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Abstract

Malicious agents like self-propagating worms often rely
on port or address scanning to discover new potential
victims. The ability to detect active scanners based on
passive traffic monitoring is an important prerequisite for
taking appropriate countermeasures. In this work we eval-
uate experimentally two common algorithms for scanner
detection based on extensive analysis of real traffic traces
from a live 3G mobile network. We observe that in prac-
tice a large number of alarms are triggered by legitimate
applications like peer-to-peer and suggest a new empirical
metric for discriminating between worms and p2p scan-
ners.

Keywords: Anomaly detection, mobile networks, scanning
detection

1 Introduction

In networking the term scanner refers to an automated
program aimed at discovering listening hosts or services
within a network. From a security point of view this may
indicate a potentially dangerous activity, e.g. a worm try-
ing to propagate. While worms and malware in general
are targeted towards terminal hosts, it has been shown
that the aggregate traffic generated by such activities can
cause problems to the underlying network infrastructure
too. As discussed in [16] (see also [25]), this problem is
particularly critical in cellular wireless networks, due to
the higher functional complexity of such systems. There-
fore the ability of detecting worm traffic becomes impor-
tant for network operators, not only in the perspective
of enforcing direct countermeasures - typically blocking
individual sources - but also to gauge the overall level of
worm activity so as to enforce network configuration that
prevent the potential large-scale effects of such traffic.

On the other hand, one should consider that there are
also non-malicious purposes for scanning around the net-
work. For example file sharing clients searching for new

servers and/or new peers while bootstrapping or refresh-
ing. Peer-to-peer (p2p) architectures require each node to
periodically update its cached network map. In these and
other cases discovering the network status via scanning is
a legitimate procedure, not related to malicious activities
nor malware spreading.

On TCP/IP networks we deal with a portscan or an
IPscan (sometimes denoted as portsweep) respectively if
many connection attempts are made on different ports
for the same IP address, or if the same port (or group
of ports) is visited for many different IP addresses. If the
scan is generated by multiple sources we have a distributed
scan. Scanners are intrinsically blind: their targets can be
inactive, not existing or simply not listening on the spe-
cific service. Therefore the scan activity often generates
a high number of failed connection attempts (openings),
and some common detection methods use specifically the
count or share of unsuccessful openings as an anomaly
indicator. This approach is exposed to collect false pos-
itives. For example consider a WEB user that incurs in
a network failure along the path to the server: he will
likely iterate the page download attempts, thus generating
many failed attempts that could be collectively marked as
an IPscan in case that the HTML page includes many ob-
jects located on different servers.

All Intrusion Detection Systems (IDS) embed modules
for scan detection. The implemented algorithms cover a
broad range from simple threshold to more sophisticated
methods involving data mining [19] or other statistical
approaches [4, 9]. However, independently from the com-
plexity of the available detection methodologies, still it is
not clear whether any boundary can be drawn between
malicious (e.g. worm spreading) and legitimate (e.g. p2p
originated) scanners, emphasizing a different behavior of
the respective traffic distributions. It would be interesting
also to understand whether these two types of scanners
can be discriminated by means of simple algorithms, and
what can be achieved with currently available tools.

Therefore we are putting on the table two questions:
first, is there any evident difference in the behavior of
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malicious and legitimate scanners? Second, is there a
simple way to separate them?

We choose to deal only with TCP scanners and we
focus our attention on two well known detection tech-
niques. The first one is the classic - and mostly used - ap-
proach of counting the number of half-open connections
generated by a single source towards different destination
IPs/ports. Since destinations are randomly chosen within
the address space, and the population of active targets is
sparse in such space, the majority of half-open connec-
tions are expected to fail. Both the detection schemes
considered here are based on such basic assumption. The
first algorithm is simply a fixed threshold method: It
counts the number n(t) of distinct connection attempts
(i.e. to different {dst IP,dst port} pairs) that have failed
for each generic source over a time-window of T seconds,
and marks the source as scanner if the process n(t) ex-
ceeds a fixed threshold N . The second algorithm con-
sidered here, called Threshold Random Walk (TRW), is
more sophisticated: it is based on sequential hypothesis
testing and was proposed in [11]. A detailed description
of TRW will be given later in Section 4.

We have tested both methods on real traces extracted
from an operational 3G cellular network within the scope
of the DARWIN project [5]. Our goal was to assess the
performances and limitations of these methods in separat-
ing between worms and p2p scanners. This work required
massive efforts in terms of manual inspection of the traces
in order to label the reported scanning alarms, i.e. to re-
veal the “ground truth” in the traffic. As a side value we
show how the composition of the anomalous traffic inside
the mobile network has changed over one year, from late
2004 to early 2006.

The rest of the paper is organized as follows: Section 2
offers a survey of the related work. Section 3 describes
the monitoring setting used to extract the packet traces
that are used for evaluation. Section 4 provides a brief de-
scription of the two tested algorithms and of the relevant
configurations. In Section 5 we present the evaluation
results based on the reference dataset and define a new
metric, Significance, aimed at improving the detection ac-
curacy of malicious scanners. A further comparison with
the legacy algorithms via ROC diagrams is presented in
Section 6. Additional details about the composition of the
anomalous traffic components in the reference dataset are
provided in Appendix. Finally in Section 7 we draw the
conclusions and outline some directions for progressing
the work.

2 Related Work

There are several works focused on the detection of scan-
ning activities (see e.g. [8, 14]). A common goal for most
of them is to detect new types of attacks besides the al-
ready known ones. In [18] the authors introduce a Worm
Detection System (WDS) to monitor a set of hosts in-
side a local network and to detect infected scanners. Two

algorithms are used together to reduce the number of ob-
servations for detection and the number of false positives:
Reverse Sequential Hypothesis Testing and Credit-Based
Connection Rate Limiting. This solution seems interest-
ing but there are also limitations for this approach which
are shown as well as ideas that could be implemented to
solve some of these flaws. Another work [22] focuses on
detecting scanners inside a backbone. Three different al-
gorithms are compared: the simple one used by SNORT
[21] - triggering an alarm if detecting more than N con-
nections in T seconds -, a modified version of Threshold
Random Walk (TRW), and a new algorithm based also
on sequential hypothesis testing, namely Time-based Ac-
cess Pattern Sequential hypothesis testing (TAPS). It is
shown that the latter holds the best performances, but
nothing is said about its limitations, despite the pres-
ence of false negatives is explicitly noticed. An interest-
ing idea comes from [23] where a “virus throttle” mech-
anisms is implemented to limit the propagation rate of
a malware. With this approach normal traffic remains
unaffected, while the virus throttle mechanism is shown
to be successful in blocking the spreading of a real worm
in less than one second. A wider intent is pursued in
[13], by finding a way to classify various kinds of net-
work anomalies from the analysis of the traffic features
distribution captured by some metric, denoted as sample
entropy. By applying the subspace method on the traf-
fic multivariate timeseries it is possible to separate them
into a regular component plus an anomalous vector. After
this separation the characterization is done by grouping
together the anomalies that have been detected in time-
series generated at different aggregation levels, and thus
a table with all the different kind of anomalies encoun-
tered is built. In the end, a strong analytic instrument is
used to obtain much more than a simple scan detection,
i.e. a clustering of all the anomalies. Using entropy as a
metric to detect the anomalies is also done in [10], where
a baseline distribution is estimated offline with a recur-
sive procedure and then it is used together with current
traffic distribution to calculate the relative entropy, which
gives the distance between the model and the measured
features. The problem of this approach is that one has
to feed the detection system with online traffic and peri-
odically update the baseline distribution which has to be
calculated offline, but the update procedure has not been
implemented yet. The earlybird system proposed in [20]
claims to automatically detect a new worm and its fin-
gerprint by a so called content sifting approach, which is
similar to the methodology used to detect the heavy hit-
ters: instead of characterizing a flow by the canonical 5-
tuple (src, dst, srcport, dstport, protocol) they apply con-
tent fingerprinting in order to find prevalent payload pat-
terns that could identify a worm signature. The system is
shown with all its features and limitations, and some hints
are given to use the same methodology to solve other rel-
evant problems like DoS attacks, spam detection, at high
data speed and with low memory consumption. Finally,
another well known technique for anomaly detection is the



International Journal of Network Security, Vol.9, No.2, PP.143-155, Sept. 2009 145

use of honeypots. An honeypot is a host (usually virtual)
that listens and replies to all unsolicited requests coming
from outside, without generating any spontaneous traffic.
Honeypots can be considered as a useful complement to
the detection methods based on passive capture (see e.g.
[15, 24]).

3 Monitoring System and Input

Dataset

The present work is based on packet-level traces captured
in the operational network of a major mobile provider in
Austria, EU. In the following we present a brief descrip-
tion of the network and of the monitoring system used to
extract the traces.

The reference network structure is sketched in Figure 1.
The Mobile Stations (MS) are connected via radio link to
the antennas. In our network four different access schemes
are possible depending on the geographical location of the
MS and its terminal capabilities: GPRS, EDGE, UMTS
and HSDPA [2]. A set of geographically neighboring an-
tennas is connected to a controller, called Base Station
Controller (BSC) in GPRS/EDGE and Radio Network
Controller (RNC) in UMTS/HSDPA. These are then con-
nected to a set of so-called Serving GPRS Support Nodes
(SGSN). The overall set of antennas, BSC/RNC and the
connections until the SGSNs constitute the so-called Ra-
dio Access Network (RAN). The primary role of the SGSN
is to perform mobility management function, involving
frequent signaling exchanges with the MS. In a typical
network there are several SGSNs located at different phys-
ical sites. The data-plane traffic collected by the SGSN
is concentrated at a small set of so-called Gateway GPRS
Support Nodes (GGSN). The GGSN acts as the IP-layer
gateway for the user traffic: it is in charge of setting
up, maintaining and tearing down a logical connection
to each active MS, called “PDP-context”, that is concep-
tually similar to a dial-up connection. During the set up
of the PDP-context an IP address is dynamically assigned
to the MS. The set of SGSNs and GGSNs are intercon-
nected by a wide-area IP network that will be hereafter
referred to as the “Gn network” (ref. Figure 1) follow-
ing the terminology of 3GPP specifications (“Gn inter-
face”). Across the Gn network the IP packets coming
from/directed to each MS are tunnelled into a 3GPP spe-
cific protocol (GPRS Tunnelling Protocol, GTP [2]) and
then encapsulated into an IP packet travelling between
the current pair of SGSN/GGSN. After the GGSN, the
user packets enter into the “Gi network” section that is
functionally similar to the Point-of-Presence of an Inter-
net Service Provider: it is connected externally to the
large Internet and includes internally a number of IP-
based service elements, e.g. application servers, WAP
gateway, proxies, DNS, firewalls.

For this work we monitored the GGSN links on the Gn
interface (ref. Figure 1). All the GGSNs co-located at
a single physical site were monitored, corresponding to a

fraction x (undisclosed) of the total network traffic1. The
monitoring system was developed in a previous research
project (see [5]). The capture cards are Endace DAG [7]
with GPS synchronization. For privacy reasons we store
only the packet headers up to the transport layer, i.e. ap-
plication payload is stripped away. The traces are com-
pletely anonymous: any identifier that is directly or indi-
rectly related to the user identity (e.g. IMSI, MSISDN)
is hashed by means of a secure non-invertible function.
All frames are captured, i.e. sampling is NOT adopted.
On the Gn interface the system is capable of parsing the
GTP layer and tracking the establishment and release of
each PDP-context, hence to uniquely identify the MS as-
sociated to each packet, sent or received. Similarly to
timestamps, an unique MS identifier - denoted by MSid -
is stored as an additional label information for each frame.
Note that the MSid can not be referred to the user iden-
tity, it only serves the purpose of enabling packet-to-MS
association in post-processing.

For this work we analysed the complete traces from the
monitored Gn links over two different days: December
1st, 2004 and April 18th, 2006. Table 1 summarizes the
relative proportions of total traffic in the two datasets.

1) Packet size:
Our results show that the impact of block cipher
mode on the packet size is greater than stream mode;
especially as the packet size increases. “Figure ??”
shows the percentage increase in packet size as a func-
tion of the original packet size for block cipher mode
(top line) and for stream mode (bottom line).

The packet size increase has negative effects not only
on the bandwidth usage but it also impacts on the
transmission delay, router internal delays, queuing
delay, thus affecting jitter and overall packet delay.

2) Crypto-engine:
In order to measure the maximum encoding rate,
when both algorithms are used, we performed the
following experiments. We considered both crypto-
graphic algorithms and for each case we generated 4
packet flows with packets of size 60, 100, 250, 1000
bytes, respectively. Each flow starts from 0 pps and
increases its rate of 25 pps every 30 s in order to
saturate the crypto-engine.

4 Overview of the Algorithms

Hereby we describe the two detection algorithms that we
have tested. In this work we are interested in detect-
ing only TCP scanners (UDP traffic is not considered)

1Several quantitative values are considered business sensitive by
the operator and subject to strict non-disclosure policy, e.g. ab-
solute traffic volumes, number of active MS, number and capacity
of monitored elements. For the same reason some of the following
graphs reporting absolute traffic values have been rescaled by an
arbitrary undisclosed factor, while distribution graphs have been
truncated.



International Journal of Network Security, Vol.9, No.2, PP.143-155, Sept. 2009 146

Figure 1: Network structure and monitoring settings

Table 1: Datasets details (absolute values undisclosed)
Dec. 1st, 2004 Apr. 18th, 2006

# packets processed tot pktdec tot pktapr ' 5.2 × tot pktdec

# bytes processed tot bytedec tot byteapr ' 6.9 × tot bytedec

# MS seen tot msdec tot msapr ' 4 × tot msdec

installed on the MS. Hence, we focus exclusively on the
TCP connections attempts travelling uplink, i.e. sent by
the MSs. We identify the packet source by the MSid field
instead of the source IP address: in this way we can
unambiguously refer each packet to its source MS even
across different PDP-contexts and/or in presence of ad-
dress spoofing.

The first tested method is the simplest one. It was first
proposed in [22] and will be referred to as syncount. A
scan activity is marked if one source (i.e. a MS in our
case) sends more than N SYN packets within T seconds
towards different {dst IP,dst port} pairs without receiv-
ing the corresponding ACKs. More specifically, we have
implemented this method in a ultra-simplified version:
we roughly count the SYN (in uplink) and SYNACK (in
downlink) packets for each MS, without stateful tracking
the three-way handshake procedure for each connections.
Under the assumption that each active target would re-
spond only with a single SYNACK, such scheme would re-
veal how many - but not which ones - connection attempts
have succeeded and failed for each MS. The advantage of
such approach is clearly to simplify the implementation,
as it involves only cumulative counters per each MS but
no stateful tracking of individual TCP connections.

The second algorithm is instead considerably more
complex to implement. It is known as Threshold Random

Walk (TRW) and was proposed in [11]. It applies the con-
cept of sequential hypothesis testing: for each source r, we
define the sequence Y = {Yi} of the connection attempts
towards the ith distinct {host,port} pair: we set Yi = 0
in case of success and Yi = 1 in case of failure. Note that
here we need to track the state of the three-way hand-
shaking triggered by each SYN packet (this implies some
scalability concerns in case of massive SYN flooding). The
function Λ(Y ) is computed as the likelihood ratio:

Λ(Y ) ≡
Pr[Y |H1]

Pr[Y |H0]
= Πn

i=1

Pr[Yi|H1]

Pr[Yi|H0]

where H0 is the null hypothesis that the source r is “be-
nign” (not a scanner). Conversely H1 represent the hy-
pothesis that source r is a scanner. Λ(Y ) is updated in
real time for each outcome Yi and it is compared to two
thresholds η0 and η1 that are set according to some theo-
retical assumptions (for details see [11]). The hypothesis
H0 or H1 is accepted if Λ(Y ) ≤ η0 or Λ(Y ) ≥ η1 respec-
tively.

We have implemented both algorithms in a Linux envi-
ronment and tested them on two one-day trace datasets:
Dec. 1, 2004 and April 18, 2006. From now on, we will
refer to the implemented modules as syncount and trw.
For each module we tested two different configurations,
referred to as conf#1 and conf#2. All the parameters for
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Table 2: Parameters of the two configurations tested -
Windowing T = 60sec

module conf#1 conf#2
syncount N = 50 N = 100

trw

θ0 = 0.8 θ0 = 0.6
θ1 = 0.2 θ1 = 0.4

PD = 0.99 PD = 0.9999
PF = 0.01 PF = 0.0001
→ η0 ' 0.01 → η0 ' 0.0001
→ η1 = 99 → η1 = 9999

all four settings are given in Table 2.

For both methods conf#2 is more conservative than
conf#1, i.e. in general conf#1 will raise more false posi-
tives than conf#2. For syncount this simply means that
the alarm threshold N is set higher for conf#2. As for
trw, we have to set four parameters as input: the desired
detection probability PD, the desired false positive prob-
ability PF , and two conditional probabilities θ1 and θ0

defined as θ1 = Pr[Yi = 0|H1] and θ0 = Pr[Yi = 0|H0].
θ1 and θ0 represent the probability that the ith distinct
connection initiated by a source r was successful, given
that the source is respectively a scanner or it is not. By
setting these values we can compute the threshold values
η0 and η1 as η0 = (1−PD)/(1−PF ) and η1 = PD/PF (see
[11] for more details). Both syncount and trw modules
use a sliding window T of one minute: at time t, all the
pending connections older than t − T are assumed to be
failed.

5 Evaluation and Results

5.1 Evaluation of the Algorithms

The results of our runs for both methods are compared
in Figure 2. The first observation is that the number of
“suspicious” MS that have produced an alarm changes
dramatically in the two dataset, increasing by a fac-
tor x = 3.5 from December 2004 to April 2006 (i.e.
tot suspicapr ' 3.5 × tot suspicdec). In both datasets
trw conf#1 reports the highest number of MS: this vari-
able is taken as the reference for both datasets and the
barcharts in Figure 2 have been normalized accordingly.
Note that the relative ranking among the four settings
w.r.t. the number of alarms is preserved across the two
datasets. Note also that the number of alarms relative to
trw conf#1 has decreased in 2006 for all the other three
settings.

Among the suspicious MS there are both true posi-
tives (e.g. scanning worms) and false positives (e.g. p2p
scanning). In order to classify them properly we had to
perform an extensive manual inspection of the traces for
each “suspicious” MS. Without the possibility of inspect-
ing the full payload, which is not contained in the traces,
the profile of each MS had to be based on the informa-
tion extracted by packet headers (mainly port numbers)
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Figure 2: Suspicious MS detected on Dec. 1st, 2004 and
Apr. 18th, 2006

and on the packet timing. We will discuss the results of
such analysis more extensively later in Section 6 and pro-
vide the complete results in Appendix. For the moment
we only highlight in Table 3 the aggregate results for the
true positive populations as obtained by manual analysis.

We distinguish three classes: malicious activities
(“malware”), p2p applications and other activities not
falling in these two classes. As expected, the true pos-
itives account for a very small fraction of all MS seen
in both datasets (last column of Table 3). However the
relative composition has changed dramatically over 1.5
years. In particular, the p2p component has grown con-
spicuously and became predominant in the 2006 dataset,
whereas the malicious component, which was prevalent in
2004, has decreased dramatically in 2006. Such changes
are consistent with the following facts. First, following the
preliminary analysis of the traces in late 2004 (see [17]),
the network operator had adopted some simple measures
to counteract the spreading of most common pieces of
malware, e.g. by introducing some ad-hoc filtering rules.
Furthermore, several users had the time to patch their
terminals and remove the infection agent. This explains
the sensible reduction in the number of scanning sources
from 2004 to 2006 which occurred in our network and, ac-
cording to a very recent study [1], also worldwide. On the
other hand, the popularity of p2p applications among mo-
bile terminals (mainly laptops with 3G cards at that time)
has increased, likely driven by the reduction in the mobile
tariffs and the general affirmation of some specific p2p ap-
plications. In other words, the “usage environment” has
changed from 2004 to 2006 in the mobile network under
study, also w.r.t. scanning activities, with the relative
affirmation of p2p over malware.

As the next step, we were interested in exploring the
dynamic behavior of the scanner populations. We resort
to the analysis of the time intervals when suspicious activ-
ities are revealed. A graphical representation can be easily
obtained if we record the timestamps delimiting a suspi-
cious activity, which starts/stops each time the thresholds
are crossed. We connect these points drawing an horizon-
tal line to mark each “hot” period. The results for both
datasets are shown in Figure 3 (for trw conf#1).



International Journal of Network Security, Vol.9, No.2, PP.143-155, Sept. 2009 148

Table 3: Composition of True Positives
True Positives on Dec. 1st, 2004

# of True Positives
Composition

% of tot msdec% malware % p2p % other
true scannersdec 66.36% 14.62% 19.03% 1.70%

True Positives on Apr. 18th, 2006

# of True Positives
Composition

% of tot msapr% malware % p2p % other
true scannersapr 7.21% 92.38% 0.27% 0.73%
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Figure 3: Hot intervals detected by trw conf#1 on Dec. 1, 2004 (a) and April 18, 2006 (b)

These plots contain the hot intervals relative to
tot suspicdec MS for the 2004 dataset (Figure 3(a)) and
to tot suspicapr MS for the 2006 (Figure 3(b)). Note that
during the night hours the overall traffic decreases and so
does also the scanning activity. Now for each suspicious
MS we calculate the total duration of the correspondent
hot activity, thus defining a new variable TS. We can
draw another plot with the cumulative distribution of TS

for all our dry runs, shown in Figure 4.

Each plot in Figure 4 must be interpreted looking
at the correspondent histogram bars shown in Figure 2.
First we consider Figure 4(a). Each curve represents one
of the four runs over the 2004 dataset. We notice a clear
correspondence between the curve spacing and the his-
togram values: that is, the distance between the curves
is proportional to the distance between the relative his-
togram values. The higher difference between two his-
togram values, the higher distance between the corre-
sponding curves. Besides, we also infer that the runs
with lower histogram values have a lower false positive
fraction, since CDF curves are shifted down-right, mean-
ing that many MS having low TS values are neglected.
On Figure 4(b) we see that things seem to change for the
2006 dataset. The previously observed relation between
histogram values and curve spacing is lost. Indeed, the
curves do not appear spaced any more according to the
histogram pattern; actually below the curve representing
trw conf#1 the other curves overlap each other. This dif-
ference highlighted in the behavior of the CDF curves is
finally what we were searching for. We knew from Table 3

that the 2004 dataset is dominated by malicious scanners.
Now we have found that these scanners exhibit a direct
proportionality between the duration of suspicious activ-
ity and the number of failed connection attempts. This
indicates that their scanning rate is somehow constant
over time.

On the other hand, for p2p scanners, which are pre-
dominant in the 2006 dataset, there is no evidence of
strong correlation between the duration and volume of
scanning events. This is consistent with the observation
that typical p2p applications perform scanning at variable
rates. Besides rate regularity, we have found on more
point of diversity between the dynamic behavior of the
two kinds of scanners, namely the statistics of TS . It
is now evident that relying solely on the count of failed
connection, as in syncount and trw, is not sufficient to
discriminate between the two classes. Based on the above
findings, we know that TS could be exploited in the clas-
sification method to achieve a better level of separation.
In the next section we propose a relatively simple way to
achieve that.

5.2 Introducing Significance

As the next step we propose to rank the suspicious ac-
tivities by a heuristic metric, qualitatively linked to the
potential harmfulness of the scanning activity itself. For
each source r we define its Significance (denoted by S(r))
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Figure 4: CDFs of TS - Dec. 1st, 2004 (a) and Apr. 18th, 2006 (b)

as follows:

S(r) = log

(

Ntot × [1 + Ntot

−min(NTopPort, NTopIP )]γ ×
TS

(TS + Tidle)

)

wherein

• Ntot is the total number of failed connections initi-
ated by source r;

• NTopPort is the number of failed connections to the
top-hitted port by r;

• NTopIP is the number of failed connections to the
top-hitted IP address by r;

• TS is the cumulative total duration of the suspicious
activities for r.

• Tidle is the cumulated duration of the non-suspicious
activities for r, i.e. the total time spent below the
alarm thresholds.

This metric embeds all the key activity parameters en-
countered so far. It is composed of three factors in a log
argument. The first factor is simply Ntot. The second fac-
tor [1 + Ntot−min(NTopPort, NTopIP )]γ is the core of the
formula: it implements a function that returns an high
value if one of the two variables NTopPort or NTopIP is
small (or if both are small), the highest value when at least
one of them is one. Actually NTopPort and NTopIP can
be low at the same time (p2p clients have this behavior).
The exponent γ is merely a weight factor, in the following
we assume simply γ = 1. The last factor TS/(TS + Tidle)
is simply the ratio between the time spent scanning and
the whole time the source was attached to the network:
it is a way to account for TS inside the metric. The prod-
uct of the three factors is dimensionless and ranges across
several orders of magnitude, hence we rescale it by taking
the logarithm.

In Figure 5 all the “suspicious” MS are scattered on
the plane {NTopIP vs NTopPort} for each run, resulting
in eight subplots. The value of Significance is encoded by
a color map. We clearly see in Figure 5(a) and 5(b) that
there are two distinct regions of points: one across the
center of the diagrams, and another one on the bottom-
right. We label these two clusters A and B.

In Figure 5(c) and 5(d) we see many points in cluster
B, but only few ones in cluster A. On the contrary, in
Figure 5(e) and 5(f) cluster B has a few points whereas
cluster A is well populated. Finally, in Figure 5(g) and
5(h) both clusters A and B have a few points. We claim
that cluster A is dominated by p2p flows (false positives)
since NTopIP ' NTopPort, while many IPscanners and
other malware are located in cluster B. Indeed in the 2004
dataset the cluster B has an higher point density than in
2006 (compare Figures 5(a)-5(d) with 5(e)-5(h)) confirm-
ing the values shown previously in Table 3.

Moreover, the points belonging to cluster B remain
constant for both configurations, conf#1 and conf#2,
while the number of points in cluster A decreases. This
is consistent with the claim that in cluster A we have
a large share of false positives, i.e. p2p scanners, which
disappear when restricting the detection thresholds (re-
call that conf#2 is more restrictive than conf#1). Thus,
since in Figure 5(c) and 5(d) there are just a few points on
cluster A, we infer that syncount gets a very low number
of false positives.

Remarkably the values of Significance seem to separate
correctly the scanning due to malware and to p2p, since
the points with the highest S(r) are always in cluster B.
Therefore, we have empirically found a simple method
to divide malware and p2p scanners based on a simple
scalar metric. We have shown that by choosing a proper
dimensional space we could still reduce the classification
problem to simple threshold.
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Figure 5: Comparison on the plane {NTopIP vs NTopPort} of the two datasets: December 2004 (plots a-d) and April
2006 (plots e-h)

6 ROC Analysis of syncount and

trw

The Receiver Operating Characteristic (ROC) is a plot
of the True Positive Fraction (TPF) versus False Positive
Fraction (FPF) and it is a well known technique used to
evaluate the quality of a test [6]. To create a ROC dia-
gram one has to proceed as follows. Take the decisional
parameter of the evaluation test and rank the population
according to the specific value provided by each individ-

ual. Then, all these values are ideally assigned to the de-
cision threshold, in turn starting from the highest value
down to the lowest one. Using a reference test (assumed
to tell the truth) the number of true positives and false
positives is calculated and the resulting {TPF,FPF} pair
is represented by a single point of the ROC. To obtain the
ROC diagrams in our case we need to slightly modify our
detection modules to output the value of the decisional
parameter for each datapoint (i.e., MS) in order to rank
them. For the modified module trw-ROC we rank all the
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Figure 6: ROC analysis for Dec. 1st, 2004 and Apr. 18th,
2006

MS by their Λmax value, while for syncount-ROC we do
it according to the number of non ACKed SYNs. The
result of the manual classification is taken as the “ground
truth” reference, as discussed above in Section 5.1. Recall
that in this graph we have classified all the kind of scans,
malicious and not, as true positives. This has to be re-
marked because if we had excluded p2p traffic we would
have obtained different curves.

We know from the previous section that neither
syncount nor trw are able to discriminate between p2p
and malware originated scanning. Besides p2p, there are
a number of other phenomena that could generate false
positives. For example, a temporary connectivity inter-
ruption (e.g. short-term link failure) during a WEB ses-
sion can cause a burst of new connection openings from
the client attempting to reload the page and its objects.
These connections fail due to the interruption, but in
some cases the client iterates the requests. This can gen-
erate a false positive. The reason for comparing the ROC
curves for these algorithms is to assess whether the higher
implementation complexity of trw comes along with any
improvement in detection power.

The resulting ROC curves are shown in Figure 6. On
both datasets examined, we see clearly that the curve
related to syncount-ROC has a bigger area compared to
the corresponding curve related to trw-ROC. Hence, ac-
cording to the ROC theory, surprisingly syncount-ROC

has a better behavior than trw-ROC in terms of the ratio
TPF/FPF. This simply means that the syncount algo-
rithm should work better, choosing the thresholds prop-
erly. Unfortunately, we cannot know in advance the op-
timal threshold value, which depends on the particular
traffic composition - an element that is subject to large
changes over time, as we have seen. In the same figure we
have highlighted the single points corresponding to our
previous runs. For each dataset the points representing
syncount conf#1 and conf#2 stay below the knee of the
corresponding syncount-ROC curve, such that FPF'0.
As regards trw, we notice something strange: it seems
that there is no matching between the ROC and the sin-
gle dry runs. Actually conf#2 is identified by points stay-
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ing almost near the corresponding trw-ROC curve, just on
the knee, while for conf#1 the points are NOT placed
on the corresponding curve but are way detached from it
and stay above the knee of the syncount-ROC curve with
the biggest area, such that TFP'1. We must make a
brief digression to explain this apparent anomaly affect-
ing trw (and not syncount). In our implementation of
module trw the decisional parameter Λ is reset to 1 every
time it exceeds the thresholds η0 or η1, while in module
trw-ROC no reset is done since thresholds are not involved;
remember that trw-ROC simply prints the value of Λmax

for each MS so we can rank them and apply the proce-
dure to plot the ROC. Hence, the ROC curve is somehow
“dirty” because the reset-to-1 action is not taken in ac-
count. Moreover, since the way Λ is updated depends on
θ0 and θ1, it should be evident that each trw-ROC curve
in Figure 6 depends on the particular values chosen for θ0

and θ1.

To verify the difference between trw-ROC predictions
and the real dry runs, we highlighted the predicted points
corresponding to the two threshold values for conf#1
(η1 = 99) and conf#2 (η1 = 9999), on both datasets ex-
amined. Table 4 reports the differences between the real
values of TPF, FPF related to trw conf#1 and conf#2
and the highlighted values obtained from the ROC.

On the contrary, for what concerns syncount, each
point of syncount-ROC, correctly predicts the real val-
ues of TPF and FPF for all the possible values of the
threshold N . Now since we have manually classified all
the MS to obtain the above data and plot the ROCs, it
can be interesting to plot the cumulative distribution of
True Positives and False Positives for syncount to find
out how to set the threshold N in order to obtain the
same TP fraction revealed trw.

Figure 7 shows the complementary CDFs for both
datasets. This plot contains basically the same informa-
tion inside the ROC, but in addition the info about N is
available. We can see that to obtain the same TPF re-
vealed by trw conf#1 (i.e. ∼100%) we have to push the
threshold down to N = 4 for the 2004 dataset and down
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Table 4: Fractions of TP, FP, FN and TN for each module, both datasets
Dec. 1st 2004 Apr. 18th 2006

conf#1 (η1 = 99) conf#2 (η1 = 9999) conf#1 (η1 = 99) conf#2 (η1 = 9999)
module TPF FPF TPF FPF TPF FPF TPF FPF
trw 100% 2.39% 86.77% 0.18% 99.86% 2.82% 40.82% 0.18%

trw-ROC 97.45% 2.21% 95.36% 1.06% 77.14% 2.45% 62.99% 1.25%
module FNF TNF FNF TNF FNF TNF FNF TNF
trw 0% 97.61% 13.23% 99.82% 0.14% 97.18% 59.18% 99.82%

trw-ROC 2.55% 97.79% 4.64% 98.94% 22.86% 97.55% 37.01% 98.75%

conf#1 (N = 50) conf#2 (N = 100) conf#1 (N = 50) conf#2 (N = 100)
module TPF FPF TPF FPF TPF FPF TPF FPF
syncount

64.73% 0% 61.72% 0% 18.23% 0.01% 5.71% 0%
(syncount-ROC)

module FNF TNF FNF TNF FNF TNF FNF TNF
syncount

35.27% 100% 38.28% 100% 81.77% 99.99% 94.29% 100%
(syncount-ROC)

to N = 2 for the 2006. However this would mean paying
in terms of FPF, since we would obtain respectively 3.4%
of tot msdec and 23.7% of tot msapr, while trw provides
2.39% of tot msdec and 2.82% of tot msapr. Notice that
N = 10 seems to be the best choice for both days since we
obtain the best compromise between TP and FP. Hence,
even if true positive composition changes, this affects the
optimal algorithm tuning in a negligible way. Still, all the
intrinsic limitations of the methodology do remain.

7 Conclusions

In this work we have tested two common algorithms for
scanners detection over two dataset from a live 3G cellular
network. The resulting output was then compared against
the outcome of extensive manual classification. The two
traces refer to distinct one-day periods, more than one
year apart (December 2004 and April 2006).

In both datasets the mobile terminal population in-
cludes a certain number of p2p users as well as laptops
infected by scanning worms, with different relative shares
for the two periods. Our main finding is that both tested
algorithms systematically report p2p activity as scanners.
In other words they do not discriminate between ma-
licious (due to malware spreading) and legitimate (p2p
originated) scanning activities. Therefore, they cannot
be used to counteract the former without impairing the
latter.

Progressing the work, we have proposed an approach
based on a novel empirical metric, namely “Significance”.
In order to discriminate between malware and p2p scan-
ning, the traffic profile by individual terminals need to be
represented in a proper space, taking into account the cor-
relation of several features, rather than just relying on the
number of failed connection openings. The Significance
goes in this direction, and we have shown that it achieves
a very good level of separation in our datasets. Compar-
ing the performance of our Significance-based approach
versus alternative methods (e.g. the sample entropy was
used in [13]) is an interesting direction for future study.

Our experience with real-world traffic and network ex-

poses an additional complication for the task of scanner
detection. Most false positives besides p2p are due to
maintenance operations (e.g. reboot of internal servers)
and other temporary network problems (e.g. local link
failures, short-term server failures). Such events, which
should be considered physiological in the lifetime of a live
network, concur in misleading the detection algorithms
which rely solely on the raw counting of failed connection
attempts like TRW and syncount. We have carried out
a systematic comparison between these two algorithms
based on ROC curves. Our results tell that the two meth-
ods yield roughly comparable results, consequently the
higher implementation complexity of TRW does not seem
to be justified. In both cases the actual performances de-
pend greatly on the parameters settings. On the other
hand we saw that the optimal setting depends from the
actual traffic mix, which is an ever-changing object. This
would call for introducing adaptive schemes that are able
to automatically tune the sensitivity parameters of the
detection engine.
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Appendix A: Anomalous Traffic

Classification

In Table 5 we report a list of the top services requested by
all the suspicious MS. While in Table 3 we have roughly
classified only the True Positives, showing the fractions
related to malicious activity, file sharing and other kind
of scanners, here we give a more detailed view including
False Positives, unknown activities with a low Significance
(which are not scanners), as well as true scanners with a
high Significance.

Notice again how the weight of “Malware” and “Var-
ious p2p” has changed over the two datasets examined.
Among p2p programs, it is very interesting to notice the
high percentage of Skype in the 2006 dataset, which is
not shown in the 2004 because it held for a fraction lower
than 0.5%. Yet, we have seen in both datasets many
MS attempting connection towards different IPs on ports
80, 443 plus on a random one; the same behavior is ob-
served on Skype users which in addition have a bootstrap
signalling activity towards some servers or “supernodes”,
some of them mentioned in column “Notes” (see also [3]),
so we believe that there is a relation between these two
entries.

As regards the other entries, most of them repre-
sent repeated connection failures to a certain port on
few hosts (sometimes on a single host) which result
in a low value of Significance, so arguably they are
not related to scanners. Another interesting entry
is the one related to connection failures to port 80



International Journal of Network Security, Vol.9, No.2, PP.143-155, Sept. 2009 154

Table 5: Top services attempted by suspicious MS, fractions of tot suspic{dec,apr} (tot suspicapr ' 3.5×tot suspicdec)
Dec. 1st 2004

% of tot alertsdec Service Notes
39.26% Various False Positives
27.21% IPscan on 135,139,445 Various Malware
7.77% Connection failures on 80 High Significance

4.37%
6346, 6348, 6349,

Various p2p
4662,1214,random ports

2.72% 8001 Wap, Low Significance
1.94% 7110 Unknown Activity, Low Significance
1.55% 195.230.174.227:1060
1.55% 8080,8181,8183 Low Significance
1.26% 110 Unknown Activity, Low Significance
1.17% 1.1.1.1:6668 unknown
0.87% IRC Low Significance
0.78% 10021 Unknown Activity, Low Significance

0.58%
IPscan on ports 80,443

High Significance
+ random port

0.58% internal proxy1:32769 Internal network device
0.58% 81 Unknown Activity, Low Significance
0.58% 5101 Unknown Activity, Low Significance
7.19% Other Each entry below 0.5%

Apr. 18th 2006
% of tot alertsapr Service Notes

50.08% Various False Positives

11.06%
6346÷6349; 4661÷4672;

Various p2p
1214; 3531; 2234;

3.56% Skype (random {IP,port})
Signalling on 212.72.49.128 ÷ 212.72.49.159;

ports 80,12350,33033,443
3.53% internal proxy1:32769 Internal network device
3.47% 8001 Wap, Low Significance
3.47% 8080,8081,8180,8181,8183 Low Significance

2.58%
IPscan on ports 80,443

High Significance
+ random port

1.46% Random Ports p2p?
1.43% 81 Unknown Activity, Low Significance
1.37% 8192 Unknown Activity, Low Significance
1.23% 2967 Unknown Activity, Low Significance
0.95% 55111 Unknown Activity, Low Significance
0.64% 9100 Unknown Activity, Low Significance
0.64% IPscan on 135,139,445 Various malware
0.62% 25 Email virus, High Significance
0.62% 1080 Unknown Activity, Low Significance
0.59% internal proxy2:32769 Internal network device
0.56% 524 Unknown Activity, Low Significance
0.50% 9655 Unknown Activity, Low Significance
0.50% 139.54.61.211:18080 Unknown Activity, Low Significance
11.14% Other Each entry below 0.5%

on the 2004 dataset, which disappears in the 2006:
this can be explained by the temporary deactivation of
an internal proxy for maintenance operations in late 2004.
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