
International Journal of Network Security, Vol.9, No.2, PP.135-142, Sept. 2009 135

Queue-based Group Key Agreement Protocol

Sunghyuck Hong
Office of International Affairs, Texas Tech University

601 Indiana, Lubbock, Texas, USA
(Email: sunghyuck.hong@ttu.edu)

(Received Oct. 1, 2007; revised and accepted Aug. 22, 2008)

Abstract

Group communication is exploding in Internet applica-
tions such as video conferences, online chatting programs,
games, and gambling. Since most group communication
takes place over the Internet that is a wide open network,
security plays a major role. For a secure communica-
tion, the integrity of messages, member authentication,
and confidentiality must be provided among group mem-
bers. To maintain message integrity, all group members
use a Group Key (GK) for encrypting and decrypting mes-
sages during group communication. Secure and efficient
group key managements have been developed to gener-
ate a GK efficiently. Tree-based Group Diffie-Hellman
(TGDH) is an efficient group key agreement protocol to
generate the GK. TGDH and other group key generation
protocols assume that all members have an equal com-
puting power. However, one of the characteristics of a
distributed computing environment is heterogeneity; the
member can be at a workstation, a laptop, or even a mo-
bile computer. TGDH and other group key generation
protocols assume all members have an equal computing
power. However, one of the characteristics of distributed
computing is heterogeneity. Therefore, this research con-
siders member’s diversity and proposes enhanced group
key generation protocol with filtering out low performance
members in group key generating processes to improve the
efficiency of GK processes.
Keywords: Group key management, network security,
protocol design, secure group communication

1 Introduction

Most group communications are occurred over the Inter-
net in the form of video conferences, on-line chatting pro-
grams, games, and gambling. Security is a major con-
cern in group communication. According to [19], member
authentication processes and key distribution take place
at the beginning of a group communication for a secure
group communication. For establishing a secure group
communication, all members contribute to generate and
use a common group key. A Group Key (GK) plays a
major security role. Since a Group Key Generation Pro-

cess (GKGP) has many modular exponentiations, it takes
a long time to compute a GK even though group size is
relatively small as 100 [17]. For achieving a high level of
security, the GK should be changed after every member
joins and leaves so that a former group member has no ac-
cess to current communications and a new member has no
access to previous communications [19]. Therefore, group
key management protocols have been focusing on gener-
ating a GK efficiently [12, 14, 17, 19]. In order to compute
the GK using modular exponentiations, the adaptation of
key trees is an efficient way to reduce the computational
overhead. Modular exponentiation is the computationally
most expensive operation in the group key management
protocols [14]. The number of exponentiations for mem-
bership events depends on a group size. TGDH is the
most efficient group key agreement protocol. The algo-
rithm efficiency of TGDH is O(log2n), where n is a group
size, so it is efficient as long as the key tree is perfectly
balanced. However, maintaining a perfect key tree bal-
ance causes another overhead. Furthermore, TGDH and
other key management protocols assume that all mem-
bers’ machines are under a homogeneous computing and
network environment. In general, members can be widely
distributed over the Internet and can be at a workstation,
a laptop, or even a mobile computer. For example, if a
member using a mobile computer joins in group communi-
cation, then it takes more computational times to gener-
ate a GK than any other members machines. In addition,
a member who is physically far away from other members
locations or in a high network latency area will degrade
the overall GKGP because multiple message exchanges
are required while a GK is being generated. Therefore,
a low performance member with high network latency
must be filtered out for the efficient GKGP. In this re-
search, Queue-based Diffie-Hellman group key agreement
protocol is proposed for improving the diversity of com-
puting environments and network latency. In [10], the
tree-based group key agreement filtering out low perfor-
mance members was proposed and proved the develop-
ment of the efficiency for a GKGP. However, it still has
a maintenance problem to make the tree balanced after
membership changes. The proposed protocol provides a
Queue-based divide-conquer algorithm with a low main-
tenance. A Queue structure is being used for determining



International Journal of Network Security, Vol.9, No.2, PP.135-142, Sept. 2009 136

fast and low performance members. The tree-based group
key agreement with filtering out low performance mem-
bers [10] authorized fast members in group key generation
processes by comparing each members elapsed times to
compute their public keys, whereas in the proposed pro-
tocol, instead of comparing the elapsed times, a Group
Controller Server (GCS) requires all members to com-
puter their public keys and store they keys into the Queue
structure on the GCS with the order of arrival. A Queue
structure is First In First Out (FIFO). The fastest mem-
bers key is always stored into the right most position in
the Queue, the second fastest key is stored into the second
right most position, and the third fastest key is stored so
on. If using a Queue structure, then it determines fast
members ease without any additional overhead such as
making a tree balanced. The detail processes in the pro-
posed protocol are dealt with in Section 2. A secure and
efficient group key management is a critical issue in group
communication [3]. For a secure and group efficient key
management, it is necessary to filter out low performance
members with regard to low computing power and high
network latency. Therefore, this research focuses on in-
creasing the efficiency of the GKGP which is aimed at
maximizing group communications usability.

1.1 Related Work

Group communication occurs in many different settings:
from low-level network multicasting to conferencing and
other groupware applications. Regardless of the environ-
ment, security services are necessary to provide communi-
cation privacy and integrity. These are not possible with-
out secure efficient key distribution, authentication, and
other security mechanisms. For a secure communication,
a group key management is responsible for generating the
GK and distributing it to each member securely over an
insecure network environment. Therefore, the key man-
agement is a building block in group key management.
Unless the communication channel is secure, delivery of
messages over the network to the right destination can
not be guaranteed. There are basically two approaches
for group key management in peer-to-peer group commu-
nications. Centralized group key distribution relies on a
single entity (called a key server) to generate and dis-
tribute a GK to all group members. A Trusted Third
Party (TTP) can make this approach possible. However,
there are two problems: TTP must be constantly avail-
able, and TTP must exist in every possible subset of a
group in order to support continued operation in the event
of network partitions. The first problem can be addressed
with fault-tolerance and replication techniques [14]. The
second is impossible to solve in a scalable and efficient
manner. In one-to-many multicast scenario the central-
ized approach works well because a TTP placed at, or
very near, the source of communication can support con-
tinued operation within an arbitrary partition as long as
it includes the source. In general, one-to-many settings
only focus on offering continued operation within a sin-

gle partition including the source. However, a dynamic
peer-to-peer communication must offer continued opera-
tion in an arbitrary number of partitions. Therefore, the
centralized approach to group key management is not well
suited for a dynamic peer-to-peer group communication
[14]. The decentralized group key distribution, which is
called a group key agreement, involves dynamically gen-
erating a GK and distributing it to other group members.
This approach is more robust and more applicable in dy-
namic peer-to-peer group communications. In contrast to
the centralized approaches, contributory group key man-
agement requires each group member to contribute an
equal share to the group key. This avoids the problems
with the centralized trust and the single point of failure.
The group key agreement in which each member has an
equal opportunity for generating a GK is better suited for
peer-to-peer group communication [17]. Therefore, this
research is directly related with contributory and decen-
tralized group key management. Currently, there are five
different group key agreement protocols: BD (Burmester-
Desmedt) [6], GDH (Group Diffie-Hellman) [17], CKD
(Centralized Key Distribution) [2], STR (Skinny Tree)
[19], and TGDH (Tree-based Group Diffie-Hellman) [14].

1) The BD (Burmester-Desmedt) protocol supports dy-
namic group operations. The protocol has a rel-
atively low computational overhead due to two
modular exponentiations. However, it needs more
message exchanges to generate GK. The GK =
gK1K2+K2K3+...+Kn−1Kn

.

2) GDH (Group Diffie-Hellman) provides high security
assurance. However, it has a relatively high com-
putation cost (O(n) modular exponentiation) and is
relatively hard to provide robustness. The GK =
gK1K2K3K4...Kn−1Kn

.

3) CKD (Centralized Key Distribution) provides the
same security guarantee as GDH. The only difference
between GDH and CKD is a centralized key distri-
bution center that generates the GK and distributes
it to each member. The GK = gK1K2K3K4...Kn−1Kn

.

4) The STR (Skinny Tree) protocol is modified to pro-
vide dynamic group operations. The protocol has a
relatively low communication overhead and is well-
suited for adding new group members. Robustness
is easily provided. However, it is relatively difficult
for member exclusion (O(n) modular exponentiation)

The GK = gKngKn−1...gK2gK1

.

5) TGDH (Tree-based Group Diffie-Hellman) provides
the most efficient group key agreement protocol. The
protocol has low communication overhead and low
computation overhead (O(logn) modular exponenti-
ation). In addition, TGDH provides robustness. The

GK = gggK1K2gK3K4 ...gg
Kn−3Kn−2g

Kn−1Kn

.



International Journal of Network Security, Vol.9, No.2, PP.135-142, Sept. 2009 137

1.2 Tree-based Group Diffie-Hellman

The Group Diffie-Hellman (GDH) key agreement proto-
col [11] is an extension of the Diffie-Hellman (DH) key ex-
change protocol [7]. The GK computation is an important
component of group key management in securing group
communication; several efforts to enhance the group key
generating protocol have been reported [6, 8, 14, 17, 19] in
which every member must contribute in the computation
of the GK. Therefore, group key management focuses on
minimizing computational overhead due to its inherent
expensive cryptographic operations [19]. Because of the
complexity of the GK computation, the group key man-
agement adapts a key tree structure that reduces compu-
tational times. Key trees have been suggested in the past
for centralized group key distribution systems to reduce
the complexity of the key generation [2]. One such GKGP
is the Tree-based Group Diffie-Hellman TGDH [10]. An
example of the key tree-based group key generation pro-
tocol follows. In the binary key tree for generating a GK
in Figure 1, each node < l, v > represents a v-th node
at level l in the tree and node < l, v >′s secret (pri-
vate) key K<l,v> and a blind (public) key BK<l,v> =
f(K<l,v>) = gK<l,v>mod p, where g and p are 1,024 bit
long integers. Every member holds the secret key along
the key path. For simplicity, assume each member knows
the blind keys in the key tree. The key paths are the
shadowed nodes (node < 0, 0 >,< 1, 0 >, and < 2, 0 >)
in Figure 1. The final group key K < 0, 0 > in Figure 1 is
computed with the key paths using blind keys BK<3,0>,
BK<3,1>, BK<2,1>, BK<2,2>, BK<3,6>, and BK<3,7>

[3]. Therefore, the final group key can be computed as
Equation (1):

K<0,0> = ggg
K<3,0>K<3,1> g

K<2,1>
gg

K<2,2>g
K<3,2>K<3,3>

.

(1)
The TGDH has two major disadvantages. First, main-

taining a balanced group key generation tree causes an-
other overhead. The group key generation tree must be
balanced at any given time so that the efficiency of group
key computation would be O(log2n). Otherwise, the per-
formance of group key generation key would be worse than
O(log2n). The second is derived from no regard for mem-
ber’s diversity in that if a low performance member such
as a mobile computer joins the GKGP, then it would take
a longer time than other members at desktop computers.
Therefore, we propose a new protocol to provide possible
solutions for current problems.

1.3 Problem Definition

As mentioned earlier, members in a distributed comput-
ing environment can be distributed over the Internet. Fur-
thermore, the members can be at a workstation, a laptop,
or even at a mobile computer. Conventional group key
agreement protocols request all members to contribute
to a GK. Consequently, a low performance member or
a member located on a high network latency area could

Figure 1: A binary tree for generating group key

Figure 2: Queue-based group Diffie-Hellman entity model

make the process slow. To improve the GKGP, relatively
high performance members should be authorized to par-
ticipate in the generation of the GK and then distribute
it to low performance members, which are not authorized
to participate in the GKGP. Since the group key gen-
eration time depends on members computing power and
network latency. Therefore, it is necessary to filter out
low performance members with regard to their comput-
ing powers and network latency for avoiding unnecessary
delay in GKGP.

2 Queue-based Group Diffie-
Hellman (QGDH)

Figure 2 shows Queue-based Group Diffie-Hellman Entity
Model. In Figure 2, a Group Controller Server (GCS)
has a member information DB containing a current lo-
gin member list, MAC addresses, IDs, Passwords, and
Blind Key Queues (BKQ). If each member logins to the
GCS, then the GCS will validate his ID, password, and
MAC (Media Access Control) address [9] by checking his
member information DB. After approving members iden-
tification, all members start to generate a group key by
sending his blind key to the GCS who collects all blind
keys and store them into the Blind Key Queues (BKQ) in
order of arrival. Then the GCS informs participants who
will join the next level of the group key generation.

A group controller server (GCS) is similar to the Vir-



International Journal of Network Security, Vol.9, No.2, PP.135-142, Sept. 2009 138

Figure 3: The blind key queues in group controller server

tual Synchrony [16] that uses a client daemon program to
manage membership. The Virtual Synchrony (VS) dae-
mon runs on each members machine and synchronizes
with other VSs to update membership whenever mem-
bership changes. Each member can know other members
status due to VS. TGDH uses a VS for maintaining mem-
berships. However, Using VS involves complex processes
to synchronize with all other VS daemons because mem-
bers request a lot of message exchanges to update their
status. In the mean time, the QGDH establishes a GCS
server instead of running VS daemons on all members
machines. Therefore, only one machine in the proposed
protocol takes a responsible for a GCS.

Current group communication protocols use a self-
signed certificate for member authentication, which has
a well-known weakness in that members cannot ensure
that the name on the public key is really a true member’s
name [8]. To compensate for this well-known weakness,
our approach uses a GCS as a complete trusted party. Our
threat model takes into account both passive and active
outsiders (i.e. individuals who are not group members).
Passive outsider attacks involve eavesdropping with the
aim of discovering the GK(s); active outsider attacks in-
volve injecting, deleting, delaying, and modifying protocol
messages.

The proposed protocol authorizes only high perfor-
mance members with low network latency join in the
GKGP for maximum efficiency of the group key gener-
ation. A group key must be regenerated for secure com-
munication whenever group membership changes. The
details of the proposed procedure are described as follow.

Suppose that the group size is n and group members
are M1, M2,M3, ..., Mn−1,Mn for n < 100. The Blind Key
Queues (BKQ) in GCS are shown in Figure 3. The GCS
requests all members to generate a blind key (gKi mod p,

i ∈ [1, n], g is an exponentiation base, p is a prime num-
ber, and Ki is ith members private key) by broadcasting
a request message. The GCS receives all blind keys and
stores them into its own BKQ in the order of their arrival
to determine high performance members joining in the
next level of the GKGP. The highest performance mem-
bers blind key is always stored in the front of the BKQ,
whereas the low performance members blind keys go in
the rear of the BKQ. In fact, two factors must be con-
sidered to determine high performance members. One is
to measure members computing power and the other is to
measure network latency. These two factors directly affect
the performance of a GKGP. No matter how high perfor-
mance the machine, if the time taken for communication
messages to traverse the network is long, then the member
must be regarded as low performance. Therefore, BKQ is
a simplest way to measure for computing power and net-
work latency at once. The number of levels in the GKGP
can be determined by a group size. If the group size is
n, then the number of levels is log2(n + 1). In the first
level, all members are required to generate a blind key.
In the next level, The GCS assigns two blind keys located
on the opposite side of the BKQ in Figure 3, and then
the GCS requests members who are in the shaded spots
in the BKQ to compute Diffie-Hellman key exchange with
those blind keys and to store them into the BKQ in order
of arrival. Following each level of group key computation,
the GCS collects and stores all computed partial group
keys into the BKQ in the order of their arrival at every
level of the GKGP. As noticed in Figure 3, the fastest
members key is always stored into the A1 spot in each
level, the second fastest members key is stored into the
A2 spot, and so on. The BKQ automatically assigns a
pair of key computations. For example, if a member is
in the A1 spot, then he is assigned to compute with a



International Journal of Network Security, Vol.9, No.2, PP.135-142, Sept. 2009 139

member in the last spot, An. Thus, A1 spots blind key
(gK2 mod p) will be computed with An spots blind key
(gKn−1 mod p), A2 spots blind key (gK3 mod p) and so
on. After having completed all levels, the final group key
can be computed as Equation (2):

g...ggg
K3Kn−1g

K2Kn−1 ...ggg
K(n/4)Kn−(n/4)

. (2)

In this case, only fast members (the shaded area in Fig-
ure 3) are authorized to participate in the next level in
the group generation processes. Therefore, the proposed
protocol can prevent unnecessary delays and improve ef-
ficiency.

3 Performance Analysis

In this section we analyzed the computation costs and net-
work latency for join, leave, merge, and partition of the
proposed protocol, Queue-based Group Diffie-Hellman
(QGDH). In order to evaluate the performance of the pro-
posed protocol, I measured the total elapsed time from the
moment the group membership event happened until the
time when the group key generation processes finished. I
compared the total elapsed times for all other group key
generation protocols in the same network environment to
prove the efficiency of the proposed protocol. The per-
formance analyses of group key generation are shown in
Figures 4 thru 7 to compare the protocol efficiencies.

3.1 Membership Operations

The proposed group key agreement protocol needs to pro-
vide membership operations to cope with membership
changes. The QGDH includes protocols in support of the
following operations:

1) Join: a new member is added to the group commu-
nication.

2) Leave: a member is removed from the group commu-
nication.

3) Partition: a subset of members is split from the group
communication.

4) Merge: a partitioned group is merged with the cur-
rent group communication.

This performance analyses focus on the number of
rounds, the total number of control messages, network
overheads, and group key generation costs. The total
cost is the sum of all participants’ costs incurred by any
participant in a given round or protocols. I compared
QGDH to other group key agreement protocols includ-
ing TGDH [14], STR [19], GDH [17], and BD [6]. The
number of current group members, merging members,
merging groups, and leaving members are denoted by:
n,m, k(m ≥ k) and p, respectively in Table 1. The height
of the key tree constructed by the TGDH protocol is h.

Table 1: Communication and computation costs summary

Protocol Communication Computation

Rounds Messages Exponentiation

QGDH Join 2 2n− 2
3(log2n)

2

Leave 1 2n− 2
3(log2n)

2
Partition 1 2n− 2 3(log2n)

Merge 2 2n− 2
3(log2n)

2

TGDH Join 2 3
3h
2

Leave 1 1
3h
2

Partition min(log2P, h) 2h 3h

Merge log2K + 1 2k
3h
2

STR Join 2 3 4

Leave 1 1
3n
2 +2

Partition 1 1
3n
2 +2

Merge 2 k + 1 3m + 1

GDH Join 4 n + 3 n + 3

Leave 1 1 n− 1

Partition 1 1 n− p

Merge m + 3 n + 2m + 1 n + 2m + 1

BD Join 2 2n + 2 3

Leave 2 2n− 2 3

Partition 2 2n− 2p 3

Merge 2 2n + 2m 3

Table 1 shows the communication and computation costs
of these five protocols. The cost of the protocols, TGDH,
STR, GDH, and BD are reported in Table 1 [8]. The
rounds in Table 1 illustrate how many broadcasts are used
to send and receive blind keys among each member. In
QGDH as a new member joins, the GCS (Group Con-
troller Server) broadcasts a request to current members
to generate a blind key. That is the first round. Af-
ter sending the requesting message, the GCS collects and
stores all other members’ blink keys into the BKQ. Two
rounds are needed in the join event. The first round is for
broadcasting the requesting message to start generating
a blind key. The second round is for receiving blind keys
from all current members. Only one round is required in
the leave event because the leaving member just notices
his leaving to all others by using one broadcast. The to-
tal number of messages which is shown in Table 2 will
be reduced to the half of messages in the previous level.
According to [1], the infinite geometric series α + αr +
αr2 + ... αrn (n is infinite) is convergent and has the
sum α

(1−r) if and only if -1 < r < 1. In this case, α (an
initial value) = n− 1, r = 1

2 . Thus, the total number of
messages can be counted as the infinite geometric series.
Finally, the sum of the messages is computed as (n−1)

(1− 1
2 )

= 2n− 2. In partition, the total number of messages is
divided into m partitioned groups. Thus, the initial value
a is (n−1)

m and r = 1
2 . Even the initial value α is differ-

ent from other events. However, the final total messages
(n−1)

m

1− 1
2

should be multiplied by m. so the total number of
messages (2n− 2) are the same as in the other events.



International Journal of Network Security, Vol.9, No.2, PP.135-142, Sept. 2009 140

Table 2: Total messages in join and leave for QGDH
GK Generation Levels Total Number of Messages

Level 1 n− 1

Level 2 (n−1)
2

Level 3 (n−1)
4

... ...
Level n (n−1)

2(n−1)

Total
∑

(n-1)+ (n−1)
2 + (n−1)

4 + (n−1)
8

+ ... + (n−1)
2(n−1)

= 2n− 2

Modular exponentiation is computationally the most
expensive operation in TGDH, and STR [8]. The number
of exponentiations for a membership event depends on
group size. Therefore, there is a strong link between a
computational overhead and group size in GKGP.

3.2 Test Method

For fair comparisons, I used g, k, and p = 1,024 bits long
numbers for all measurements. These values are known to
be secure in the current technology [15]. Also, I used the
following scenario to measure delay. For join, leave, par-
tition, and merge, the number of current group members
is n (n = 10, 20, 30, 40, 50, and 60). The experimen-
tal test bed is a 64 Intel Pentium machine running Win-
dows XP. The group members are uniformly distributed
on a Local Area Network (LAN). One machine in the
experimental test bed must take a role as a Group Con-
troller Server (GCS) which is responsible for controlling
the GKGP. However, GCS is not involved to compute a
group key. Whenever membership changes, GCS requests
all members to generate their blind keys and stores all the
blind keys from the members into his/her own BKQ in
the order of their arrival to determine fast members join-
ing in the next level of the GKGP. Therefore, relatively
low performance members are automatically filtered out
at each level of the GKGP. For the performance test of
the proposed protocol, the five group key generation pro-
tocols must be launched on the GCS. The elapsed times
to compute a GK for each protocol have been measured
on the GCS whenever membership changes during group
communication. Each member on a single machine acts
as a group member in the group key generation protocol.
Tests performed at our test bed show that the average
elapsed times for computing a GK and the network la-
tency that included communication overheads by deliver-
ing messages among group members. I tested more than
30 times by increasing or decreasing one machine at a
time. In LAN environment, communication costs are rel-
atively small ranging from 17 µsec to 25 µsec for sending
a 1,024-bits long message. It is negligible for a maximum
group size 60. The large portion of the costs is a com-
putational cost which is closely related with a group size.
However, in WAN (Wide Area Network), the major over-
head is completely the other way around. According to

Figure 4: Join cost comparison

[13], the elapsed time from the USA to Thailand took 420
µsec and 670 µsec was measured from the USA to Mozam-
bique. The communication costs in LAN are million times
faster than in WAN. WAN (Wide Area Network)-based
secure group communication will be dealt with by future
research. To prove the efficiency of the proposed protocol,
I demonstrated and showed the differentiation between
the proposed protocol with filtering and other four non-
filtering protocols by using plotting the elapsed times for
each event.

3.3 Join Operation Results

The overheads are computation and communication costs.
Figure 4 shows that BD and GDH are inefficient join cost
in terms of group size. In Figures, the x-axis denotes
the number of members and the y-axis denotes a sec-
ond for computational cost. On the other hand, QGDH,
TGDH, and STR are efficient because they use a divide-
and-conquer algorithm to compute a GK. QGDH is most
efficient, scaling logarithmic in the number of exponentia-
tions. Both TGDH and STR use a binary tree to compute
a GK. QGDH has 2n− 2 message communications that
are more messages than any others. However, the rel-
atively large message communications do not negatively
affect the performance to compute a GK because it takes
at most 20 µsec to exchange messages among group mem-
bers in a GKGP. Therefore, QGDH is more efficient than
other tree-based GK computation protocols.

3.4 Leave Operation Results

Figure 5 shows the computational delay for a
random member to leave a group of n (n =
10, 20, 30, 40, 50, and 60). The leave cost depends
on how many remain members are, so it does not matter
how many members left. Thus, the leave cost is almost
the same as the join cost. However, the computation cost
for STR upon a leave event depends on the location of the
leaving member on the key generation tree. Therefore, in
leave cost for STR is not as good as join case.



International Journal of Network Security, Vol.9, No.2, PP.135-142, Sept. 2009 141

Figure 5: Leave cost comparison

Figure 6: Partition cost comparison

3.5 Partition Operation Results

In Figure 6, x axis denotes the number of remaining mem-
bers after partitioning the group. Whenever a network
fault takes place, the result of a network fault may divide
a group into several subgroups. I forced the group into
several parts and get them recomputed their sub group
keys. For BD and GDH, the location of the partitioning
members does not matter. However, it is important in
QGDH, STR and TGDH. If the network fault is detected
in TGDH, each remaining member updates its tree by
deleting all partitioned members as well as their respec-
tive parent nodes. Due to overheads in partition event,
TGDH is not efficient as much as other events. However,
STR, BD, GDH, and QGDH are almost same as the re-
verse of the leave event.

3.6 Merge Operation Results

Figure 7 shows merge operation results. After recovering
network fault, merge operation will occur. The overall
performances of all protocols are good except GDH. The
performance of GDH strongly relays on the number of
current group size. In addition, it has n + 2m + 1 expo-
nentiations and n + 2m + 1 communications. The current

Figure 7: Merge cost comparison

group size is not important factor for QGDH and TGDH.
QGDH and TGDH in the merge operation are almost
same as the leave operations. Therefore, the divide and
conquer based-based protocols’ performance are almost
constant.

Based on the experimental results on computational
cost, QGDH shows the best performance despite rela-
tively large message communications. QGDH adapts a
Queue structure to generate a GK. In addition, QGDH
considers user’s diversity, so only approved members will
be able to join in generating GK processes. Therefore, in
distributed computing environment user’s diversity must
be considered to improving the efficiency of a group key
generation.

4 Conclusions

Without employing strong security features, a group com-
munication will not fully accomplish its goal of enabling
communication between members who share common in-
terests. A group communication should have strong se-
curity features to protect members’ privacy and message
integrity. A Group Key (GK) is in the heart of the se-
curity features in a secure group communication. To
generate a GK takes a relatively long time for low per-
formance machines. However, it must be accomplished
for a secure communication no matter what machines
are used. Therefore, the group key management must
be developed to generate a GK in efficient and secure
ways. Mobile computers have been becoming popular,
and network clusters have been communicating with con-
ventional servers in recent years. Besides, group members
are widely distributed over the Internet and they can use
any kinds of machine as long as connecting to the In-
ternet. Therefore, a group key management must con-
sider member’s diversity and network environments be-
cause the characteristics of a distributed computing en-
vironment is heterogeneity, and most group members are
widely distributed over the Internet. Based on these as-
sumptions, I proposed and proved the efficiency of the
Queue-based Group Diffie-Hellman protocol with compar-



International Journal of Network Security, Vol.9, No.2, PP.135-142, Sept. 2009 142

ing to other protocols. The proposed protocol enhanced
a group key generation processes by using a Queue struc-
ture with filtering out low performance members based
on its computing power and network latency. Therefore,
my research contributes to the achieving of maximum ef-
ficiency in GKGP and improving group communication’s
usability.

References

[1] M. Abramowitz, and I. A. Stegun, Handbook of
Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, 9th printing, New York: Dover,
p. 10, 1972.

[2] Y. Amir, G. Ateniese, D. Hasse, Y. Kim, C. N. Ro-
taru, T. Schlossnagle, J. Schultz, J. Stanton, and
G. Tsudik, “Secure group communication in asyn-
chronous networks with failures, Integration and ex-
periments,” IEEE International Conference on Dis-
tributed Computing Systems, pp. 330-343, 2000.

[3] Y. Amir, Y. Kim, C. N. Rotaru, J. Schultz, and J.
Stanton, “Secure group communication using robust
contributory key agreement,” IEEE Transactions on
Parallel and Distributed Systems, vol. 15, no. 4, pp.
468-480, Apr. 2004.

[4] Y. Amir, Y. Kim, and C. N. Rotaru, “On the per-
formance of group key agreement protocols,” ACM
Transactions on Information and System Security,
vol. 7, no. 3, pp. 457-488, 2004.

[5] E. Bresson, O. Chevassut, D. Pointcheval, amd J.
Quisquater, “Provably authenticated group Diffie-
Hellman key exchange,” Proceedings of the 8th ACM
Conference on Computer and Communications Se-
curity, pp. 255-264, Philadelphia, PA, 2001.

[6] M. Burmester, and Y. Desmedt, “A secure and effi-
cient conference key distribution system,” Advances
in Cryptology - Eurocrypt’94, pp. 275-286, 1994.

[7] W. Diffie, and M. E. Hellman, “New directions in
cryptography,” IEEE Transactions on Information
Theory, IT-vol. 22, no. 6, pp. 644-654. Nov. 1976.

[8] M. Fratto, “In PKI Ww Trust?,” Network Comput-
ing, vol.12, no. 18, pp. 69-77, Sep., 2001.

[9] S. Hong, and N. L. Benitez, “Media access con-
trol (MAC) address-based group key authentication
scheme,” The 9th World Multiconference on Sys-
temics, Cybernetics and Informatics, pp. 160-164,
Orlando, Florida, USA, July 2005.

[10] S. Hong, and N. L. Benitez, “Enhanced Group
Key Computation Protocol,” The 2006 International
Conference on Security and Management (SAM’06),
Las Vegas, USA, June 26-29, 2006.

[11] Y. Kim, A. Perrig, and G. Tsudik, “Simple and
fault-tolerant key agreement for dynamic collabora-
tive groups,” The 7th ACM Conference on Computer
and Communications Security, pp. 235-244, ACM
Press, Athens, Greece, Nov. 2000.

[12] Y. Kim, A. Perrig, and G. Tsudik, “Communication-
efficient group key agreement,” 17th International

Information Security Conference (IFIP SEC’01), pp.
229-244, June 2001.

[13] Y. Kim, Group Key Agreement: Theory and Prac-
tice, Ph.D. thesis, May 2002.

[14] Y. Kim, A. Perrig, and G. Tsudik, “Tree-based group
key agreement,” ACM Transactions on Information
and System Security, pp. 60-96, 2004.

[15] A. K. Lenstra, and E. R. Verheul. “Select-
ing cryptographic key sizes,” 99 Pricewa-
terhouseCoopers CCE newsletter, Nov. 1999.
http://www.cryptosavvy.com/

[16] L. E. Moser, Y. Amir, P. M. M. Smith, and D. A.
Agarwal, “Extended virtual synchrony,” Proceedings
of the IEEE 14th International Conference on Dis-
tributed Computing Systems, pp. 56-65, IEEE Com-
puter Society Press, Los Alamitos, CA, 1994.

[17] M. Steiner, G. Tsudik and M. Waidner, “Key agree-
ment in dnamic peer groups,” IEEE Transactions on
Parallel and Distributed Systems, vol. 11, no. 8, pp.
769-780, Aug. 2000.

[18] D. Wallner, E. Harder, and R. Agee, Key Man-
agement for Multicast: Issues and Architecture,
Internet-Draft draft-wallner-keyarch-00.txt, June
1997.

[19] C. Wong, M. Gouda, and S. Lam, “Secure group
communications using key graphs,” IEEE/ACM
Transactions on Networking, vol. 8, no. 1, pp. 16-30,
Feb. 2000.

Sunghyuck Hong received his B.A. degree from Myongji
University, Korea in 1995. After graduation, he worked
at Hyosung Inc. in Seoul, Korea from 1995 to 1999 as
a computer programmer and ERP consultant. He has a
Ph.D. degree from Texas Tech University in August, 2007
major in Computer Science. Currently, he works at In-
ternational Affairs in Texas Tech University as a senior
program/analyst, and he is a member of editorial board
in the Journal of Korean Society for Internet Informa-
tion (KSII). His current research interests include secure
authentication, secure group communication, biometric
authentication, and key management protocol. To God,
Gloria In Excelsis Deo.


