
International Journal of Network Security, Vol.9, No.2, PP.173–179, Sept. 2009 173

An Adaptive Chosen-plaintext Attack of the

Improved Cellular Message Encryption

Algorithm

Thomas Chardin and Raphaël Marinier
(Corresponding author: Raphaël Marinier)

Ecole polytechnique, France

91128 Palaiseau Cedex, France (Email: raphael.marinier@polytechnique.edu)

(Received Oct. 18, 2008; revised and accepted Dec. 4, 2008)

Abstract

This paper analyzes the Improved Cellular Message En-
cryption Algorithm (CMEA-I) which is an improved ver-
sion of the Telecommunication Industry Association’s
Cellular Message Encryption Algorithm (CMEA). We
present a chosen-plaintext attack of CMEA-I which re-
quires less than 850 plaintexts in its adaptive version.
This demonstrates that the improvements made over
CMEA are ineffective to thwart such attacks and con-
firms that the security of CMEA and its variants must be
reconsidered from the beginning.

Keywords: Cryptanalysis, block cipher, chosen-plaintext
attack

1 Introduction

The cellular Message Encryption Algorithm (CMEA) has
been designed by the Telecommunication Industry Asso-
ciation (TIA) to protect the control data (dialed digits,
alphanumeric data sheets, . . . ) of cellular phone commu-
nications [2, 3]. It has been cryptanalyzed in [4], where
two major attacks have been designed. The first one is
a known-plaintext attack, which requires 40–80 known
plaintexts and has time complexity about 224–232. The
second one is a chosen-plaintext attack which requires
about 338 chosen plaintexts.

In [1], the reasons for the insecurity of CMEA are iden-
tified, and an improvement called CMEA-I is proposed.
This customized version has been designed to be resistant
against chosen- and known-plaintext attacks, and against
linear and differential cryptanalysis as well.

The attack we present in this paper is a chosen-
plaintext attack of CMEA-I which requires less than 850
chosen-plaintexts and little computation (The complexity
is roughly linear in the number of generated plaintexts).
This attack is partly an adaptation of the chosen-plaintext
attack of CMEA described in [4].

We describe the original CMEA in Section 2 and the
improved version of CMEA in Section 3. Our attack is
presented in Section 4.

2 Brief Description of the Original

CMEA

CMEA is a three-round block cipher. The first and third
rounds use a non-linear Table T that outputs an eight-bit
word from an eight-bit input. It is computed from the
eight-byte key (noted K ) and a fixed CaveTable (noted C
and given in Table 1) as follows:

T (x) = C(((C(((C((x ⊕K0) + K1) + x) ⊕K2) + K3)

+ x)⊕K4) + K5) + x) ⊕K6) + K7) + x.

All additions and subtractions are done modulo 256,
and the symbols ⊕, ∨ and & denote respectively the bit-
wise XOR operator, the bitwise OR operator and the bit-
wise AND operator.

The ciphertext is computed with Algorithm 1.
CMEA is used to encrypt two to six-byte blocks (the

size of blocks being represented by n in the described al-
gorithm, where Pi stands for the i-th byte of the plaintext
and Ci the i-th byte of the corresponding ciphertext), us-
ing an eight-byte key. Encrypting and decrypting is the
same operation: CMEA is its own inverse.

3 CMEA-I, a Variant of CMEA

Designed to Resist to Wagner et

al.’s Attacks

In [1], four weaknesses of CMEA are identified, many of
which were used to design the attacks in [4]:

1) If the plaintext contains only bytes of the form 1− x

and if the first byte of the corresponding ciphertext is



International Journal of Network Security, Vol.9, No.2, PP.173–179, Sept. 2009 174

Table 1: The CaveTable

hi – lo .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f
0. d9 23 5f e6 ca 68 97 b0 7b f2 0c 34 11 a5 8d 4e
1. 0a 46 77 8d 10 9f 5e 62 f1 34 ec a5 c9 b3 d8 2b
2. 59 47 e3 d2 ff ae 64 ca 15 8b 7d 38 21 bc 96 00
3. 49 56 23 15 97 e4 cb 6f f2 70 3c 88 ba d1 0d ae
4. e2 38 ba 44 9f 83 5d 1c de ab c7 65 f1 76 09 20
5. 86 bd 0a f1 3c a7 29 93 cb 45 5f e8 10 74 62 de
6. b8 77 80 d1 12 26 ac 6d e9 cf f3 54 3a 0b 95 4e
7. b1 30 a4 96 f8 57 49 8e 05 1f 62 7c c3 2b da ed
8. bb 86 0d 7a 97 13 6c 4e 51 30 e5 f2 2f d8 c4 a9
9. 91 76 f0 17 43 38 29 84 a2 db ef 65 5e ca 0d bc
a. e7 fa d8 81 6f 00 14 42 25 7c 5d c9 9e b6 33 ab
b. 5a 6f 9b d9 fe 71 44 c5 37 a2 88 2d 00 b6 13 ec
c. 4e 96 a8 5a b5 d7 c3 8d 3f f2 ec 04 60 71 1b 29
d. 04 79 e3 c7 1b 66 81 4a 25 9d dc 5f 3e b0 f8 a2
e. 91 34 f6 5c 67 89 73 05 22 aa cb ee bf 18 d0 4d
f. f5 36 ae 01 2f 94 c3 49 8b bd 58 12 e0 77 6c da

Algorithm 1 Encryption/decryption of n-byte blocks
with CMEA

y0 ← 0
for i = 0 to n− 1 do

P ′
i ← Pi + T (yi ⊕ i)

yi+1 ← yi + P ′
i

end for

for i = 0 to bn

2
c − 1 do

P ′′
i ← P ′

i ⊕ (P ′
n−1−i ∨ 1)

end for

for i = bn

2
c to n− 1 do

P ′′
i ← P ′

i

end for

z0 ← 0
for i = 0 to n− 1 do

Ci ← P ′′
i − T (zi ⊕ i)

zi+1 ← zi + P ′′
i

end for

−x, then we know with high probability that T (0) =
x;

2) If the plaintext has the form 1−T (0), . . . , 1−T (0), k−
T (0), 0 where k = ((n − 1)⊕ j) − (n − 2) and if the
first byte of the corresponding ciphertext is t−T (0),
then we know that T (j) = t;

3) The CaveTable is not a permutation; in particular 92
outputs are unused;

4) The algorithm of CMEA uses a four-round T -box,
vulnerable to a meet-in-the-middle attack.

To prevent these weaknesses, the authors of [1] propose
several low-cost modifications to CMEA:

1) Compute the P ′
i ’s as Pi+T (yi⊕f(i, n)) where f has a

“random” behavior (they suggest f(i, n) = 2i mod n)
to suppress the first two reasons of vulnerability;

2) Replace the CaveTable by the S-box of AES, thus
eliminating the statistical bias of the table out-
puts (which is absolutely necessary for the known-
plaintext attack of [4]). The S-box is shown in Table
2;

3) Replace T by T ◦ T which increases the number of
rounds from 4 to 8, to prevent the meet-in-the-middle
attack described in [4].

The ciphertext is now computed using Algorithm 2.

Algorithm 2 Encryption/decryption of n-byte blocks
with CMEA-I

y0 ← 0
for i = 0 to n− 1 do

P ′
i ← Pi + T (yi ⊕ f(i, n))

yi+1 ← yi + P ′
i

end for

for i = 0 to bn

2
c − 1 do

P ′′
i ← P ′

i ⊕ (P ′
n−1−i ∨ 1)

end for

for i = bn

2
c to n− 1 do

P ′′
i ← P ′

i

end for

z0 ← 0
for i = 0 to n− 1 do

Ci ← P ′′
i − T (zi ⊕ f(i, n))

zi+1 ← zi + P ′′
i

end for

We will still note T the new function T ◦ T .
Though these customizations totally prevent the

known-plaintext attack (essentially built upon the non-



International Journal of Network Security, Vol.9, No.2, PP.173–179, Sept. 2009 175

Table 2: The AES S-box
hi – lo .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f
0. 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
1. ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
2. b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
3. 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
4. 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
5. 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
6. d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
7. 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
8. cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
9. 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a. e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b. e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c. ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d. 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e. e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f. 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

uniformity of the CaveTable outputs and a meet-in-the-
middle attack), we have been able to carry out a chosen-
plaintext attack to CMEA-I, discussed in the next Sec-
tion.

4 Chosen-Plaintext Attack of

CMEA-I

4.1 Overview

We now present a chosen-plaintext attack of the improved
version of CMEA which works for block sizes from 3 to
6. This attack recovers the values of the T -box, which
allows encrypting and decrypting. The attack consists of
two phases: We first do several guesses for the T (f(0, n))
value in the first phase; then, for each such guess, we
recover the others T (i)’s in a second phase. We will see
later that the second phase fails at halfway if the guess
for T (f(0, n)) is wrong. One of the main ideas of the
attack is to control the inputs of the T -box during the
first encryption layer, and to extract information about
the T -box from C0 and C1. The first phase of the attack
and the first step of the second phase are adaptations
of the ideas of the original attack of CMEA to CMEA-
I, presented in [4], while the plaintext generation in the
second step of the second phase is novel.

The attack does not depend on the choice of the f func-
tion and can be done in different flavors. It can be non-
adaptive, adaptive, and adaptive with only two sets of
plaintexts (one set of plaintexts during the first phase, and
a second set after knowing the candidates for T (f(0, n))).

4.2 First Phase: Recover T (f(0, n))

We will now note f0 = f(0, n) and denote by A&fe the
quantity A with its least significant bit set to ’0’ (“fe”

being the hexadecimal notation of 254).

To guess the value of T (f0), we shall craft plaintexts
such that all the yi⊕f(i, n) inputs of the T -box are equal
to f0. The clear message Pi = −T (f0)−f(i, n)⊕f0+f(i+
1, n)⊕ f0 achieves that (setting f(n, n) = 0). Of course,
we won’t be able to use this plaintext directly, because it
depends on T (f0). We show by induction that, with this
plaintext, yi = f(i, n)⊕f0, and thus yi⊕f(i, n) = f0. The
property holds for i = 0, and for i + 1, we have yi+1 =
P ′

i +yi = Pi +T (f0)+f(i, n)⊕f0 = f(i+1, n)⊕f0, which
proves our claim. The first byte of the corresponding
ciphertext will be C0 = P ′′

0 − T (f0) with P ′′
0 = f0 ⊕

f(1, n)⊕ ((−(f(n− 1, n)⊕ f0))∨ 1). The idea to actually
recover the value of T (f0) is to replace T (f0) by x and
to try all the 256 possible values for x. Our candidates
for T (f0) are among the x values for which the first byte
C0 of the cipher text matches the expected value. In our
tests, the average number of candidates for T (f0) is very
close to 3, and the erroneous candidates can be ruled out
during the second phase.

The average number of plaintexts used to discover
T (f0) is 128 when we do an adaptive attack, because we
can carry out the second phase independently for each
candidate for T (f0), and we expect to try half of the 256
possible values for T (f0) before success. When the attack
is non-adaptive, we don’t need to do this phase of the at-
tack, because we must anyway carry out the second phase
for each of the 256 possible value of T (f0). Besides, we
can consider an intermediate model of attack which con-
sists in sending two sets of plaintexts, and being able to
choose the second set knowing the ciphertexts associated
with the first set. In the attack of CMEA-I, the first set
would be the 256 plaintexts of this first phase, and the sec-
ond set would be all the plaintexts generated during the
second phase carried out only for the T (f0) candidates
found during the first phase.



International Journal of Network Security, Vol.9, No.2, PP.173–179, Sept. 2009 176

4.3 Second Phase: Recover the Remain-

ing T (j)’s

The second phase relies on the guessed value of T (f0) to
recover the remaining T (j) values. The recovery of each
T (j) is done in two steps: We first recover the seven most
significant bits of each T (j), then the least significant bit
of each T (j).

4.3.1 First Step: Recover the Most Significant

Bits

To recover the seven most significant bits of T (j), we craft
a plaintext such that yi is equal to f0 ⊕ f(i, n) for all
0 ≤ i < n− 1 and that yn−1 ⊕ f(n− 1, n) = j. Let Pi be
−T (f0)−f(i, n)⊕f0+f(i+1, n)⊕f0 for 0 ≤ i ≤ n−3, and
let Pn−2 be k−T (f0)+ f(n− 1, n)⊕ f0− f(n− 2, n)⊕ f0

with k = f(n−1, n)⊕j−f(n−1, n)⊕f0. We finally choose
Pn−1 = 0. If the guess of T (f0) is correct, the first byte of
the ciphertext is C0 = −T (f0)+(f0⊕f(1, n)⊕(T (j)∨1)),
which allows us to recover the seven most significant bits
of T (j). Contrary to the attack explained in [4], we cannot
easily rule out at this stage wrong T (f0) guesses, because
there is no longer a straightforward link between T (j)
and a particular S-box value in the modified version of
CMEA.

4.3.2 Second Step: Recover the Least Significant

Bit of each T (j)

This step is a bit longer to explain. We will say that a
T -box value is not fully known when only its seven most
significant bits are known and its least significant bit re-
mains unknown. Our goal is to create (or use already
known) plaintexts such that:

1) All the appearing T -box values during the first en-
cryption layer are fully known;

2) At least one of the appearing T -box value during the
third encryption layer is not fully known.

With that kind of plaintext, we will know the exact
input (the P ′′

i ) and the exact output (the ciphertext C)
of the third encryption layer, and will be able to simulate
it. When we look at the third encryption layer, we remark
that T (zi ⊕ f(i, n)) = P ′′

i − Ci for each 0 ≤ i < n and
that the zi’s can be computed using only the P ′′

i ’s. We will
thus be able to recover least significant bits of some T (zi⊕
f(i, n)), which were previously unknown. If our guess for
T (f0) is incorrect, it is very unlikely that the seven most
significant bits of T (zi⊕ f(i, n))) match those of P ′′

i −Ci:
This kind of message will allow us to discard wrong T (f0)
guesses using almost always only one plaintext.

We describe here how to craft plaintexts that sat-
isfy the two previously stated properties. More specif-
ically, we try to build a clear message P = (Pi)0≤i<n

such that all the T (i) appearing during the first en-
cryption layer are fully known, and such that the sec-
ond T -box value appearing during the third encryption

layer, T (z1 ⊕ f(1, n)), is not fully known. This message
thus guarantees us to recover the least significant bit of
T (z1⊕f(1, n)), and possibly more significant bits if others
T -box entries in the third encryption layer are not fully
known. We will construct this message sequentially from
P0 to Pn−1. During the first encryption layer, we have
P ′

k−1 = T (yk−1 ⊕ f(k − 1, n)) + Pk−1, and the (k + 1)-th
input of the T -box is

input
k

= (yk−1 +T (yk−1⊕f(k−1, n))+Pk−1)⊕f(k, n).

We therefore demand that T (input
k
) be fully known.

We now call (Ak) this constraint. We have to set Pk−1

properly in order to satisfy it. Hence, we must assign right
values to P0, . . . , Pn−2 to fulfill the constraints (Ai)0<i<n.

Besides, we demand that the least significant bit of the
second T -box value involved in the third encryption layer,

T (z1 ⊕ f(1, n)) = T (P ′′
0 ⊕ f(1, n))

= T ((P0 + T (f0)⊕ f(1, n))⊕ (1∨

(Pn−1 + T (yn−1 ⊕ f(n− 1, n)))))

be unknown. We want to choose proper values of P0 and
Pn−1 so that this last T -box input is equal to a target
value called unknown: We will now call (B) this con-
straint. Indeed, we will choose P0 so as to set the least
significant bit to the desired value, and choose Pn−1 to set
the remaining most significant bits. The choice of Pn−1

remains entirely unconstrained by the (Ai)’s, however, we
must use P0 to fulfill the constraint (A1). Let’s recall the
(A1) constraint. It demands that the second T -box input
during the first encryption layer, which is:

T (input1) = T ((P0 + T (f0))⊕ f(1, n))

be fully known. So the T -box input in the (B) constraint
can be rewritten as follow:

unknown = input1⊕ (1∨ (Pn−1 +T (yn−1⊕ f(n−1, n)))).

Hence, we see that the least significant bits of input1

and unknown must be opposite. When we fully know only
T -box outputs for inputs which have all the same least
significant bit (let’s call it b), we must carefully choose
unknown so that its least significant bit is the opposite of
b. This happens at the beginning, when only T (f0) is fully
known: The first T -box input for which we recover the
corresponding output will thus have the least significant
bit opposite to f0. It does not happen after that because
the choice of the least significant bit of input1 (and thus
P0) is not constrained anymore.

Here is the scheme to build a plaintext P =
(P0, P1, . . . , Pn−1) which allows us to recover the least sig-
nificant bit of T (unknown).

1) Choose unknown so that the least significant bit of
T (unknown) is unknown. As previously discussed,
the first time, the least significant bit of unknown

should be the opposite to the one of f0. (Choose for
example unknown = f0 ⊕ 1);



International Journal of Network Security, Vol.9, No.2, PP.173–179, Sept. 2009 177

2) Choose a T -box input named α for which T (α) is
fully known, and such that the least significant bit
of α is the opposite of the one of unknown (which
is possible by the way we previously chose unknown,
because we know by hypothesis of the second phase
of the attack the least significant bit of T (f0));

3) Choose P0 in order to satisfy the (A1) constraint and
such that the least significant bit of input1 = (P0 +
T (f0)) ⊕ f(1, n) (the second T -box input during the
first layer of the encryption) is the opposite of the
least significant bit of unknown. This can be done by
setting P0 = −T (f0) + (f(1, n)⊕ α);

4) Choose Pk−1, for each 2 ≤ k ≤ n− 1 satisfying each
constraint (Ak). To do that, for any particular k, we
notice that yk−1 = f(k − 1, n)⊕ α if we have set the
previous Pi’s in the way described here. We set

Pk−1 = −yk−1 − T (inputk−1) + (f(k, n)⊕ α)

= −yk−1 − T (yk−1 ⊕ f(k − 1, n)) + (f(k, n)

⊕ α)

= −(f(k − 1, n)⊕ α)− T (α) + (f(k, n)⊕ α),

so that input
k

= α. The new yk is

yk = yk−1 + P ′
k−1

= yk−1 + Pk−1 + T (inputk−1)

= f(k, n)⊕ α.

5) Choose Pn−1 satisfying the (B) constraint. For that,
we set:

Pn−1 = −T (yn−1 ⊕ f(n− 1, 1)) + ((f(1, n)

⊕ T (P0 + T (f0))⊕ unknown)&fe)

= −T (α) + ((α⊕ unknown)&fe)

Each of these plaintexts allows us to recover at least
one least significant bit of one T -box value, by simulation
of the third encryption layer.

The number of necessary plaintexts to recover all the
least significant bits depends on the type of the attack.
If we are in a non-adaptive plaintext attack (or adaptive
with two sets of plaintexts), we need 255 plaintexts to
recover the 255 unknown least significant bits. If we do
an adaptive plaintext attack, we can reduce the number
of necessary plaintexts. There are two reasons for this.
The first reason is that each plaintext used in this step
is likely to allow us to recover more than one least sig-
nificant bit, so we don’t waste plaintexts to recover least
significant bits we already know. The second reason is
that, as soon as one of the already known (plaintext, ci-
phertext) pair meets the two requirements stated at the
beginning of this Section (that is to say, all the T -box out-
puts involved in the first layer of the encryption for one of
these plaintexts become fully known), we can use them to
possibly recover some least significant bits of the T -box.
Note that we can’t use this idea in a non-adaptive attack,

because we do not know in advance which of those pairs
will be usable (we cannot predict the T -box entries in-
volved during the first encryption layer without knowing
their values). Experimentally, the number of plaintexts
needed is reduced to 61 for a block size of 3, and to 8 for
a block size of 6. Besides, as expected, only one plain-
text is necessary at this step to rule out the wrong T (f0)
candidates in our experiments.

4.4 A Numerical Example

In this Section, we present a numerical example of the
whole attack. We choose n = 3 (the block size) and
f(i, n) = 2i + 1 mod n (hence f0 = 1) rather than
f(i, n) = 2i mod n because f0 = 0 is a special case which
reduces the interest of the example. All the numbers in-
volved will be displayed in hexadecimal. In this example,
the key is K = (53, fe, 5f, 70, 43, 3b, 2e, 18). The corre-
sponding first three rows of the T -box our attack will
have to recover are shown in Table 3.

4.4.1 First Phase

The candidates for T (1) given by the first phase of the
attack are: 1b, 8a and b5. To find these candidates, we
generated the plaintexts

P = (−x + f(1, 3)⊕ f0,

− x− f(1, 3)⊕ f0 + f(2, 3)⊕ f0,

− x− f(2, 3)⊕ f0)

= (−x + 1,−x− 2,−x− 3)

for all the 256 possible values of x and watched for the
values of x such that the first byte of the corresponding
ciphertext is

C0 = −x+(f0⊕f(1, 3)⊕((−(f(2, 3)⊕f0))∨1)) = −x+fc

4.4.2 First Step of the Second Phase with Hy-

pothesis T (1) = 1b

Now, we start the first step of the second phase of the
attack with the hypothesis that T (1) = 1b: We recover
the seven most significant bits of each T (j), j 6= 1, using
the plaintexts described in Section 4.3.1. We show how
this works for j = 5. The plaintext we use is:

P0 = −T (f0) + f(1, 3)⊕ f0 = e6

P1 = f(2, 3)⊕ j − f(2, 3)⊕ f0 − T (f0) + f(2, 3)⊕ f0

− f(1, 3)⊕ f0

= eb

P2 = 0.

The goal achieved by this plaintext is to force the first two
T -box inputs to be equal to f0 = 1 during the first layer
of encryption, and the third T -box input of that layer to
be equal to j = 5. As the first byte of the ciphertext, C0,



International Journal of Network Security, Vol.9, No.2, PP.173–179, Sept. 2009 178

Table 3: The first three rows of the T -box to recover
hi – lo .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f
0. ab 1b 8c c5 81 7f 65 f8 5c 5e d0 72 61 18 cb f2
1. 7f ea bf 7c 9e ea 89 c4 e1 9b e7 8e c3 0c 5c 70
2. 8d b0 13 8e 42 7c a3 cb cf 18 49 7a 3b 1b 4f fc

depends only on P ′
0 = P0 + T (f0) and P ′

2 = P2 + T (5),
we are able to partially recover T (5). Indeed, we can
compute the seven most significant bits of it:

T (5)&fe = ((C0 + T (f0))⊕ f(1, 3)⊕ f0)&fe = 7e.

After using 254 more plaintexts of that kind, we are
able to recover the seven most significant bits of the re-
maining T (j)’s, implied by our hypothesis on T (1). We
now move to the second step of the second phase which
allows us to recover the least significant bit of each T (j),
j 6= 1.

4.4.3 Second Step of the Second Phase

At the beginning of this second step, only T (1) is fully
known and the others T (j)’s are known up to their seven
most significant bits. To generate our first plaintext which
will allow us to recover some least significant bits, we
follow the scheme given in Section 4.3.2.

We first choose unknown = f0⊕1 = 0. The message we
are generating will allow us to recover the least significant
bit of T (0). The only α possible is 1 because only T (1) is
fully known (Step 2 of Section 4.3.2). To fulfill the (A1)
constraint, we choose (Step 3):

P0 = −T (f0) + (f(1, n)⊕ α) = e6.

Now, we generate P1 to fulfill the (A2) constraint (Step
4):

P1 = −(f(1, 3)⊕ α)− T (α) + (f(2, 3)⊕ α) = e7.

At last, we generate P2 to fulfill the (B) constraint
(Step 5):

P2 = −T (α) + ((α ⊕ unknown)&fe) = e5.

Now, we are able to compute the input of the third
encryption layer (the P ′′

i ’s), because the only T -box ele-
ment involved in the first encryption layer is T (1). We
also know its output (the ciphertext C) by the nature of
the attack. This data is shown in Table 4.

Table 4: The input and output of the third encryption
layer

P ′′
0 P ′′

1 P ′′
2 C0 C1 C2

0 2 0 e5 57 55

We can now simulate on our own the third encryption
layer. It involves three T -box elements. The first T -box

Table 5: The input and output of the third encryption
layer with hypothesis T (1) = 8a

P ′′
0 P ′′

1 P ′′
2 C0 C1 C2

0 2 0 98 f3 cb

entry used is T (1), and the second and third ones are
T (0). Note that our plaintext reached its aim, which was
to guarantee that the second T -box element in that layer
is T (0). We deduce that T (0) = P ′′

1 − C1 = ab and
T (0) = P ′′

2 −C2 = ab. Fortunately, the two values match,
and the seven most significant bits of T (0) match those
of P ′′

1 −C1. We have discovered here the least significant
bit of T (0), which was previously unknown.

Repeating this schema for other values of unknown al-
lows us to recover other least significant bits. Besides,
we can use already known (plaintext, ciphertext) pairs as
soon as the three T -box outputs in the first encryption
layer become fully known for these plaintexts, to recover
the possibly unknown least significant bits of the T -box
outputs appearing in the third encryption layer.

4.4.4 The Second Phase with a Wrong Hypoth-

esis on T (1)

With a wrong hypothesis on T (1) (say T (1) = 8a), the
first step of the second phase looks the same, except that
the deduced values for the T (j)’s are different. For in-
stance, we deduce: T (0)&fe = f0. Let’s see what happens
in the second step, after having chosen unknown = 0 and
α = 1. Our generated plaintext is P = (77, 78, 76), us-
ing the same formulas as above. For that plaintext, the
input/output of the third encryption layer is shown in Ta-
ble 5. We expect T (0) = P ′′

1 −C1 = f. However, that does
not correspond to the seven most significant bits of T (0)
we already found during the first step. We now know that
the hypothesis on T (1) is wrong, and we can stop wasting
plaintext for that in case of an adaptive attack.

4.5 Experimental Results

The results of the complete attack can be seen in Table 6.
The first four rows are experimental and represent the
average results of the cryptanalysis of 10000 keys using
an implementation of our attack.

The results of the fifth row (number of plaintexts
needed in case we do the attack with two sets of plain-
texts) are equal to the number of plaintexts needed to
obtain with certainty all the candidates for T (f0) (that



International Journal of Network Security, Vol.9, No.2, PP.173–179, Sept. 2009 179

Table 6: Results for the chosen-plaintext attack on CMEA-I (average on 10000 random keys and with f(i, n) =
2i mod n)

Block size 3 4 5 6

Number of T (f0) candidates 2.98 2.97 2.98 2.97
Number of wrong T (0) be-
fore success

0.992 0.980 0.990 0.986

Number of necessary plain-
texts to recover the least
significant bits (adaptive at-
tack)

61.5 41.9 17.5 8.21

Total number of plaintexts
to recover the whole T -box
(adaptive attack)

828 804 782 772

Total number of plaintexts
to recover the whole T -box
(adaptive with two sets of
plaintexts)

1776 1770 1776 1770

Total number of plaintexts
to recover the whole T -box
(non-adaptive attack)

130560 130560 130560 130560

is, 256), and for each of those candidates we must use
255 plaintexts to recover the seven most significant bits
of each T (j), j 6= f0 and 255 plaintexts more to recover
the least significant bits. For instance, with a block size
of 3, the average number of plaintexts needed in that case
is 256 + 2.98 ∗ (255 + 255) = 1775.8.

The number of plaintexts in case of a non-adaptive
attack is computed as the number of plaintexts needed
to perform the second phase of the non-adaptive attack,
times the number of possible T (f0) values: 510 ∗ 256 =
130560.

For all these results, we chose the function f recom-
mended in [1], f(i, n) = 2i mod n. Indeed, the number
of plaintexts needed is very similar (within 10 %) if we
choose another f function. The running time of the at-
tack is negligible: For a block size of 6 (which is the most
computation-intensive), all the attacks require no more
than 1 ms to recover one key on a typical computer (Pen-
tium 4 running at 3Ghz). The adaptive attack requires
between 772 and 828 plaintexts to recover the whole T -
box.

5 Conclusion

We have presented a chosen-plaintext attack against
CMEA-I which requires a few number of plaintexts and
almost no computing time. The attack relies on a too
great simplicity in the cipher, which allows us to control
the inputs of the T -box involved and obtain information
about selected T -box from the ciphertext. This shows
that the improved version of CMEA presented in [1] can-
not be considered secure.

Acknowledgements

We are indebted to François Morain, Andreas Enge and
Daniel Augot for their useful comments and suggestions
concerning the writing of this article.

References

[1] D. Mukhopadhyay and D. RoyChowdhury, “Cus-
tomizing cellular message encryption algorithm,” In-
ternational journal of Network Security, vol. 7, no.
2, pp. 194–202, Sep. 2008.

[2] TIA TR45.0.A., Common Cryptographic Algorithms,
Rev B, June 1995.

[3] TIA IS-54 Appendix A, Dual-mode Cellular System:
Authentication, Message Encryption, Voice Privacy
Mask Generation, Shared Secret Data Generation,
A-Key Verification, and Test Data, Rev B. Feb. 1992.

[4] D. Wagner, B. Schneier, and J. Kelsey, “Cryptanal-
ysis of the cellular message encryption algorithm,”
Proceedings of the Annual International Cryptology
Conference, pp. 526–537, 1997.

Thomas Chardin is a MS candidate at the Ecole
Nationale Superieure des Telecommunications, France.
He has been studying Computer science at the Ecole
Polytechnique, France. His research interests include:
cryptography, information security, embedded systems.

Raphaël Marinier is a MS candidate at the Parisian
Master of Research in Computer Science, France, and
received a B.S. from the Ecole Polytechnique, France.
His research interests include cryptography and symbolic
computation.


