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Abstract

In this paper, an energy-efficient hybrid key management
(EHKM) protocol is proposed in which the heterogeneous
security requirements of a wireless sensor network are con-
sidered to provide differing levels of security with mini-
mum communication overhead. Additionally, it allows the
dynamic creation of high security subnetworks within the
wireless sensor network and provides subnetworks with a
mechanism for dynamically creating a secure key using a
novel and dynamic group key management protocol. The
proposed energy-efficient protocol utilizes a combination
of pre-deployed group keys and initial trustworthiness of
nodes to create a level of trust between neighbors in the
network. This trust is later used to allow secure com-
munication between neighbors when creating a dynamic,
high security subnetwork within the sensor network. This
static and dynamic key management combination creates
a hybrid key management protocol. Analysis of the pro-
posed protocol with network and cluster sizes and dif-
ferent node failures is performed using the Ns2 network
simulator. Additionally, the protocol is compared to other
protocols, for example LEAP and a recent dynamic group
key management protocol. Additionally, the security of
the proposed protocol is analyzed against various attacks
by an adversary. Also the overhead due to communica-
tion and computation is investigated.
Keywords: Key management, sensor network security,
wireless security

1 Introduction

Wireless sensor networks (WSN’s) have recently come
into the forefront of research due to their possible uses
in military and disaster relief cases. Additionally, the
medical and commercial fields have found potential uses
for sensor networks [1, 3]. A WSN is a highly constrained
type of network, comprised of sensor nodes with limited
capabilities and larger gateway nodes, referred to as clus-

ter heads, with more capabilities. In a WSN, the tough-
est constraints include the limited available energy and
memory. Thus, lightweight, energy-efficient security pro-
tocols are necessary for these networks. The communi-
cation medium used for sensor networks is an additional
factor that must be considered when designing security
protocols. Sensor networks use a radio frequency channel
which is susceptible to eavesdropping. Additionally, indi-
vidual nodes in the sensor network may be compromised
by an adversary and the network must be able to operate
in the presence of such an attack.

Typically, there are two types of key management pro-
tocols available to a network designer. Keys of an either
symmetric or asymmetric nature may be used in a key
management protocol. Asymmetric cryptography is typ-
ically considered to be too computationally intensive for
use in sensor networks, so symmetric keys are tradition-
ally used. In general, a set of pre-deployed keys have to
be stored at each node in WSN in order to initialize se-
cure communication. Next, a dynamic key management
scheme is needed to create new and revoke old or compro-
mised keys. Rigorous work has been published on random
pre-deployment of keys [2, 5, 6, 8, 10, 19] where a limited
number of pair-wise or partial keys are randomly assigned
to nodes before deployment. In general, the number of
necessary pre-deployed keys or partial keys increases with
network size [2, 5, 6, 8, 10, 11]. In Matt et al. [1], it is
shown that as a network’s size increases, the number of
keys that must be deployed with the network increases
exponentially. A prior or explicit knowledge about de-
ployment as used in [5, 8] and [10] can only reduce the
number of required pre-deployed keys, but it still will in-
crease with network size. Other papers [11, 15, 18] reduce
the number of required pre-deployed keys without need for
assumption of a prior knowledge about deployment. For
example, [15] investigate the use of pre-deployed key rings
to minimize the number of keys that must be deployed
with a node in order for it to be likely that the node is in
communication range with another node with a matching
key. In [11], the polynomial pool and hypercube-based
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pre-distribution schemes can also reduce number of pre-
deployed keys. In contrast, the proposed scheme requires
only 3 keys to be initially stored by each node regardless of
the network size and deployment pattern. Consequently,
the scheme is a fully scalable solution which simplifies
pre-deployment preparations.

Also, the use of dynamic key management techniques
as a mechanism to deliver security in WSN’s was inves-
tigated in [4, 7, 12, 13, 20], and in case of in ad hoc
networks in [9]. Dynamic keys are preferred over pre-
deployed keys because they minimize the number of keys
that must be stored by nodes. Additionally, the key can
be changed frequently, decreasing the ability for adver-
saries to determine the network’s key. This secure and dy-
namic group key management (DGKM) protocol utilizes
a modified tree based group Diffie-Hellmann key manage-
ment scheme [7]. This protocol allows clusters in a sensor
network to dynamically create a key. The nodes in the
cluster create partial keys from the leaves of the group up
to the root. Nodes use the partial keys of their children
as inputs to the function αk mod p where p is a prime
number, k is the result of an xor’ing of two of the node’s
children’s partial keys and α is a primitive root of p. The
cluster head aggregates the partial keys of all the nodes
and creates a group key which is then broadcasted to the
group.

The majority of previous literature considers the needs
of security in a WSN to be homogenous in nature. In
practice, this may not be true as many nodes in a sensor
network may be in an idle state or transmitting informa-
tion of little importance most of the time. These nodes
do not need to operate at a high security level that con-
sumes large amounts of energy. This paper introduces a
novel security protocol for sensor networks that utilizes
the heterogeneous nature of the security requirements of
WSN’s to realize distinct security and energy levels within
the network. EHKM allows the majority of a network to
operate in a low security mode with static keys that con-
serves energy, while dynamically creating keys for high
security subnetworks. This dynamic key creation proto-
col uses a subtree energy average function to determine
the subtree or subtrees to be used to create the dynamic
partial keys. The function accepts the number of par-
tial keys the subnetwork wishes to create and then selects
a number of nodes to create partial keys that is equal
to or slightly greater than the number of desired partial
keys. This subtree energy average function conserves en-
ergy over the DGKM protocol since the number of nodes
in the subnetwork may be much greater than the number
of partial keys desired for the protocol.

Furthermore, to enable secure communication between
any pair of neighbor nodes a session key has to be estab-
lished. Typically, a shared key is used since low complex-
ity and energy requirements of the shared-key encryption
schemes. Such a pair-wise key can be either generated
from pre-deployed partial keys [2, 5], or found among the
pre-deployed keys [8, 10, 11, 19], or established through
a third party who shares the pair-wise keys with each

of the nodes in the pair [2, 5, 8, 10, 11, 19]. In con-
trast, the proposed scheme dynamically creates pair-wise
keys between neighbor nodes during short initial post-
deployment phase. The scheme reduced energy consump-
tion by employing simple and basic cryptography mech-
anisms. When a high security subnetwork is created, the
stronger key is setup at the expense of higher energy con-
sumption. However, the overall energy consumption is
reduced when compared with homogenous schemes which
always have to use the high security mechanisms. In con-
trast, the proposed scheme employs the energy-expensive
high security methods only when needed.

The proposed protocol utilizes a hybrid pre-
deployed/dynamic key management protocol to realize
two distinct security and energy levels within the net-
work. All nodes are pre-deployed with a secret key that
is common to all nodes in the network. The nodes use
this key for broadcast messages that have low security
requirements. Additionally, upon deployment, nodes use
a second common pre-deployed key to create an individ-
ual key and trust between neighbors. Since it is assumed
that nodes are safe from capture and compromise for a
period of time after deployment [20], nodes able to com-
municate with the second secret key are assumed to be a
legitimate part of the network and a trust and key may
be established with them.

Upon creation of a subnetwork with high security
needs, it is assumed there are several cluster heads within
communication range of each other. The cluster heads
compute the average energy per node in their respective
cluster and broadcast the value to the other cluster heads.
The cluster head with the highest average energy left in
its nodes is elected the head cluster head (HCH). Fur-
ther cluster heads are also selected until enough the num-
ber of nodes in all the chosen clusters is greater than the
number of partial keys desired for secure communication.
Once enough nodes are selected, nodes in the chosen clus-
ters participate in the DGKM protocol. Nodes use the
individual keys established upon initialization of the net-
work to communicate this information, keeping it sepa-
rate from the common secret key of the entire network.
Once a subnetwork key is created, it is utilized for the
lifetime of the subnetwork until the subnetwork is dis-
banded and the nodes return to the lower security level.
As a result, the protocol relaxes the need for homogenous
security. We observe that often a sensed event will span
over more than one of the clusters present in a typical
sensor network. Thus, all the nodes in each cluster that
is affected must come out of idle state and several keys
must be used to communicate the event back to the base
station. This observation was addressed recently in [16]
from a routing perspective and our protocol further im-
proves security and energy efficiency.

In this paper, EHKM is analyzed against other proto-
cols in literature in terms of complexity of the key man-
agement algorithm and communication and storage over-
head. Simulations are performed in Ns2, comparing the
energy consumed in the simulation environment to other
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Figure 1: Example of sensor subnetwork architecture

protocols in a fully functioning network as well as in a
network with node failures. It is found that the protocol
consumes less energy, uses less messages and is more scal-
able than LEAP [20] and the Dynamic Key Management
Protocol [13] and provides a similar level of security.

The main contributions of this paper include: using the
subtree average function to decide which nodes to use to
generate the partial keys in an energy-efficient manner;
and combination of a static and dynamic key manage-
ment protocol to create a hybrid protocol. The rest of
this paper is laid out as follows. Section 2 discusses the
sensor network structure this protocol will be utilized in
and Section 3 then covers the operations of the protocol.
Section 4 shows the energy and complexity analysis of the
protocol and Section 5 shows simulation results. Section
6 concludes the paper and covers further works.

2 Sensor Network Architecture

WSNs are often deployed remotely and network designers
have no control over the location or placement of the sen-
sors in either a rough terrain or relation to other sensors
around them. This paper considers such a random node
deployment over a rectangular topography of varying size.
Once the nodes have been deployed, it is assumed that
there is a period of time Tmin where the nodes are not
being compromised by an enemy and can safely exchange
keys [20]. Before the time Tmin, the nodes are respon-
sible for broadcasting their individual key to their 1-hop
neighbors. These individual keys can be created by gen-
erating a random number. When a sensing event occurs
within the network, it is assumed that the nodes around
the event form into a subnetwork with a hierarchy. The
energy-efficient self-organizing protocol (SOS) discussed
in [16] is employed in this application to create a subnet-
work around an event. The subnetwork includes a set of
nodes that are designated as Cluster Head’s (CH’s) that
are above the other nodes in the subnetwork in the hier-
archy.

The SOS protocol assumes the network is monitoring
localized, random events. Nodes sensing an event will
asses their proximity to the event epicenter by measuring
the strength of the sensed parameter. If the measured
signal strength is greater than a given threshold, then

such nodes will group themselves into a subnetwork. Once
the subnetwork has been established, the nodes exchange
their available energy. Next, a number of cluster heads is
chosen based on energy remaining, proximity to the event,
and size of the subnetwork. Then, nodes join the closest
cluster head. In case of nodes being more than 1 hop
away from CH, the sensors can form a spanning tree with
the CH as a root. Figure 1 shows an example clustering
of such a network.

Nodes are expected to know the number of nodes
within its subtree and within the same level as itself. Let
denote nij be the number of nodes that are part of subtree
i on level j. For example, in Figure 1, n1j = 2 and n2j = 4
for all j = 0, 1, 2, for every subtree, there are 2 nodes on
the first level and 4 nodes on the second level. However,
a particular network topology cannot be assumed before-
hand since a particular node may have different number of
children nodes. Additionally, cluster heads are expected
to know the remaining energy of all the nodes that are
members of their cluster. These assumptions will all be
fulfilled since the SOS protocol [16] is used.

3 Protocol Details

This protocol uses two separate key management schemes;
one for group-wide and individual keys and another for
subnetwork key management. The group-wide key is used
for non-critical broadcast messages between nodes. The
individual keys are used for secure communication be-
tween nodes creating a subnetwork and setting up a sub-
network key. The second key management scheme is cre-
ating and distributing the keys for the dynamically cre-
ated subnetworks. Securely distributing the keys for the
subnetworks created by events within the sensor network
is a non-trivial problem since the subnetworks may con-
tain any arbitrary set of neighboring nodes. These nodes
all must have a mechanism to securely communicate with
each other to distribute the subnetwork key to all the
subnetwork members.

3.1 Group-Wide and Individual Keys

The protocol begins with deployment of the network. Be-
fore the network is deployed, three values must be stored
in each node. Two of these values will be common to each
node in the network. The first, K1, is a group-wide key
that will be used for group-wide communication between
nodes not involved in a subnetwork. The second value,
K2, will be used for exchanging pair-wise keys between
neighboring nodes and will be erased after time Tmin,
similar to the LEAP protocol [20]. The third value, K3,
is unique to each node and is stored on both the node
and the base station. This key can be used for private
messages between a node and the base station.

After deployment, nodes begin by transmitting a
HELLO message before time Tmin has elapsed. The
HELLO message will be structured in the following way:
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Ni → Si : NID, EK2(nonce),MAC(K2, NID‖nonce)
where Si is a set of all one-hop neighbours, Ni indicates
the transmitting node, NID is its address, EK2(nonce) is
the nonce encoded using key K2; and MAC(.) is the mes-
sage authentication code. The random nonce included in
the HELLO message serves as the nodes secret key for any
messages it sends during the network’s lifetime. A node
which receives the HELLO message decrypts the nonce
and verifies the message using the MAC. After a success-
ful verification, the node stores the ID, nonce pair. Thus,
it can decrypt any non-broadcast message sent by the
neighbor by using the nonce corresponding to the source’s
ID.

Once Tmin has elapsed, the nodes are responsible for
deleting K2 from their memories such that it cannot be
retrieved by enemy once a node is captured. Afterwards,
subnetworks can be dynamically created in response to
events. Next, the corresponding subnetwork key manage-
ment protocol and algorithm are presented.

3.2 Subnetwork Key Management Proto-
col

The subnetwork section of the key management protocol
begins with the creation of a subnetwork within the WSN.
The cluster heads initiate a procedure by finding the av-
erage energy remaining for all the nodes in their cluster
E(i) =

∑
j Eij

ni
, where E(i) is the average energy per node

in cluster i which CHi is responsible for calculating, Eij is
the energy left in the jth node of the ith cluster and ni is
the number of nodes in cluster i. The cluster heads then
send this value and the number of nodes in their clusters
to the other cluster heads. Then the subnetwork chooses
a cluster head to be the Head Cluster Head (HCH). A
cluster head with the highest average remaining energy is
selected as HCH:

HCH = CH (max {E(i)})
The network has a predetermined number of partial

keys that are sufficient to create a subnetwork key. The
minimum number of partial keys, m, can be any value
such that m partial keys of length l will create a subnet-
work key of sufficient length (m ∗ l) to be secure for the
length of time the subnetwork is expected to be active.
This number has been suggested to be equal to 15 in past
literature [13]. Nodes in the HCH cluster form an initial
pool of partial keys used to create the subnetwork key.
Next, the other cluster heads check to see if the number
of nodes in the HCHs cluster, nHCH , is sufficient to gener-
ate the subnetwork key (that is nHCH ≥ m). Otherwise,
nodes of the CH with the second highest average remain-
ing energy are added to the pool. This method continues
until the number of nodes in the pooled clusters is greater
than m.

Once a sufficient number of cluster heads have been
chosen to generate the necessary m partial keys, the clus-
ter heads begin the key generation algorithm by broad-
casting a start algorithm message to their nodes with the

cluster ID and the depth into the cluster that the message
should go before nodes begin creating partial keys. The
depth field in the messages allows the algorithm to restrict
partial key creation to the upper levels of the hierarchy
to conserve energy. For all the clusters chosen other than
the last one, the depth field is set to -1. This means that
all nodes in the cluster must generate a partial key. For
the last cluster that was chosen, the depth field is set to
(m · sum(nother clusters)). That is, the number of partial
keys desired, minus the number of nodes in all the other
selected clusters. As a result, exactly the required m par-
tial keys are used during the subnetwork key generation,
thus conserving energy during calculations.

When a node receives a start algorithm message from
its cluster head, it checks the depth field to see if it is
equal to -1. If it equals -1, then the node rebroadcasts
the message to all its children nodes. If the node is a
leaf node, then it creates its partial key and sends it to
HCH through its parent. In case the depth field is not
equal to -1, the node subtracts the number of nodes in its
level and cluster. Consequently, it will determine if more
nodes are required to participate in the key generation.
If the depth field is still greater than 0, then the node
rebroadcasts the message. Otherwise, the node acts as a
leaf node and randomly creates its partial key and sends
it to HCH through its parent.

Once the HCH receives the required m partial keys
from the subnetwork, the HCH constructs the subnet-
work key and broadcasts it to the subnetwork. This sub-
network key is encrypted with the individual keys as it is
transmitted throughout the subnetwork.

3.3 Dynamic Cluster Key Management
Algorithm

Once the network determines the clusters that will be cre-
ating the partial keys, a modified version of the dynamic
group key management protocol proposed in [13] is used
to generate the subnetwork keys. In this protocol, the
leaves begin the protocol by randomly generating a par-
tial key. This key is then passed to the parent of the
leaf node. Once the parent receives the partial keys from
two of its children, it is able to create its own partial key
by combining the two keys using a function f(partial key
child 1, partial key child 2). This function is represented
as

f(k1, k2) = ak1⊕k2 mod p,

where p is a prime number, α is a primitive root of p,
and k1 and k2 are the children’s partial keys (k1, k2 < p).
The parent then passes its partial key to its parent and
passes the partial keys of all its children to the cluster
head. The cluster head collects all the partial keys and
combines them to form the cluster key. It then broadcasts
the key to the cluster.

By contrast, the proposed protocol introduces several
modifications in order to accommodate different valid
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Figure 2: Example subnetwork

node topologies. For instance, the proposed protocol no
longer assumes that all nodes are either leaves or have
more than one child. If a node only has one child, it waits
to receive its child’s partial key then generates a random
number as the second partial key for the algorithm. Ad-
ditionally, instead of generating a key for only a cluster,
the algorithm is expanded to generate a key for an entire
subnetwork.

3.4 Example

This section gives an example of how the subnetwork
would choose the clusters to participate in the partial
key creation algorithm. In this example, a network has
been deployed and a subnetwork with multiple clusters
has been created. Consider a subnetwork, show in Fig-
ure 2, which contains three clusters: the leftmost “Clus-
ter 1”, the middle “Cluster 2” and the rightmost “Clus-
ter 3”. The numbers of nodes in each cluster is as follows:
n1 = 10, n2 = 8, n3 = 7.

It is assumed that the number of minimum partial
keys, m, is equal to 12 in this example. The protocol
will progress in the following way:

1) Cluster heads 10, 18, 25 find the total energy left
in their respective clusters and divide by the num-
ber of nodes in their cluster. Let’s assume that
the average available energy values are computed as:
E(1) = 0.9[J ], E(2) = 0.95[J ], E(3) = 0.92[J ],
where E(1), E(2) and E(3) are the average energy
levels at Clusters 1, 2 and 3 respectively.

2) The cluster heads transmit the E(i) and ni values
to the other two cluster heads. Once all the cluster
heads have received these messages, the Cluster 2’s
cluster head {18} is selected as the HCH since it has
the most energy left per node.

3) The clusters subtract n2 from the value m to find that
Cluster 2 does not have enough nodes to produce the
needed partial keys. It is found that m−n2 = 4 and
that another cluster will need to provide 4 partial
keys. The next highest average available energy value

is found to be E(3), thus Cluster 3’s CH {25} is added
to the list of key generation pool of cluster heads.

4) The total number of node in both chosen cluster is
greater than m, (n2 + n3 ≥ m), thus no further clus-
ter head needs to be chosen. Node 18 broadcasts a
start algorithm message to its cluster with the clus-
ter ID of 2 and the depth field set to -1. Node 25
broadcasts a start algorithm message to its cluster
with a cluster ID of 3 and the depth field set to 4,
(m− n2).

5) The first level of Cluster 2 and Cluster 3 receive their
respective messages. The first level of Cluster 2 {14,
15, 16} simply rebroadcast the message they receive
since the depth field is set to -1. The nodes on the
first level of Cluster 3 {20, 22} subtract the value n1,3

(number of nodes on the first level of Cluster 3) from
the depth field and rebroadcast the message with the
new depth field. In this case, the new depth field will
be equal to 2 (4− 2).

6) The second level of Clusters 2 and 3 receive the
start algorithm messages. In the case of Cluster 2,
all these nodes are leaf nodes and they begin the par-
tial key algorithm by creating their partial keys and
transmitting them to their parents. In the case of
Cluster 3, not all the nodes are leaf nodes, so the
second level subtracts the value n2, 3 from the depth
field. This new value is equal to 2− 3 = −1. Hence,
no retransmission of the start algorithm message is
necessary. All the nodes on Level 2 of Cluster 3 be-
gin the partial key algorithm by creating their own
partial keys and transmitting them up the subtree.

7) As node 25 receives partial keys from its cluster, it
passes them onto the HCH, Node 18.

8) Finally, the HCH (Node 18) will receive all the par-
tial keys that have been generated by the algorithm.
In this example, Node 18 would receive a total of 13
partial keys (assuming no partial key packets were
dropped). This is greater than m, but less than the
number of partial keys that would be received if the
entire subnetwork were involved in the partial key
creation algorithm. From these 13 partial keys, the
HCH would create the subnetwork key and broad-
cast it to the members of the subnetwork using the
individual, secret keys set up at the initialization of
the network.

The following section contains a C-like pseudo-code of
the proposed protocol.

3.5 Pseudo-code

I. Initialization of network
1. For each node in network

Broadcast Hello: {ID || EK2(ID || nonce)}
2. If hear a Hello
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Verify ID, store ID / nonce pair
II. After creation of a subnetwork

1. Set cluster_heads = {Each cluster head}
2. For each cluster head

set avg_energy(cluster) =
average(energy_in_nodes_in_cluster)

set ncluster = number of nodes in cluster
3. Set HCH = {Cluster head:

max(avg_energy(cluster_heads)}
4. Set chosen_CH = {HCH}
5. cluster_heads = {cluster_heads} - {HCH}
6. Set m_temp = m - n_{HCH}
7. while m_temp >= 0

CH_temp = {Cluster head:
max(avg_energy(cluster_heads)}

chosen_CH = {chosen_CH} - {CH_temp}
m_temp = m_temp - |CH_temp|

8. Set n_chosen = 0
9. Set depth = -1

10. while |chosen_CH| > 1
CH_temp = first_element(chosen_CH)
CH_temp broadcasts start_algorithm

{Cluster_ID || depth}
n_chosen = n_chosen + |CH_temp|
chosen_CH = {chosen_CH} - {CH_temp}

11. depth = m - n_chosen
12. CH_temp = only_element(chosen_CH)
13. CH_temp broadcasts start_algorithm

{Cluster_ID || depth}
III. After hearing a start_algorithm message

1. If node is a leaf
Start_algorithm(.); return

2. Else
3. depth = received_depth - n_ij

(where n_ij is number of nodes in
cluster i on level j)

4. If depth <= 0
Start_algorithm(.); return

5. Else
6. Broadcast start_algorithm

{Cluster_ID || depth}

4 Performance Analysis

In this section, a performance analysis of EHKM is pre-
sented. This includes an analysis of the complexity of the
algorithm and the storage costs imposed upon memory.
Also, an analysis of the number of messages that are sent
is included. Finally, simulation results from Ns2 with a
variety of network configurations and a varying number
of node failures are analyzed.

4.1 Complexity Analysis

Table 1 presents the results of the complexity analysis
on the protocol and compares it to several existing key

management schemes. The message cost incurred and
complexity of the proposed algorithm are less than for
the LEAP and the dynamic key management since it is
typical to have the number of desired partial keys, m, be
much greater than number of all nodes in the network,
N , (n << N).

For the Table 1, the degree of the network is defined
as the average number of nodes that are within commu-
nication range of a given node. It is proportional to the
density of nodes in the network and may be a value from
10 to 20 for a reasonably dense network. The setup cost
of the protocols is measured in the number of messages
that must be sent by the network in order to initialize the
key management protocol. For EHKM, each node must
send one message to initialize the protocol. This leads to
N messages being sent by the network. The LEAP pro-
tocol has several rounds of key exchange between nodes
and their neighbors individually. This leads to a number
of message proportional to N as well as d.

The number of messages that need to be sent by EHKM
for the key management of the network is measured from
the time a subnetwork forms to the time a subnetwork
key is successfully distributed to the nodes of the sub-
network. First the NCH cluster heads must distribute
the average energy left in their clusters. This results in
NCH messages. Then the start algorithm message is dis-
tributed to m nodes who reply, both to their parent and
to their cluster head. As a result, 3m messages will be
sent. Finally, the subnetwork key is broadcasted to the
NC nodes of the subnetwork. The time complexity of this
stage is log(m) since the 3m messages dominates the NC
and NCH messages. The LEAP protocol requires sev-
eral rounds of messages within a localized area and then
two rounds of broadcasting. For the dynamic protocol,
there are three rounds of messages for every cluster in the
network, leading to 3N messages being sent.

The memory requirement of EHKM is measured in
terms of number of bytes used to store the keys of the
key management protocol. For the proposed protocol, a
node must keep all the individual keys of nodes within
communication range of it. This is measured by the den-
sity of the network, d. The number of bytes used to store
the individual keys is d ∗KL. The node must also store
the network-wide key and the key it shares with the base
station. Then each node must also store the subnetwork
key, which is of length k. The LEAP protocol stores 3
keys for each neighbor, an individual key, a group key
and a key chain with L values. All of these keys have
length KL.

In comparison, EHKM has a lower storage cost than
the LEAP protocol (d∗KL versus 3∗d∗KL) but will have
a comparable storage cost to the dynamic protocol for
current network sizes. For a network with the following
properties (d = 20, N = 1000,m = 20,KL = 10, k = 14)
both the proposed protocol and DGKM protocol require
214 bytes of memory for key storage.

Figure 3 illustrates the storage cost of the LEAP algo-
rithm and the proposed algorithm with varying degree of
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Table 1: The general description of the head-end
Setup Key Management Storage

Messages Complexity Messages Complexity
Leap N(1 + 5d) O(N) 2(d− 1)2/N + 2N O(d2) (3d + 2 + L)KL

Dynamic - - 3N O(log N) m log(N + k)
Proposed N O(N) 3m + NS + NCH O(log m) d ∗KL + k

d is average degree of the network, N is number of nodes in network, NS is number of nodes in a subnetwork
NS < N , m is number of desired partial keys, KL is individual key length, k is dynamic subnetwork key length, L
is length of key chain; and NCH is a number of cluster heads.

Figure 3: Comparison of storage costs

network. It was assumed that deployment area remains
constant while number of nodes increases, thus increas-
ing the density of the network. EHKM needs to store far
fewer keys than the LEAP protocol for any degree of net-
work as observed in Figure 3. As network size increases
or decreases for any given degree, the number of keys will
not change for both protocols. In general, the proposed
protocol will need to store fewer keys than LEAP.

Figure 4 shows a comparison of the number of mes-
sages needed to bootstrap a deployed network using either
the LEAP protocol or EHKM. This includes all the mes-
sages sent from the nodes deployment to the end of the
key management protocol initialization. The proposed
protocol scales better with network size than the LEAP
protocol. These results show that EHKM will initialize
faster and with less communication cost and storage cost
than the LEAP protocol. Comparison to the dynamic key
management protocol is shown in the next section with
simulation results.

4.2 Simulation Results

EHKM was simulated in Ns2 and compared to the dy-
namic key management protocol. The simulation results
are shown in the following subsections. For the simu-

Figure 4: Comparison of number of messages

Figure 5: 25 node topology
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Figure 6: 50 node topology

Figure 7: Orientation of network

lations, a 2-ray ground reflection model was used with
antennas 1m above the ground. A random distribution
of 25, 50 and 100 nodes was simulated on topography
of 1000m x 1000m, 2000m x 1000m and 2000m x 2000m
respectively, to keep node density at a constant 2.5x10-
5 nodes / m2. A subnetwork size of 25 nodes was used
and the subnetwork was split into three clusters whose
size was based on orientation of nodes in relation to as-
signed cluster heads. The number of partial keys desired
was set to 7 for this simulation and partial key size mes-
sages were set to 4 bytes (32 bits). This would result in
a 224-bit subnetwork key that can for example be used
in 3TDEA algorithm [17]. The routing protocol used was
the ad-hoc on-demand distance vector (AODV). The net-
works were simulated from network deployment until the
establishment of the subnetwork’s first key. Figures 4
and 5 illustrate an example of the topology for a 25 and
50 node simulation respectively.

4.2.1 One Subnetwork with 25 Nodes, Network
Size of 25 Nodes

The first simulation was run with a network size of 25
nodes. The subnetwork size was also set to 25 nodes.

Figure 8: Energy used per node

Thus, in this simulation, it was assumed that the sub-
network included the entire network. The cluster heads
for the network were nodes {15, 18, 24} for Clusters 1-3
respectively. Figure 7 shows the topology of this network.

After the nodes exchanged keys during the network ini-
tialization phase of the key management protocol, it was
found that Cluster 1 (top left) had the highest average
energy left. This is reasonable since the upper left area
of the network topology is fairly sparse and not many
HELLO messages were overheard in that area. Node 15
was designated the HCH and it was found that the clus-
ter had enough nodes to fulfill all the needed partial keys,
so no other clusters needed to be selected. Node 14 col-
lected the 7 partial keys and broadcasted the subnetwork
key to the entire subnetwork (network). For the DGKM
protocol, the CH was chosen to be in the middle of the
network (Node 19), and the entire network was used as a
cluster. The energy per node was recorded and is shown
in Figure 8.

It has been found the total energy used in the network
for the proposed protocol was 1.05J, while for the dy-
namic key management protocol a total energy of 4.20J
was used. Figure 8 depicts that for each node the EHKM
utilizes less energy than the dynamic key management
strategy. This is because only selected nodes in the sub-
network are responsible for generating a partial key and
transmitting it to the HCH. This allows other nodes (not
in the chosen clusters) to conserve energy. In this sce-
nario, nodes {7, 8, 10, 13, 14, 15, 22} were in the chosen
cluster and have higher energy consumption than the oth-
ers. Additionally, EHKM receives necessary partial keys
faster than the dynamic key management protocol since
it required fewer transmissions to complete the task. In
this simulation, it took 0.08s for Node 14 to receive the
7 partial keys. The dynamic key protocol took 0.63s to
gather the required partial keys.
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Figure 9: Energy consumption for 50 node network

4.2.2 One Subnetwork with 25 Nodes, Network
size = 50 nodes

The next simulation was run with a 50 node network and a
subnetwork of 25 nodes. The network was simulated from
deployment until the successful creation of the first cluster
keys. The event that is being monitored is assumed to be
in the middle of the network and the SOS protocol is
used to cluster the nodes and form cluster heads. For the
DGKM protocol, two clusters of 25 nodes were utilized.
The network energy consumption was then measured.

Figure 9 shows that EHKM requires less energy than
the dynamic clustering algorithm for every node since
only the nodes in the subnetwork are active for EHKM.
Additionally, only necessary number of nodes in the sub-
netwok generates and transmits the partial keys. For the
proposed EHKM protocol, the total energy consumption
is equal to 2.06J, while the original dynamic cluster key
management algorithm used 13.45J to create the cluster
keys. Also in this scenario the EHKM completes the key
generation quicker than the original protocol. The time
needed to gather the partial keys was equal to 0.16s for
the EHKM and 1.47s for the dynamic algorithm.

4.2.3 One Subnetwork with 25 Nodes Results
Summary

The simulation was also run for a 100 nodes network with
the analogous results. The summary of the results for all
three network sizes is shown in Figures 10, 11 and 12.

The proposed version of the dynamic group key man-
agement protocol is more scalable than the existing dy-
namic group key management protocol in terms of energy
consumed, delay and number of packets dropped. This is
because the number of transmission needed to create the
m desired partial keys is limited the minimum number of
nodes. The DGKM protocol requires all the nodes in a
cluster to generate a partial key even when the number

Figure 10: Energy utilized

Figure 11: Delays

of nodes in the group may be much greater than m. This
causes excess of partial keys to be sent to the cluster head
and increases the energy usage with the generation and
transmission of these partial keys.

The proposed protocol uses the subtree average energy
function, thus the number of partial keys generated and
sent to the subnetwork head is either equal to, or slightly
greater than m. Not all nodes in the subnetwork generate
and transmit partial keys. Additionally, also the nodes
higher in the hierarchy are chosen to generate the par-
tial keys to further minimize communication needed. In
contrast, the DGKM uses only leaf nodes to generate the
partial keys.

4.2.4 Multiple Events in One Network

In the previous sections, only one subnetwork was consid-
ered. In this section, a network is considered where multi-
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Figure 12: Dropped packets

ple events take place over a period of time. In the dynamic
group key management protocol, it is assumed that the
groups would rekey regularly, using the same amount of
energy that was consumed during the initial key establish-
ment phase. The period of time between re-establishing
keys is defined as T . In contrast, the EHKM protocol
performs rekeying only when a new event is sensed. As
a result, the EHKM will be more efficient than DGKM
when the events occur seldom than period T. The simu-
lation scenarios were varied in order to find out the max-
imum number of events that can occur per time period
T for which the proposed protocol to still more energy
efficient than the DGKM protocol. Several simulation
networks of varying sizes were established where events
periodically occurred within the network. The average
energy for establishing a subnetwork key for these events
was found. The results of these simulations can be found
in Figure 13.

First it can be noticed that the average energy con-
sumed to create the subnetwork key is less than the energy
consumption presented in Figure 10. There are two rea-
sons for this difference. First, the initial key establishment
phase of individual keys is not needed for a pre-existing
network. Additionally, many AODV routes are found in
the first key establishment phase and need not be found
again. Thus, more energy can be conserved since fewer
route discovery tasks are required.

In Figure 13, the line with circle markers represents
the average energy in Joules needed to create a key for
the subnetwork dynamically generated in response to the
event in the network. The line with x markers represents
the number of events that could occur in time period T
while EHKM continues to be more energy efficient than
the DGKM protocol.

The number of events that can occur in time period
T is above 6 for all tested network sizes. Additionally,
it can be expected that events within a network will be
both spatially and temporally related, for example cyclic

Figure 13: Energy and number of events per T

Figure 14: Energy cost of failed nodes

events. Thus, an event in a network will likely persist for
sometime and then either propagate or disappear for a
significant period of time. In this case, the ability to mon-
itor more than 5 events in time period T with a consistent
savings in energy is sufficient to conclude that EHKM will
conserve energy over the DGKM protocol in terms of key
creation and distribution over the lifetime of the network.

4.2.5 Node Failures

In this section EHKM is tested with random node failures
in the network. The network size is set to 50 nodes and
the number of nodes within the network that randomly
fail is varied. The energy consumed and time to complete
the protocols is measured.

Figures 14 and 15 illustrate the energy consumption
and key setup time with varying number of failed nodes.
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Figure 15: Delay with failed nodes

When compared with DGKM, the energy consumption
for the proposed protocol increases slower with number
of failed nodes since not every node is involved in the key
management process. Therefore, some node failure will
not affect the performance of the EHKM protocol at all
and the network will continue to function normally. Addi-
tionally, fewer modifications to the routing table need to
be made when a node failure does affect the routes, since
the close proximity of active nodes reduces the damage to
the nearest neighbors. Furthermore, due to the smaller
numbers of nodes participating in EHKM key generation,
there is a smaller chance that the failed node participates
in many routes and case a major disruption.

5 Discussion of Security

The following section discusses some salient aspects of
the security of EHKM in relation to the existing LEAP
and DGKM algorithms. The security of a network can
be measured in two ways. Assuming a secure encryption
algorithm is paired with the key management algorithm,
the main measurement of the security of a network will be
the size of the network key. All other aspects of a network
being the same, a network with a longer key size will
remain secure for a longer duration of time interval than
that with a smaller key size. The second measurement of
the security of a key management scheme is the variety of
attacks and their intensity to which the protocol is able
to defend against and those that it is vulnerable to. This
section attempts to discuss some of these attacks and the
defenses the proposed protocol implements against them.

5.1 Network-Wide and Individual Keys

This section of the paper describes the security of the
static aspect of the proposed protocol. It includes the

network-wide key which is used for broadcast. And the
nodes’ individual keys used for localized communication.

When a sensor node is compromised it is assumed that
the adversary gains knowledge of all the keying materi-
als present in that sensor node. For EHKM this would
include the broadcast key as well as the individual keys
of the neighboring nodes and the unique key shared with
the base station. The static aspect of this key manage-
ment protocol limits the affected area of a compromised
node to a very small portion of the network. A compro-
mised node only gives the adversary the keys of nodes
immediately neighboring the compromised node and the
group key. In the case that this compromise goes unde-
tected, only broadcast messages and local traffic will be
compromised. For that reason, it is assumed that broad-
cast messages from the base station do not need to be
confidential.

In the case that a compromise of a node is detected,
an efficient method of revoking the node from the net-
work and changing the group and individual keys of the
neighboring nodes is needed.

5.1.1 Node Revocation

Changes in the group key may either be initiated by the
base station either periodically or after notification that
a node has been compromised. In either case, it is im-
perative that the group key change messages from the
base station be authenticated to prevent forgery, replay
and impersonation attacks. In this paper, we use the
µTESLA broadcast authentication protocol proposed in
[14]. In the µTESLA protocol, the controller creates a
key chain and preloads the last value of the key chain
in the nodes before deployment. The controller periodi-
cally releases the keys in its key chain in the reverse order
they were created in. The period between key disclosures
is called a µTESLA interval period. The base station
can then broadcast messages encrypted or signed with
the next key to be released. Nodes receiving a µTESLA
packet buffer the packets until the next key is disclosed.
This key can be authenticated through the next µTESLA
key to be released and the message can be authenticated
by the current key.

Fore this protocol let node n be a recently compromised
node with neighbor set N = {m1, m2, ...mi} where m1

through mi are nodes that are neighbor to n. Node n
is assumed to have the current group key as well as the
individual keys of all the nodes in N . Once the base
station has been notified of node n’s compromise it sends
out a broadcast message, X, to revoke node n from the
network.

X : Controller → ∗ : n, fk′g(0),MAC(ki+1, n||fk′g(0))

In message X, k′g is the new group key and fk′g(0)
is a pseudo-random function based on k′g that all nodes
possess. The value ki+1 is the next µTESLA key to be
released. This message does not release the new group
key, but provides the network with a method of revoking
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a node via messages that can be efficiently authenticated.
The value of fk′g(0) allows nodes to verify the key k′g that
they will receive in a future packet. The MAC attached to
the message allows nodes to verify that this message came
from the base station after the base station releases the
key ki+1 to the network. Once the node has verified the
message X as being from the base station, it stores the
value fk′g(0) until it receives the new group key. All nodes
that received a message X will immediately broadcast it
to their neighboring nodes, flooding the network.

5.1.2 Secure Network Key Distribution

Once the base station is confident that all nodes have re-
ceived the node revocation message it broadcasts a new
group key message. The new group key, k′g is encrypted
using each node’s individual key and broadcast to its
neighbors. The neighbors verify the authenticity of the
new group key using fk′g(0) then encrypt it using their
individual key and broadcast it to their neighbors. This
process continues through the network, except for nodes
in the set N . Since node n has the individual keys for
these nodes, these nodes do not pass the packet on imme-
diately.

Nodes in the set of N first create a new random key
to be their new individual key. They then wait a period
of time, Tw, such that it is likely that a neighboring node
that is also in set N has received the new group key. Tw

could be set to be slightly greater than the average prop-
agation delay between two arbitrary nodes in the network
to allow the message to travel from a neighbor of the orig-
inating node to another node in N . Once this time has
elapsed, the node broadcasts its new individual key en-
crypted using the new group key. Through this protocol
the compromised node n is prevented from learning the
new group key or the new individual keys of its neigh-
boring nodes. Additionally, the base station can change
the group key periodically by broadcasting the message
X in the previous section without a node identifier. In
this case, all nodes will get the new group key. Nodes are
also free to change their individual keys at any time by
encrypting their new individual key with the group key
and sending the new individual key to its neighbors. If a
node receives a node revocation message and has changed
its individual key since the last group update, it must up-
date its individual key using the new group key as soon
as the new key has been authenticated.

5.2 Dynamic Key Management

The integrity of the dynamic key management aspect of
EHKM depends on the security of the static aspect of
the protocol since the partial keys and subnetwork keys
are both encrypted using the individual keys of the nodes
while the subnetwork key is being created. The subnet-
work keys will be secure as long as the guidelines for main-
taining the integrity of the individual keys are followed.
Additionally, since the subnetwork key formation is local-

ized, compromised nodes outside of radio communication
range of the subnetwork will not be able to eavesdrop on
the partial keys or the subnetwork key. In fact, these
compromised nodes will not even be aware a subnetwork
is being formed.

Since nodes only participate in the dynamic key man-
agement aspect of this protocol if they are actively in-
volved in a subnetwork, a DOS attack is difficult to
achieve in this network structure. Nodes can pretend to
be sensing an event and attempt to create a subnetwork,
but only other nodes that are sensing the attack will be
become a part of the subnetwork. Nodes will also only re-
ply to the start algorithm messages during the creation
of a subnetwork key so the subnetwork is safe from DOS
attacks during that stage of the protocol.

6 Conclusions

In this paper a key management protocol was proposed
which combined a static and dynamic key management
approach to create a hybrid, energy-efficient, scalable key
management scheme. The protocol utilizes the ability to
group nodes into active subnetworks and passive groups
and provide differing levels of security to the different
groups. The active subnetworks utilize a dynamic key
management approach while the passive or inactive nodes
rely on static key management techniques. The use of dy-
namic key management protocols for only the active por-
tions of the network decreases the amount of energy used
and provides a more scalable approach to key manage-
ment. Additionally a protocol for revoking a node from
the network and for updating the network key and node’s
individual keys was proposed.

The scheme was analyzed for complexity and simulated
in Ns2. It was compared to two schemes proposed in
previous literature and shown to be more energy efficient
during key generation and incurs lower delay and fewer
packet losses. The protocol was shown to be more scalable
than other protocols as network sizes get larger and nodes
begin to fail.
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