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Abstract

Let IF; be a finite field of characteristic two and let ¢ be
the Frobenius endomorphism of an elliptic curve. To find
or improve efficient algorithms for scalar multiplication
sP of point P in the elliptic curve cryptography, it is al-
ways an important subject. If IF, = IF5, Solinas [5] has
developed an algorithm for computing the ¢-NAF'. In this
note, we extend Solinas’ ¢-NAF algorithm to IFy, where
q is a power of two, and give another efficient algorithms
for -NAF, thereby show that the length of ¢-NAF is at
most two bits longer than the length of ¢-expansion.
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1 Introduction

In recent years, elliptic curves over finite fields IF, play
more important role in public key cryptography. The de-
sign of the elliptic curve cryptosystems (ECC) was pro-
posed by Koblitz [1, 2]. The performance of an ECC
depends on the efficient computation of scalar multipli-
cations: Given an elliptic curve point P and an integer
s, compute sP. It is convenient to express an integer
s in a binary form s = Zf:o b;2', b; € {0,1}. More-
over, it can be improved to so-called the Non-Adjacent
Form. A signed binary form s = ) .., ;22 is called a
Non-Adjacent Form (in short, NAF), if the coefficients
b; € {0,41} and b;b;11 = 0 for all ¢ > 0 [3]. Instead of the
binary form we may use the expansion with the Frobenius
endomorphism ¢ as basis

k
s=Y bi¢'
=0

with integer coefficients b; so that | b; |< £ for ECC.

We consider nonsingular elliptic curves over finite fields
IFom of characteristic 2. Miiller has proved the existence
of ¢-expansions of integers and determined their lengths.
If ¢ = 4,8,16, the upper bounds of the length of ¢-
expansions can be even improved. Solinas has developed

an algorithm for computing ¢ — N AF so that the average
density of a ¢-NAF is 1/3. In this note, we extend Soli-
nas’ ¢-NAF algorithm to IF,, where ¢ is a power of two.
For elliptic curves E : y? +xy = 23 +ax+1 with a = 0, 1,
we explore how to compute the ¢-NAF of an integer from
its ¢-expansion.

2 Frobenius Endomorphism ¢

Let IF, be a finite field of characteristic two with ¢ el-
ements. We consider nonsingular elliptic curves defined
over a finite field IF, for elliptic curve cryptosystem

E:y’4+azy=a>+az®+0b
with a,b € IFg, b # 0. The symbol E(IF,) is denoted
as the additive abelian group of IF;-rational points on F
with identity oo, where IF, is the algebraic closure of IF.
This is the group on which the public-key protocols are

performed. The Frobenius endomorphism ¢ on E(IF,) is
given by

¢ E(Fq) I E(Fq)a (x,y) = (xquq)

for each (z,y) € E(IFy). The Frobenius endomorphism ¢
satisfies the equation

¢ —cop+q=0. (1)

where c is the trace of ¢ so that | ¢ [< 2,/q is odd. This
means
¢*(P) — co(P) + qP = o,

for all points P € E(IFy). On the other hand, the Frobe-
nius endomorphism ¢ is corresponding to the complex

number V.2 V§L4q. The ring Z[¢)] is an Euclidean domain,
also any element of Z[¢] satisfies a division algorithm.
Miiller has showed that every nonzero integer can be
represented as an expansion with the Frobenius homo-
morphism ¢ as basis and determined its length.

Theorem 1. [4] Let s € Z[¢).
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1) There are t € Z[$] and r € Z such that

s=tp+rand |r|<

N [

2) There exist integers r; € {r € Z | —[%] <r < [%]}

such that i
s=> 10,
=0

where k < [2log, || s ||| + 3. This form is called a
¢-adic expansion of s with length k if ry # 0
and r; =0 for all i > k.

Corollary 1. [}] Let s € Z C Z|[¢).
1) If g =4 and

a. if c = £1, then there exists a ¢-adic expansion
for s with length k < [log, | s |] + 1.

b. if c = £3, then there exists a ¢-adic expansion
for s with length k < [logy | s |] + 4.

2) If g =8 and

a. if c=+1,13, then there exists a ¢-adic expan-
sion for s with length k < [2log, | s [] + 1.

b. if c = &5, then there exists a ¢-adic expansion
for s with length k < [2log, | s []+ 2.

3) If ¢ = 16, then there exists a ¢-adic expansion for s
with length k < [1log, | s |1+ 1.

3 ¢-NAF
In this section, we examine the algorithms for ¢-NAFs of

any nonzero integers.

Definition 1. Let s be an element of an Fuclidean do-
main Z[$]. A ¢-adic expansion of s

> mid!
i>0

is called a ¢-adic nonadjacent form (in short, ¢-
NAF) and denoted as ¢-NAF(s), if

1) mj € Gy for alli >0,
2) miy1-m; =0 for alli >0,

where G2_y is denoted as the digit set {r € Z | |r |<

[\ {r € Z | | r|=bg,b € N}. Usually ¢-NAF(s)
is denoted as the string (mg,- -+ ,m1,Mo)g.

Lemma 1. Let co + c1¢ € Z[¢], co,c1 € Z.

1) co + c1¢ is divisible by ¢ if and only if co is divisible
by q.

2) co+ c1¢ € Z[] is divisible by ¢* if and only if co =
gc1 mod ¢2.
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Theorem 2. FEvery integer has at most one ¢ — NAF'.

Proof. Suppose that there are two different ¢-NAF for
an integer s, say ¢ — NAF(s) = (ag, -+ ,a1,00)¢ =
(biy-+-,b1,b0)p. Let k < 1. If s is divisible by ¢,
then ag = bg = 0. Otherwise, ag, by are not equal to
0. We suppose that ag # bg. Since ap = by mod ¢?

and | ag — by |< Q(LQ_IL it must be ag = by. Thus
(g, ,a1)p = (b, -+ ,b1)e. By induction on k, then we
get a; =b; foralli <k and b; =0 for k < j <. O

The above lemma quart trees the existence of ¢-NAF
of any integer.

Theorem 3. FEvery element s € Z can be represented as
a ¢-NAF with the digit set Gg2_q.

We will recommend two methods to change an integer
into its ¢-NAF.

Method 1. Assumed thats € Z C Z[¢]. Let so = s,8; =
Siv10 + 15, where ng,nip1 € Z and r; € G2y, for i > 0.
Set s; = cio + ci1¢ with c;o,ci1 € Z. If ¢io is not divisible
by q, then the remainder r; satisfies cio—qci1 = r; mod g2,
where r; is the absolute smallest residue of s; mod ¢*;
otherwise, r; = 0. It is easy to show that the pair

Cio — T;

Cio — T4
(Cit1,0,Ciy11) = (i + c— Pl D

cZxZ

and there is an integer | so that (ci41,0,c1411) = (r1,0).
Thus the string (ry,--- ,T2,71,70) 1S equal to the ¢-NAF
of s.

Algorithm 1 Computation of ¢-NAF depends on
Method 1

: Input: integers rq, 71

: Output: ¢-NAF(rg + r10)

: Computation:

1

2

3

4: Set cg «— 1o, c1 — 11

5. Set S —<>

6: while ¢y # 0, or ¢; # 0 do

7. if ¢p is not divisible by ¢ then
8 set 7 «— (co — gc1 mod ¢?)

9 set cg«—co—r

10: else
11: set r«— 0
12:  end if

13:  Prepend r to S
14: Set (CQ7 Cl) — (Cl
15: end while

16: Output S

- ca,-a)

Method 2. Let s9 = s and s; = sjy1¢ + ri, where
i, Siv1 € Z[@), ri € Gpa_q, for i >0, and let the string
ag = € empty. Set s; = cjo + c;1¢0, where cig,¢ci1 € Z
for @ > 0. If c;o is not divisible by q, then the remain-
der r; satisfies cio — gqc;1 = 1; mod g%, and the string
ait1 = 0ri||lay. It is easy to show that the pair
2
(Cit1,0,Cit1,1) = (% + €

“9g,d) ez xZ,
C
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where di = fc(c"rq#; otherwise, r; = 0, 11 =

0|lcvi, and the pair
cio G
(Cit1,0:Civ1,1) = (cn + C%)’ —%) €ZxZ

Thus the string (- -+ , g, a1, a9) s equal to the ¢p-NAF of
s.

Algorithm 2 Computation of ¢-NAF depends on
Method 2

1: Input: integers rg, r1; string o

2: Output: ¢-NAF(rg + r19)

3: Computation:

4: Set cg « 1o, €1 +— 71, @ +— € “empty”
5: while ¢y # 0, or ¢; # 0 do

6:  if ¢g is not divisible by ¢ then

7: set 7 — (co — ge1 mod ¢?)

8: set cg «—co— 71T

2

9 set (cocr) = (2 + 1. cainn _corte)
10: set a — Or|la
11:  else
12: set r«— 0
13: set (co,c1) — (c1 —i—c%"7 —%")
14: set a «— 0|«
15:  end if
16: end while
17: Output «

The above Methods (1) and (2) are both transformed
into ¢-NAFs directly from integers. If the Frobenius ¢
satisfies the equation ¢? & ¢ + ¢ = 0, then the ¢-NAFs
can be transformed from ¢-expansions. The following de-

scribes how to change the coefficients of ¢-expansion to
the ¢-NAF.

Theorem 4. If the trace ¢ = +1, then every ¢-adic ez-
pansion of an integer can be transformed to the ¢-NAF.

Proof. Let s = mg + m1¢ + mad? + msd® + - - - + myoF
be a ¢-adic expansion of an integer s, where m; €
{0,£1,--- ,+2}. The coefficients m; can be changed
through the equation ¢? — ¢ + ¢ = 0. We show the result
for ¢ = 2,4 and ¢ = 1 (the case ¢ = —1 can be treated
symmetrically). Assumed that mg # 0 and my # 0. The
constant my is replaced with mo(—(g—1)+¢—¢?). There-
fore

s =—(g—1)mo+ (m1+mo)p—+ (ma—mo)* +mse® +- - -

In the case ¢ = 2. s = —mg+ (M1 +mg)d+ (ma—mg)p? +
ma@> + -+ with m; € {0,£1}. If my = —my, then

s = —mo + 00 + (ma — mo)¢* + mag® + -+ .
If m1 = my, then take 2¢ = (¢ — ¢?)¢, and thus

5= —mo + 06 + mad® + (m3 F1)¢> 4 - - .
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The first three coefficients satisfy the definition of the
¢-NAF. We repeat this process until all coefficients be-
coming ¢-NAF.

In the case ¢ = 4. s = —3mg + (m1 + mo)d + (ma —
mo)d? + mag® + .-+ with m; € {0,41,42}. First, we
take —3mo = a £ 4 with | a |< 2, then

S =

a+44 (mi+mo)d + (ma2 —mo)od” + mag® + - - -
= a£(p—¢°) + (m1+mo)p+ (m2 —mo)¢” +ms’® +- -

a+ (m1+mo+ 1)+ (m2—moF1)¢p° +map’ +--- (2)

Consider the first two terms of Equation (2). If | mq +
mo £ 1 |= 4, then

s=a+(¢p—¢%) + (my—mo T 1)¢* +msd® + - - .

If | a4+ 4(my +mo £ 1) |> 7, then take (m1 +mo £ 1)¢ =
Ap—(4=m1—moF1)p = (p—¢*)p—(4—m1—moF1)(¢*+
4); otherwise, take (mq+mo=+1)¢ = (m1+mo+1)(d?+4).
Thus, the first three coefficients of Equation (2) is changed
the coeflicients which satisfy the definition of the ¢-NAF

s = a0+ 0+ (ma+€)¢” + (mg + )o" +mag® -,
with f € {0,+1}. O
Therefore, it is easy to verify the length of ¢-NAF.

Corollary 2. Let s be an integer and ¢ = £1. Then the
length of the ¢ — NAF(s) is at most 2 bits longer than the
length of its ¢-adic expansion.

Algorithm 3 Transformation from ¢-adic expansion to
¢-NAF

1: Input: q,c, mg,mq, -+, mg
2: Output: ¢-NAF of mg,mq, -+, mg, Mgy1, Mit2
3: Begin

4: for (i > 1;i < k;i+ +) do

5 if (| m;—1 |:: q) then

6 mi—1 =0,

7 m; = m; + ¢,

8 M1 = Migp1 — 1,

9 else

10: using the look-up table to get the values of ag, e, f
(Look-up table for ¢ = 2 and ¢ = 4 are shown in
Appendix)

11: mi;—1 = G,

12: m; =0,

13: Mit1 = Mit1 + €,

14: Mit2 = Mit2 + f,

15:  end if

16: end for

4 Conclusion

In this paper, in analog to Solinas’ result, we propose two
efficient algorithms to computing ¢-NAF's directly from
integers. An efficient algorithm from ¢-adic expansions
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to ¢-NAF for the Frobenius ¢ satisfying ¢? — c¢ +q = 0
with | ¢ |= 1 is presented. Unfortunately, this kind of
computing technology is not suitable to use the situation
| c|> 1.
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Look-up table for g =4
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Appendix
Look-up table for ¢ = 2
C| Mi—1 My aQ € f
1 1 1] -1 0 -1
1 1 -1 -1 -1 0
1 -1 1 1 1 0
1 -1 -1 1 0 1
-1 1 1] -1 -1 0
-1 1 -1 -1 0 1
-1 -1 1 1 0 -1
-1 -1 -1 1 1 0

C| Mi—1 My ag € /
1 1 1 5 1 0
1 1 -1|-3 -1 0
1 1 2| -7 -1 -1
1 1 -2 -7 =2 0
1 -1 -1|-5 -1 0
1 -1 1 3 1 0
1 -1 -2 7 1 1
1 -1 2 7 2 0
1 2 1 6 1 0
1 2 -1 -2 -1 0
1 2 21 -6 -1 -1
1 2 2| -6 =2 0
1 -2 —-1] -6 -1 0
1 —2 1 2 1 0
1 -2 =2 6 1 1
1 —2 2 6 2 0
—1 1 1] -3 -1 0
—1 1 -1 5 1 0
—1 1 2| =7 =2 0
-1 1 -2 -7 -1 1
-1 -1 1] -5 -1 0
—1 -1 -1 3 1 0
—1 —1 2 7 1 -1
—1 -1 -2 7 2 0
-1 2 1] -2 -1 0
-1 2 -1 6 1 0
-1 2 21 -6 =2 0
—1 2 -2 -6 -1 1
—1 —2 1 2 1 0
1 -2 —-1|-6 -1 0
-1 —2 2 6 2 0
-1 -2 =2 6 1 -1
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