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Abstract

Let IFq be a finite field of characteristic two and let φ be
the Frobenius endomorphism of an elliptic curve. To find
or improve efficient algorithms for scalar multiplication
sP of point P in the elliptic curve cryptography, it is al-
ways an important subject. If IFq = IF2, Solinas [5] has
developed an algorithm for computing the φ-NAF. In this
note, we extend Solinas’ φ-NAF algorithm to IFq, where
q is a power of two, and give another efficient algorithms
for φ-NAF, thereby show that the length of φ-NAF is at
most two bits longer than the length of φ-expansion.
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1 Introduction

In recent years, elliptic curves over finite fields IFq play
more important role in public key cryptography. The de-
sign of the elliptic curve cryptosystems (ECC) was pro-
posed by Koblitz [1, 2]. The performance of an ECC
depends on the efficient computation of scalar multipli-
cations: Given an elliptic curve point P and an integer
s, compute sP . It is convenient to express an integer
s in a binary form s =

∑k

i=0 bi2
i, bi ∈ {0, 1}. More-

over, it can be improved to so-called the Non-Adjacent
Form. A signed binary form s =

∑
i≥0 bi2

2 is called a
Non-Adjacent Form (in short, NAF), if the coefficients
bi ∈ {0,±1} and bibi+1 = 0 for all i ≥ 0 [3]. Instead of the
binary form we may use the expansion with the Frobenius
endomorphism φ as basis

s =

k∑

i=0

biφ
i

with integer coefficients bi so that | bi |≤ q

2 for ECC.
We consider nonsingular elliptic curves over finite fields

IF2m of characteristic 2. Müller has proved the existence
of φ-expansions of integers and determined their lengths.
If q = 4, 8, 16, the upper bounds of the length of φ-
expansions can be even improved. Solinas has developed

an algorithm for computing φ−NAF so that the average
density of a φ-NAF is 1/3. In this note, we extend Soli-
nas’ φ-NAF algorithm to IFq, where q is a power of two.
For elliptic curves E : y2 +xy = x3 +ax+1 with a = 0, 1,
we explore how to compute the φ-NAF of an integer from
its φ-expansion.

2 Frobenius Endomorphism φ

Let IFq be a finite field of characteristic two with q el-
ements. We consider nonsingular elliptic curves defined
over a finite field IFq for elliptic curve cryptosystem

E : y2 + xy = x3 + ax2 + b

with a, b ∈ IFq, b 6= 0. The symbol E(IFq) is denoted
as the additive abelian group of IFq-rational points on E
with identity ∞, where IFq is the algebraic closure of IFq.
This is the group on which the public-key protocols are
performed. The Frobenius endomorphism φ on E(IFq) is
given by

φ : E(IFq) −→ E(IFq), (x, y) 7→ (xq , yq)

for each (x, y) ∈ E(IFq). The Frobenius endomorphism φ
satisfies the equation

φ2 − cφ + q = 0. (1)

where c is the trace of φ so that | c |≤ 2
√

q is odd. This
means

φ2(P )− cφ(P ) + qP =∞.

for all points P ∈ E(IFq). On the other hand, the Frobe-
nius endomorphism φ is corresponding to the complex

number
c+
√

c2−4q

2 . The ring ZZ[φ] is an Euclidean domain,
also any element of ZZ[φ] satisfies a division algorithm.

Müller has showed that every nonzero integer can be
represented as an expansion with the Frobenius homo-
morphism φ as basis and determined its length.

Theorem 1. [4] Let s ∈ ZZ[φ].
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1) There are t ∈ ZZ[φ] and r ∈ ZZ such that

s = tφ + r and | r |≤ q

2
.

2) There exist integers rj ∈ {r ∈ ZZ | −d q

2e ≤ r ≤ d q

2e}
such that

s =

k∑

j=0

rjφ
j ,

where k ≤ d2 logq ‖ s ‖e + 3. This form is called a
φ-adic expansion of s with length k if rk 6= 0
and ri = 0 for all i > k.

Corollary 1. [4] Let s ∈ ZZ ⊆ ZZ[φ].

1) If q = 4 and

a. if c = ±1, then there exists a φ-adic expansion
for s with length k ≤ dlog2 | s |e+ 1.

b. if c = ±3, then there exists a φ-adic expansion
for s with length k ≤ dlog2 | s |e+ 4.

2) If q = 8 and

a. if c = ±1,±3, then there exists a φ-adic expan-
sion for s with length k ≤ d 23 log2 | s |e+ 1.

b. if c = ±5, then there exists a φ-adic expansion
for s with length k ≤ d 23 log2 | s |e+ 2.

3) If q = 16, then there exists a φ-adic expansion for s
with length k ≤ d 12 log2 | s |e+ 1.

3 φ-NAF

In this section, we examine the algorithms for φ-NAFs of
any nonzero integers.

Definition 1. Let s be an element of an Euclidean do-
main ZZ[φ]. A φ-adic expansion of s

∑

i≥0

miφ
i

is called a φ-adic nonadjacent form (in short, φ-

NAF) and denoted as φ-NAF(s), if

1) mi ∈ Gq2−1 for all i ≥ 0,

2) mi+1 ·mi = 0 for all i ≥ 0,

where Gq2−1 is denoted as the digit set {r ∈ ZZ | | r |≤
d q2−1

2 e} \ {r ∈ ZZ | | r |= bq, b ∈ IN}. Usually φ-NAF(s)
is denoted as the string (mk, · · · , m1, m0)φ.

Lemma 1. Let c0 + c1φ ∈ ZZ[φ], c0, c1 ∈ ZZ.

1) c0 + c1φ is divisible by φ if and only if c0 is divisible
by q.

2) c0 + c1φ ∈ ZZ[φ] is divisible by φ2 if and only if c0 ≡
qc1 mod q2.

Theorem 2. Every integer has at most one φ−NAF .

Proof. Suppose that there are two different φ-NAF for
an integer s, say φ − NAF(s) = (ak, · · · , a1, a0)φ =
(bl, · · · , b1, b0)φ. Let k ≤ l. If s is divisible by φ,
then a0 = b0 = 0. Otherwise, a0, b0 are not equal to
0. We suppose that a0 6= b0. Since a0 ≡ b0 mod q2

and | a0 − b0 |≤ 2d q2−1
2 e, it must be a0 = b0. Thus

(ak, · · · , a1)φ = (bl, · · · , b1)φ. By induction on k, then we
get ai = bi for all i ≤ k and bj = 0 for k < j ≤ l.

The above lemma quart trees the existence of φ-NAF
of any integer.

Theorem 3. Every element s ∈ ZZ can be represented as
a φ-NAF with the digit set Gq2−1.

We will recommend two methods to change an integer
into its φ-NAF.

Method 1. Assumed that s ∈ ZZ ⊂ ZZ[φ]. Let s0 = s, si =
si+1φ + ri, where ni, ni+1 ∈ ZZ and ri ∈ Gq2−1, for i ≥ 0.
Set si = ci0 + ci1φ with ci0, ci1 ∈ ZZ. If ci0 is not divisible
by q, then the remainder ri satisfies ci0−qci1 ≡ ri mod q2,
where ri is the absolute smallest residue of si mod q2;
otherwise, ri = 0. It is easy to show that the pair

(ci+1,0, ci+1,1) = (ci1 + c
ci0 − ri

q
,−ci0 − ri

q
) ∈ ZZ× ZZ

and there is an integer l so that (cl+1,0, cl+1,1) = (rl, 0).
Thus the string (rl, · · · , r2, r1, r0) is equal to the φ-NAF
of s.

Algorithm 1 Computation of φ-NAF depends on
Method 1
1: Input: integers r0, r1

2: Output: φ-NAF(r0 + r1φ)
3: Computation:
4: Set c0 ← r0, c1 ← r1

5: Set S ←<>
6: while c0 6= 0, or c1 6= 0 do

7: if c0 is not divisible by q then

8: set r← (c0 − qc1 mod q2)
9: set c0 ← c0 − r

10: else

11: set r← 0
12: end if

13: Prepend r to S
14: Set (c0, c1)← (c1 − c c0

q
,− c0

q
)

15: end while

16: Output S

Method 2. Let s0 = s and si = si+1φ + ri, where
si, si+1 ∈ ZZ[φ], ri ∈ Gq2−1, for i ≥ 0, and let the string
α0 = ε empty. Set si = ci0 + ci1φ, where ci0, ci1 ∈ ZZ

for i ≥ 0. If ci0 is not divisible by q, then the remain-
der ri satisfies ci0 − qci1 ≡ ri mod q2, and the string
αi+1 = 0ri‖αi. It is easy to show that the pair

(ci+1,0, ci+1,1) = (
ci1

c
+

c2 − q

c
d1, d1) ∈ ZZ× ZZ,
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where d1 = − c(ci0−r)+qci1

q2 ; otherwise, ri = 0, αi+1 =

0‖αi, and the pair

(ci+1,0, ci+1,1) = (ci1 + c
ci0

q
,−ci0

q
) ∈ ZZ× ZZ.

Thus the string (· · · , α2, α1, α0) is equal to the φ-NAF of
s.

Algorithm 2 Computation of φ-NAF depends on
Method 2
1: Input: integers r0, r1; string α
2: Output: φ-NAF(r0 + r1φ)
3: Computation:
4: Set c0 ← r0, c1 ← r1, α← ε “empty”
5: while c0 6= 0, or c1 6= 0 do

6: if c0 is not divisible by q then

7: set r ← (c0 − qc1 mod q2)
8: set c0 ← c0 − r

9: set (c0, c1) = ( c1

c
+ c2−q

c
· cc0+qc1

q2 ,− cc0+qc1

q2 )

10: set α← 0r‖α
11: else

12: set r ← 0
13: set (c0, c1)← (c1 + c c0

q
,− c0

q
)

14: set α← 0‖α
15: end if

16: end while

17: Output α

The above Methods (1) and (2) are both transformed
into φ-NAFs directly from integers. If the Frobenius φ
satisfies the equation φ2 ± φ + q = 0, then the φ-NAFs
can be transformed from φ-expansions. The following de-
scribes how to change the coefficients of φ-expansion to
the φ-NAF.

Theorem 4. If the trace c = ±1, then every φ-adic ex-
pansion of an integer can be transformed to the φ-NAF.

Proof. Let s = m0 + m1φ + m2φ
2 + m3φ

3 + · · · + mkφk

be a φ-adic expansion of an integer s, where mi ∈
{0,±1, · · · ,± q

2}. The coefficients mi can be changed
through the equation φ2 − φ + q = 0. We show the result
for q = 2, 4 and c = 1 (the case c = −1 can be treated
symmetrically). Assumed that m0 6= 0 and m1 6= 0. The
constant m0 is replaced with m0(−(q−1)+φ−φ2). There-
fore

s = −(q−1)m0 +(m1 +m0)φ+(m2−m0)φ
2 +m3φ

3 + · · ·

In the case q = 2. s = −m0+(m1+m0)φ+(m2−m0)φ
2+

m3φ
3 + · · · with mi ∈ {0,±1}. If m1 = −m0, then

s = −m0 + 0φ + (m2 −m0)φ
2 + m3φ

3 + · · · .

If m1 = m0, then take 2φ = (φ − φ2)φ, and thus

s = −m0 + 0φ + m2φ
2 + (m3 ∓ 1)φ3 + · · · .

The first three coefficients satisfy the definition of the
φ-NAF. We repeat this process until all coefficients be-
coming φ-NAF.
In the case q = 4. s = −3m0 + (m1 + m0)φ + (m2 −
m0)φ

2 + m3φ
3 + · · · with mi ∈ {0,±1,±2}. First, we

take −3m0 = a± 4 with | a |≤ 2, then

s = a ± 4 + (m1 + m0)φ + (m2 − m0)φ
2 + m3φ

3 + · · ·

= a ± (φ − φ
2) + (m1 + m0)φ + (m2 − m0)φ

2 + m3φ
3 + · · ·

= a + (m1 + m0 ± 1)φ + (m2 − m0 ∓ 1)φ2 + m3φ
3 + · · · .(2)

Consider the first two terms of Equation (2). If | m1 +
m0 ± 1 |= 4, then

s = a + (φ − φ2) + (m2 −m0 ∓ 1)φ2 + m3φ
3 + · · · .

If | a + 4(m1 + m0± 1) |> 7, then take (m1 + m0 ± 1)φ =
4φ−(4−m1−m0∓1)φ = (φ−φ2)φ−(4−m1−m0∓1)(φ2+
4); otherwise, take (m1+m0±1)φ = (m1+m0±1)(φ2+4).
Thus, the first three coefficients of Equation (2) is changed
the coefficients which satisfy the definition of the φ-NAF

s = a0 + 0φ + (m2 + e)φ2 + (m3 + f)φ3 + m4φ
4 · · · ,

with f ∈ {0,±1}.

Therefore, it is easy to verify the length of φ-NAF.

Corollary 2. Let s be an integer and c = ±1. Then the
length of the φ−NAF(s) is at most 2 bits longer than the
length of its φ-adic expansion.

Algorithm 3 Transformation from φ-adic expansion to
φ-NAF

1: Input: q, c, m0, m1, · · · , mk

2: Output: φ-NAF of m0, m1, · · · , mk, mk+1, mk+2

3: Begin
4: for (i ≥ 1; i ≤ k; i + +) do

5: if (| mi−1 |== q) then

6: mi−1 = 0,
7: mi = mi + c,
8: mi+1 = mi+1 − 1,
9: else

10: using the look-up table to get the values of a0, e, f
(Look-up table for q = 2 and q = 4 are shown in
Appendix)

11: mi−1 = a0,
12: mi = 0,
13: mi+1 = mi+1 + e,
14: mi+2 = mi+2 + f ,
15: end if

16: end for

4 Conclusion

In this paper, in analog to Solinas’ result, we propose two
efficient algorithms to computing φ-NAFs directly from
integers. An efficient algorithm from φ-adic expansions
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to φ-NAF for the Frobenius φ satisfying φ2 − cφ + q = 0
with | c |= 1 is presented. Unfortunately, this kind of
computing technology is not suitable to use the situation
| c |> 1.
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Appendix

Look-up table for q = 2
c mi−1 mi a0 e f
1 1 1 −1 0 −1
1 1 −1 −1 −1 0
1 −1 1 1 1 0
1 −1 −1 1 0 1
−1 1 1 −1 −1 0
−1 1 −1 −1 0 1
−1 −1 1 1 0 −1
−1 −1 −1 1 1 0

Look-up table for q = 4
c mi−1 mi a0 e f
1 1 1 5 1 0
1 1 −1 −3 −1 0
1 1 2 −7 −1 −1
1 1 −2 −7 −2 0
1 −1 −1 −5 −1 0
1 −1 1 3 1 0
1 −1 −2 7 1 1
1 −1 2 7 2 0
1 2 1 6 1 0
1 2 −1 −2 −1 0
1 2 2 −6 −1 −1
1 2 −2 −6 −2 0
1 −2 −1 −6 −1 0
1 −2 1 2 1 0
1 −2 −2 6 1 1
1 −2 2 6 2 0
−1 1 1 −3 −1 0
−1 1 −1 5 1 0
−1 1 2 −7 −2 0
−1 1 −2 −7 −1 1
−1 −1 1 −5 −1 0
−1 −1 −1 3 1 0
−1 −1 2 7 1 −1
−1 −1 −2 7 2 0
−1 2 1 −2 −1 0
−1 2 −1 6 1 0
−1 2 2 −6 −2 0
−1 2 −2 −6 −1 1
−1 −2 1 2 1 0

1 −2 −1 −6 −1 0
−1 −2 2 6 2 0
−1 −2 −2 6 1 −1
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