
Ω = p2(p − 1) = 1082118, in which the maximum vector
order is ω = p(p− 1) = 10506. For µ = 1 and τ = 2 (2 is
not the third-power element in GF (103)) the vector field
GF (1033) is formed, in which there exist vectors having
order ω = p3 − 1 = 1092726 (for example vector 1e+2i+
3j). For µ = 1 and τ = 23 (23 is the third-power element
in GF (103)) there is formed the vector group of the order
Ω = (p − 1)3 = 1061208, in which the maximum vector
order is ωmax = p − 1 = 102.

Example 3. Suppose p = 63633348855432197 (i.e. 3
does not divide p − 1). Then for µ = 1 and τ = 3
there is formed the vector finite group having the or-
der value Ω = (p − 1)2(p + 1). All vectors of this
group have order ω ≤ ωmax = (p − 1)(p + 1) =
4049203086557134095975355664246808.

Example 4. Suppose p = 10032608122899198367,
where 3|p − 1. Then for µ = 1 and τ = 3 (3
is not the third-power element in the field GF (p))
there is formed a vector field GF (p3), containing vec-
tors (for example, 3e + 5i + 7j) of the order ω =
1009814370232010317429445111885983558910602162469
891696862. Such vectors are primitive elements of the
vector field GF (p3). Such elements generates the multi-
plicative group of GF (p3), which has the order Ω = p3−1.

3 Formation of the Vector Finite

Fields in the Case m ≥ 4

Analysis of the cases m = 2 and m = 3 shows that vec-
tor fields are formed in the case m|p − 1, provided some
of the expansion coefficients are not the the mth degree
elements in GF (p). We have experimentally established
that under such conditions the vector fields are formed
for m = 4, 5, . . .55, while defining the vector multiplica-
tion operation with the corresponding BVMTs derived as
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respective particular variants of Table 1 for the each of
the indicated values m. The computational experiments
has shown that for arbitrary m there exists vector finite
fields defined over the field GF (p) such that m|p− 1. For
defining formation of the finite fields of the m-dimension
vectors the necessary condition is the use of the expan-
sion coefficients in BVMT, which are not the mth-power
elements in GF (p). Let us consider some examples.

Example 5. For prime p = 2609, dimension m = 4
(m|p − 1), and coefficients µ = 1 and τ = 2222 (τ is
not the 4th-power element in GF (2731)) the vector GΩ =
1e+3i+3j+5k is a generator of the multiplicative group of
the vector field GF (p4). The vector Gq = 392e + 2173i +
2545j+ 443k is a generator of the cyclic subgroup having
prime order q = 3403441.

Example 6. For prime p = 268675256028581 and coef-
ficients µ = 1 and τ = 3048145277787 (τ is not the 5th-
power element in GF (p)) the vector GΩ = 2e + 5i + 7j +
11k+13u is a generator of the multiplicative group of the
vector field GF (p5). The vector GΩ = 88815218764680e
+ 238886012231841i + 157317400153847j + 215935132
18048k + 204824491909450u is a generator of the qth
order cyclic subgroup, where q = 104217507270343426
5745203478134729214503105234181740193961 is a prime.

Example 7. For prime p = 29, dimension m = 7 (7|p−
1), and coefficient ε = 3 (ε is not the 7th-power element in
GF (29)) the vector GΩ = (1, 3, 7, 5, 3, 1, 4) is a generator
of the multiplicative group of the VFF GF (p7). The vector
Gq = (7, 10, 0, 3, 15, 14, 22) is a generator of the subgroup
having prime order q = 88009573.

Table 3 presents some other cases of the vector field
formation.

4 Vector Finite Fields over Fields

GF (ps)

Let us consider the case of the finite vector space de-
fined over the finite fields GF (ps), where s ≥ 2. For
example the fields GF (ps) can be represented by the fi-
nite polynomial fields. In the cases of two-dimension and
three-dimension vector spaces it is easy to derive theoret-
ically (like it is performed in Section 2) that vector fields
GF ((ps)

m
) are formed, if m|ps − 1 and one of the expan-

sion coefficients in Table 1 is not the mth-power element
in the field GF (ps). Theoretic consideration of the cases
m ≥ 4 is not so evident (as it is in the cases m = 2 and
m = 3), therefore we have experimentally investigated
such cases. Like in the case of vectors defined over the
ground field GF (p), we have established that in the case
m|ps − 1 the vector finite fields GF ((ps)m) are formed
for the dimension values m = 4, 5, . . . 55, while respec-
tive expansion coefficients are used. Let us consider some
examples, where the finite polynomial fields GF (ps) are
defined with the irreducible polynomials P (x) of the de-
gree s and the vector multiplication operation is defined

Table 3: Parameters m, p, µ, and τ defining formation
of the vector fields GF (pm)

m p µ τ
8 2436749489 1 3
11 8419049 1 2
16 8021873 1 2
29 59509 1 2
32 65537 3 1
41 83 2 1
53 107 2 1

with Table 1 in which the expansion coefficients are poly-
nomials µ = M(x) = 1 and τ = T (x), where T (x) is not
the mth-power element in GF (ps).

Example 8. For m = 2, p = 13, P (x) = x2 + 9x +
2 (m|ps − 1), and T (x) = 7x + 11 there is formed the
vector field GF

(

(132)2
)

. The vector G = (3x + 7)e +
(x + 5)i having the order ω = 28560 is generator of the
multiplicative group of the field.

Example 9. For m = 3, p = 7, P (x) = x2 + 6x +
3 (m|ps − 1), and T (x) = 5x + 2 there is formed the
vector field GF

(

(72)3
)

. The vector G = (3x + 2)e +
(x + 5)i having the order ω = 117648 is generator of the
multiplicative group of the field.

Example 10. For m = 5, p = 2, P (x) = 101111011 =
x8+x6+x5+x4+x3+x+1 (m|ps−1), and T (x) = x3+1
there is formed the vector field GF

(

(28)5
)

. The vector
G = (x4 + 1)e+(x4 +x2 + 1)i+(x6 +x5 + x2 + x+ 1)j+
(x5 +1)k+(x4 +1)u having the order ω = 1099511627775
is generator of the multiplicative group of the field.

Example 11. For m = 5, p = 2, P (x) =
x32+x31+· · ·+1 = 111101010100001110001100111010111
(m|ps − 1), and T (x) = x + 1 there is formed
the vector field GF

(

(232)5
)

. The vector G =
(x4 + 1)e + (x4 + x3 + x + 1)i + (x6 + x5 + x2 +
1)j + (x5 + 1)k + (x4 + 1)u having the order ω =
1461501637330902918203684832716283019655932542975
is a generator of the multiplicative group of the field.

Example 12. For m = 8, p = 233, P (x) =
x3 + 179x2 + 13x + 81 = (m|ps − 1), and T (x) = x + 1
there is formed the vector field GF

(

(2333)8
)

. The
vector G = (3x2 + 7x + 1, 3x + 3, x + 2, x2 + 2x + 1,
x+5, 71x+1, 17x+1, 11x2+7x+1) having the order ω =
65545382866146271874086709480460987101122802107818
2589120 is generator of the multiplicative group of the
field (ω = Ω = pms − 1).
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5 Comparison of the Computa-

tional Efficacy of the Multipli-

cation in Different Finite Fields

Performance of the DS algorithms based on computations
on ECs is inversely proportional to the difficulty of the
point addition operation that is defined mainly by sev-
eral field multiplications and one inversion operation in
the finite field over which the ECs are defined. The inver-
sion is the most contributing to the difficulty of the point
addition operation. Even though there are some special
techniques for computing inverses in the finite field, in-
version is still far more expensive than the field multi-
plication. The inverse operation needed when adding two
points can be eliminated by resorting to projective coordi-
nates [8]. In this way adding two points is performed with
about ten field multiplications. Thus, the difficulty of the
multiplication in the underlying field defines difficulty of
the point addition operation.

The vector finite fields GF (pm) defined over the ground
field GF (p) can be applied to design the EC-based crypto-
graphic algorithms providing significantly higher perfor-
mance. Indeed, in known EC-based algorithms one can
replace the underlying field by the respective vector finite
field. For different values m ∈ {2, 3, 4 . . .} it is easy to
generate ECs the order of which contains large prime fac-
tor q such that |q| ≈ m|p|, where |q| is the bit size of q.
While comparing the computational efficiency of the mul-
tiplication operation in different fields one should consider
the case of the approximately equal values of the field or-
der. Let us compare the difficulty of the multiplication
operation in the ground field GF (p) and in the vector ex-
tension fields GF (pm

v ) for different values m in the case
|p| = m|pv|.

Multiplication in GF (p) is performed with arithmetic
multiplication of two |p|-bit values and arithmetic divi-
sion of some 2|p|-bit value by some |p|-bit value. Mul-
tiplication in the vector field GF (pm

v ) is performed with
m2 arithmetic multiplications of two |pv|-bit values and
m arithmetic divisions of some 2|pv|-bit values by some
|pv|-bit values (because of sufficiently low difficulty we do
not take into account the arithmetic additions and m2/2
multiplications with expansion coefficients having usually
the size of two bits). Taking into account that difficulty
of the both arithmetic multiplication and arithmetic di-
vision is proportional to the squared size of operands one
can easily derive the following formula

ρ =
WGF (p)

WGF (pm

v
)

=
m(1 + c)

m + c
,

where WGF (p)

(

WGF (pm

v
)

)

is the computational diffi-
culty of the multiplication in GF (p) (GF (pm

v )) and c is
the ratio of the arithmetic division difficulty to the arith-
metic multiplication difficulty. The value c depends on
the hardware used to perform computations. For many
types of micro-controllers and microprocessors we have

c > 5. For example, in this case for m = 5 and c = 6
(c = 12) we have ρ ≈ 3.2 (ρ ≈ 3.8).

Analogous consideration of the computational efficacy
of the multiplication in polynomial and vector fields gives
the ratio ρ ≥ 2. The lower multiplication efficacy in the
polynomial fields is connected with the division operation
of the 2s-power polynomials by the s-power irreducible
polynomial, which is additionally required to multiplica-
tions and additions in the ground field GF (p) over which
the polynomial field is defined.

Thus, using elliptic curves over vector finite fields
one can design the DS algorithms possessing significantly
higher performance. Besides, the multiplication in the
vector field GF (pm

v ) suites well to cheap parallelization
while being implemented in hardware. This is also a sig-
nificant resource for additional acceleration of the EC-
based cryptography.

6 Conclusion

A new form of the finite extension fields have been pro-
posed to accelerate the EC-based cryptographic algo-
rithms. The proposed vector finite fields GF (pm) are
formed in the m-dimension vector space over the ground
field GF (p), while special types of the vector multiplica-
tion operation is defined. A general type of the BVMT
tables that provides the required types of the vector mul-
tiplication is proposed. However for any given value
m there are possible some other particular types of the
BVMTs with which the vector finite fields can be de-
fined. For even values m one can propose the BVMTs
with significantly reduced number of the expansion co-
efficients. For example, such BVMTs are interesting for
software implementation of the vector multiplication op-
erations. For hardware implementation it is preferable to
select the small size expansion coefficients with which the
vector fields are defined.

It has been also shown that the vector fields can be
defined in the m-dimension vector spaces over the finite
extension fields GF (ps) represented, for example, by poly-
nomials. Such cases are also interesting for EC-based
cryptography.

It should be noted that, besides using the vector
fields to define ECs, the finite groups formed in the m-
dimension vector spaces over the ground field GF (p) or
over the extension fields GF (ps) represent independent
interest, however this is a topic of individual research.
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