
International Journal of Network Security, Vol.9, No.1, PP.82–94, July 2009 82

Analytical Comparison of Cryptographic

Techniques for Resource-Constrained Wireless

Security

M. Razvi Doomun and KMS Soyjaudah

(Corresponding author: M. Razvi Doomun)

Faculty of Engineering, University of Mauritius

Reduit Campus, Mauritius

(Email: r.doomun@uom.ac.mu)

(Received May 29, 2007; revised and accepted Feb. 2 & Mar. 3, 2008)

Abstract

With the widespread growth in applications for resource-
limited Wireless Sensor Networks (WSN), the need for
reliable and efficient security mechanisms for them has in-
creased manifold but its implementation is a non-trivial
task. Limitations in processing speed, battery power,
bandwidth and memory constrain the applicability of ex-
isting cryptography Algorithms for WSNs. In this paper,
two potential block ciphers, namely the RC5 and AES-
Rijndael, are analyzed and their suitability for resource-
limited wireless network security are compared based on
performance criteria such as computational complexity
overhead and energy consumption. Using simulation tests
and analytical models, we provide important analysis
and considerations on practical feasibility of these crypto-
graphic Algorithms in sensor networks to help designers
predict security performance under a set of constraints for
WSNs.

Keywords: Block cipher analysis, computational over-
head, energy-efficient encryption, wireless sensor net-
work, wireless security

1 Introduction

Resource-efficient cryptographic Algorithms are becom-
ing a pre-requisite for security services in various network
environments, such as Wireless Sensor Networks (WSN),
in which low computational cost and low power consump-
tions are key performance requirements. Though, security
in WSNs share many characteristics with traditional wire-
less ad-hoc networks, there are fundamental differences
between the make-up and aims of the two types of net-
works. Although WSNs are economically viable, but at
the same time their operational requirements prevent the
direct application of existing highly reliable traditional
wireless security techniques [11]. Traditional wireless net-

work security standards are not well-suited for sensor net-
works as they are more demanding in memory, energy and
are computationally intensive. An important aspect is
that the sensor nodes in WSNs are unattended, deployed
in hostile environment, have unreplenishing energy and
network topology is unknown making them prone to dif-
ferent types of malicious attacks like eavesdropping, mas-
querading, traffic-analysis, etc. These devices are very
limited in their energy (Typically 20-30 Joules of initial
energy), computation processor, bandwidth and commu-
nication capabilities that impose strong restrictions on the
processing capabilities and available memory for security
mechanism executions. Thus, providing high degree of
security in terms of data privacy and authentication is a
challenging task and is at the same time of high priority.
A number of security techniques have been proposed in
recent years to cope with battery characteristics for de-
signing better energy-efficient security protocol [8, 11, 17].
It has been argued that, using asymmetric cryptography
on highly resource-constrained devices is often not feasible
due to delay, energy and memory constraints. For com-
parison, an implementation of symmetric cryptography
on an 8-bit micro-controller uses 7150 bytes of program
memory [8], in contrast to 30 KBytes of program memory
for the smallest available implementation of asymmetric
cryptography [5]. As a result, symmetric cryptography
is the choice for applications that cannot afford compu-
tational complexity. Efficient cryptographic Algorithms
with optimized implementations, in terms of energy con-
sumption and computational overhead, are imperative to
maximize the battery lifetime of sensor nodes.

The aim of this paper is to present a methodology for
the evaluation of the complexity or computational cost
and energy efficiency of two block ciphers, Advance En-
cryption Standard (AES)- Rijndael and RC5, that have
been published as potentially suitable for WSN security.
Generally, the energy consumption by cryptographic Al-
gorithms executed on a given microprocessor is expected



International Journal of Network Security, Vol.9, No.1, PP.82–94, July 2009 83

to be proportional to the number of clock cycles needed
by the processor for their execution. The main contri-
butions of this work can be summarized as follows: (1)
Compare the number of basic processing operations re-
quired by each encryption Algorithm and, analyze their
capabilities with other similar well-established results and
performance models. (2) Provide a simulation frame-
work and mathematical model to assess the processing
overhead and energy consumption of the cryptographic
algorithms. (3) Evaluate analytically simulation results
to understand requirements of optimized cryptosystems
for resource-limited wireless device and the design adap-
tive encryption for future energy-efficient WSN security
The rest of the paper is structured as follows: Section 2
presents the related work. Section 3 describes the RC5
and AES-Rijndael block cipher algorithms. Section 4
introduces our analytical models of cryptographic algo-
rithms complexity in terms of primitive operations. In
Section 5, the experimental methodology is discussed and,
performance results and evaluation of cryptographic algo-
rithms are presented in Section 6. Finally, Section 7 ends
up with final considerations and future works.

2 Related Work

Security designers are facing the critical task of guaran-
tying the security of increasingly more complex wireless
network systems while dealing with very tight constraints.
The ingredients of a security protocol are cryptographic
algorithms, which are selected based on the security ob-
jectives that are to be achieved by the protocol. Many
battery-powered wireless systems are constrained by the
environments they operate in and the resources they pos-
sess, hence security designers should not address security
considerations from a functional perspective only. One of
the current foremost challenges is the mismatch between
the energy and performance requirements of security pro-
cessing, and the available battery and processor process-
ing. These challenges have to be addressed to provide an
efficient and reliable wireless security solution and they
have been emphasized by Ravi et al. in [13] as proposed
below. The processing gap highlights that current wire-
less network security system architectures are not capable
of keeping up with the computational demands of secu-
rity processing. The battery gap emphasizes that the
current energy consumption overheads of supporting se-
curity on battery constrained wireless systems are very
high. The flexibility imposes that a mobile wireless sys-
tem is often required to execute multiple heterogeneous
security protocols and standards. The tamper resis-
tance emphasizes that secure mobile wireless systems are
facing an increasing number of attacks from physical to
software attacks. Side-channel attacks also represent an
important threat for these systems. The assurance gap
is related to reliability and stresses the fact that secure
systems must continue to operate reliably despite attacks
from intelligent adversaries who intentionally seek out un-

desirable failure modes.

However, security should not be overdone and efficient
encryption algorithm’ refers to one which requires little
storage, makes optimal use of hardware resources and
consumes less energy. The cost of encryption and de-
cryption depend on a number of parameters: the size
of the plaintext and ciphertext, respectively; the imple-
mentation complexity of the algorithm; the cipher mode
adopted; and the key scheduling. Specifically, key length
is important and the longer the key the higher the en-
cryption time. Also, the cost for decryption depends on
the cost of the checks needed to accept the decryption.
In particular there are two main concerns about the im-
plementation of AES-Rijndael on sensor nodes claimed in
the literature [7, 15, 19]: (1) It is often considered too
slow and (2) It requires more space in memory. In fact,
the baseline version of AES-Rijndael uses over 800 bytes
memory space for lookup tables, which is a high over-
head on constrained WSN environment. However some
researchers do believe that Rinjdael can be efficiently im-
plemented on WSN platform and Vitaletti and Palom-
bizio [19] presented an improved implementation of AES-
Rijndael for wireless sensor networks running on Eyes
sensor nodes. Their implementation of AES-Rijndael is
smaller, from about 1/3 to 1/5 of the size of previous im-
plementations and shows reasonable speed performance
(slower than RC5 by a factor 2). Xiao et al. [9] analyzed
the security overhead of AES-CCMP in IEEE 802.15.4
specification. The authors observed that processing cy-
cles per block increases as key length increases, payload
increases or MIPS decreases. AES-CCMP Decryption
has much higher processing cycles than encryption and
the increase of processing cycles over the key length and
the payload size tends to be linear. Karlof et al. also
designed a chain-block-cipher (CBC) security mechanism
called TinySec [8], and argued why CBC is the most ap-
propriate encryption scheme for sensor networks. Initially
they found AES-Rijndael to be slow for sensor networks
and their work established that RC5 is one of the most
appropriate encryption methods for software implemen-
tation on embedded micro-controllers. The use of CBC
mode with blocks of size 8-byte results in ciphertexts hat
are multiples of 8 bytes causing message expansion hence
increasing power consumption. Karlof et al. proposed the
use of ciphertext stealing technique [8] to ensure that the
ciphertext and plaintext are of same length. Encrypting
data payloads of less than 8 bytes generates ciphertext
of 8 bytes since it requires as a minimum one block of
ciphertext. Nonetheless, the ciphertext stealing process
involves additional computation, which degrades the sen-
sors power life span. In [9], Law et al. evaluated the
performance and energy characteristics of symmetric key
algorithms on sensor node. Using the benchmark param-
eters, code, data memory and CPU cycles, the simulation
results showed that AES-Rijndael is suitable for high secu-
rity and energy-efficiency. However, the evaluation results
in [10] which provide a comparative study on performance
of symmetric key cryptography in sensor networks, dis-



International Journal of Network Security, Vol.9, No.1, PP.82–94, July 2009 84

agreed with the work in [18] in which RC5 was selected
as the encryption/decryption scheme. In the paper [2],
the authors assess the feasibility of different encryption
schemes for a range of embedded architectures, i.e. from
low-end 8-bit width to high-end 32-bit width processors,
and its impact on the performance of encryption. For a
sequence initialization-encryption-decryption of plaintext
size 16 bytes using RC5, 75% of execution time accounts
for initialization step, 13% of execution time for encryp-
tion and 13% of execution time for decryption. The ini-
tialization overhead is significant for most encryption al-
gorithms, in particular for small plaintext size. The AES
encryption of a single 128-bit block of data using a 128-
bit key requires approximately 2109 clock cycles on the
Strong ARM platform, whereas the decryption of a single
block can take 2367 cycles, and the key scheduling would
require some 670 clock cycles [4]. Given a clock frequency
of 133 MHz, the corresponding energy values are typi-
cally 5.7 µJ (for encryption), 6.4 µJ (decryption), and
1.8 µJ (key scheduling). An analysis of various ciphers is
presented in [10, 20] and a summary of RC5 and AES-
Rijndael qualitative performance comparison is shown in
Table 1.

By examining the CPU cycles, authors in [10] conclude
that AES-Rijndael is the most energy efficient cipher as
its fewer CPU cycles is equivalent in less energy used.
Conversely, RC5 has a noticeable advantage in both data
memory and code memory at the expense of speed. The
authors in [9] have developed some well-known crypto-
graphic algorithm, including two implementations of RC5,
in search for the best compromise in security and energy
efficiency, on a typical sensor node. The reference RC5
implementation [14] and Schneier’s RC5 implementation
[15] with different coding style were compared to assess
code size and speed optimization impact on energy used
per byte.

Generally, it is agreed that AES-Rijndael has strong
cryptographic properties, but at the cost of more mem-
ory and processing requirements compared to RC5. Fur-
thermore, AES has higher mean values for energy-latency
product, which means that it consumes the most energy
per byte during encryption and decryption [6]. Most
prior work in the literature has focused on efficient AES
cipher implementations with throughput as main crite-
rion. However, AES-Rijndael implementations in small
and constrained environments require additional factors
to be accounted for, such as complexity, memory and en-
ergy supply. In Potlapally et al. [12], the result for 128-bit
AES encryption claimed is 151 nJ/bit for encryption en-
ergy usage. Execution time and energy consumption of
key set up and encryption can differ in a factor of 1000.
Hodjat et al. state in [7] that the AES encryption it-
self takes only 11 cycles, but the complete program with
loading the data and key, AES encryption, and returning
the result back to the software routine takes a total of
704 cycles. Thus, AES-Rijndael decryption was found to
consume approximately up to 20-30% more energy than
encryption [7]. Nevertheless, its performance is very good

and seems likely to remain so on many 8-bit or 32-bit pro-
cessors since it uses only efficient and commonly available
instructions. Consequently, the performance of any sym-
metric key cryptography is essentially dependent on two
factors, namely embedded data bus width and instruc-
tion set [21]. Some encryption algorithms are adapted to
32-bit word arithmetic, while most embedded processors
generally use 8 or 16 bit data bus width.

In this section we have presented a detail literature
review of the overhead computational costs to guaran-
tee the cryptographic flexibility of secure wireless system.
The need for studying AES-Rijndael and RC5 are also
discussed. Based on all the related research, security per-
formance and energy are closely related and have to be
considered for the design of efficient and optimized wire-
less security mechanisms. Several questions are tackled
in this research work: What are the performance and
the potential cryptographic mechanisms? What are the
overhead and computational costs to provide flexible and
reliable wireless security? What are the relationships be-
tween the cryptographic primitive operations and the per-
formance of the wireless security system? The complex-
ity analysis of AES-Rijndael and RC5 in this study ex-
plores the impact of various parameters on the computa-
tional/processing cost, hence energy consumption, for se-
cure communication in resource-constrained environment.
Based on our analysis, we also discuss optimization oppor-
tunities for efficient implementation of the cryptographic
algorithms.

3 Description of Block Ciphers

In this section, we provide an overview of RC5 and
AES-Rijndael cryptographic algorithms.

3.1 Overview of RC5

RC5 is a fast symmetric block cipher with a two-word
input block size plaintext and output block ciphertext.
RC5 implementation with a 64-bit data block and 64-bit
key uses the XOR, addition and rotation (circular shift)
operations. Larger number of encryption rounds Nr pre-
sumably provides an increased level of security but at the
expense of speed and more memory. RC5 uses an “ex-
pandable key table”, S, that is derived from the secret
key K and the size t of Table S also depends on Nr, with
S has t = 2(Nr + 1). The strength of RC5 depends
heavily on the cryptographic properties of data-dependent
rotations. The description of the encryption algorithm is
given in the pseudo-code that follows. We assume that
the input block is given in two w -bit registers A and B,
and that the output is also placed in the registers A and
B. During encryption, the plaintext is split into two 32-
bit words and a series of XOR (⊕), rotation (<<<) and
addition (+) operations are performed on these words in
conjunction with the array S to generate the ciphertext.



International Journal of Network Security, Vol.9, No.1, PP.82–94, July 2009 85

Table 1: Summary of AES and RC5 cipher performance

Performance by Key Setup
Size Optimised Speed Optimised

RANK Code
mem.

Data
mem.

Speed Code
mem.

Data
mem.

Speed

1 RC5 Rijndael Rijndael RC5 Rijndael Rijndael
2 Rijndael RC5 RC5 Rijndael RC5 RC5

Performance by Encryption
Size Optimised Speed Optimised

RANK Code
mem.

Data
mem.

Speed Code
mem.

Data
mem.

Speed

1 RC5 RC5 Rijndael RC5 RC5 Rijndael
2 Rijndael Rijndael RC5 Rijndael Rijndael RC5

The decryption process is similar and involves the above
operations in a different order. The encryption routine is:

A = A + S[0] ;
B = B + S[1] ;

for i = 1 to Nr do
A = ((A ⊕ B) <<<B) + S[2i] ;
B = ((B ⊕ A) <<< A) + S[2i + 1] ;

The decryption routine is easily derived from the encryp-
tion routine, as follows:

for i = Nr downto 1 do
B = ((B – S[2i+1] ) >>> A) ⊕ A;
A = ((A – S[2i] ) >>> B) ⊕ B;
B = B – S[1] ; A = A – S[0] ;

RC5 is a parameterized algorithm, with a variable block
size, a variable number of rounds, and a variable-length
secret key. This provides good flexibility in both the per-
formance characteristics and the level of security. RC5 is
simple and easy to implement, and also more amenable
to analysis than many other block ciphers. Hence, RC5
block cipher offers a computationally inexpensive way of
providing secure encryption.

3.2 Overview of AES – Rijndael

The Advanced Encryption Standard (AES- Rijndael) is
a symmetric-key cipher with a simple and elegant alge-
braic structure, in which both the sender and the re-
ceiver use a single key for encryption and decryption.
The data block length is fixed to be 128 bits, while the
key length can be 128, 192, or 256 bits and the number
of rounds Nr is 10, 12 or 14 respectively. The 128-bit
data block is divided into 16 bytes that are mapped to
a 4 × 4 array called the State, and all the internal op-
erations of the Rijndael algorithm are performed on the
State. In the encryption of the AES-Rijndael algorithm,
each round except the final round consists of four iterative
transformations: the SubBytes, the ShiftRows, the Mix-
Columns, and the AddRoundKeys, while the final round
does not have the MixColumns transformation. The data

are placed in an 4×Nb block length array of elements of
GF(28) which is Galois Field defined by the irreductible
polynomial x8 + x4 + x3 + x + 1. The encryption of each
block of data involves an initialization phase, (Nr-1) it-
erations of the basic encryption processing and a finaliza-
tion round: SubBytes is a non-linear byte substitution,
operating on each of the state bytes independently, com-
posed by the multiplicative inverse in GF(28) (0 mapped
onto itself) and a fixed affine transformation over GF(28);
ShiftRows cyclically shifts the elements of the ith row of
the state Ci elements to the right, where Ci are fixed con-
stants; In MixColumns the columns of the state are con-
sidered as polynomials over GF(28) and multiplied mod-
ulo x4 +1 by a fixed polynomial; and AddRoundKey is
a XOR of the key (after the scheduling) with the array.

The key schedule for AES-Rijndael is a simple expan-
sion using XOR and cyclic shifts, and consists of two com-
ponents: KeyExpansion and round key selection. The
application in the scheduling scheme of SubBytes ensures
the non-linearity, without adding much more space re-
quirements on an 8-bit processor. KeyExpansion depends
on the value of Nk(key length/32).

4 Cipher Analysis

In this section we model how the structure and functional
primitives of cryptographic algorithms relate to the com-
putational load, execution time and hence the energy con-
sumption of cipher.

4.1 Computational Evaluation

In [3, 22, 23], the approach used to evaluate a block ci-
pher computational complexity and energy-consumption
performance is based on the number of basic or primitive
operations required in the execution of the algorithm. All
involved algorithmic transformations can be condensed to
a set of logical operations: bytewise-AND, bytewise-OR,
and shifts of bytes. For a simple bitwise-XOR it is con-
sidered as the sum of 2 bitwise-ANDs and 1 bitwise-OR.



International Journal of Network Security, Vol.9, No.1, PP.82–94, July 2009 86

Likewise, a circular shift (rotate) operation of an 8-bit
word by n positions is taken as a bytewise-OR and 8
shifts.

4.2 AES-Rijndael computational analysis

AddRoundKey() Transformation: In the AddRound-
Key() transformation, a Round Key is added to the State
by a simple bitwise XOR operation. This is implemented
with 8Nb bytewise-ANDs and 4Nb bytewise-ORs, where
isNb = block length/32.

SubBytes() Transformation: The SubBytes() transfor-
mation is a non-linear substitution that operates indepen-
dently on each byte of the State using a substitution table
(S-box). The transformations are: multiplicative inverse
in GF(28) and an affine mapping/inverse affine mapping
over GF(28) for the encryption/decryption process. The
ByteSub transformation can be realised using 16 look-
up tables with 8bit-input/8bit-output. In this case, it is
excluded in the complexity evaluation, but will have an
impact on memory cost. But the S-box can also be imple-
mented by mathematical calculations, then each SubByte
operation incurs 3Nb bytewise-ANDs and 2Nb bytewise-
ORs.

ShiftRows() Transformation: In the ShiftRows() trans-
formation, the bytes in the last three rows of the State
are cyclically shifted over different numbers of bytes (off-
sets). The first row, Row 0, is not shifted. The Shiftrow
transformation can be implemented using cyclic left shift
operation. Each ShiftRows consists of 3Nb shifts of bytes
and 3Nb bytewise-ORs.

MixColumns() Transformation: The MixColumns()
transformation operates on the State column-by-column,
treating each column as a four-term polynomial. The
columns are considered as polynomials over GF(28)
and multiplied modulo x4 + 1 with a fixed polynomial
{03}x3 + {01}x2 + {01}x1+ {02} to given elements of
a new 4×Nb array. MixColumns transformation costs
for every element 4 bytewise-XORs, 6-bitwise-XORs, 2
byteswise-ORs and 16 shifts, i.e. it can be implemented
for each round operation with 19Nb bytewise-XORs,
8Nb bytewise-ORs and 64Nb shifts; or 38Nb bytewise-
ANDs, 27Nb bytewise-ORs and 64Nb shifts. Hence, the
number of operations required to execute one normal
round (i.e. SubBytes (negligible), ShiftRows, Mix-
Columns and AddRoundKey) are 46Nb bytewise-ANDs,
31Nb + 12 bytewise-ORs and 64Nb + 96 binary shifts.
The last Nr round transformation does not have the
Mix-Columns step. Its equivalent implementation is with
8Nb bytewise-ANDs, 7Nb bytewise-ORs and 3Nb shifts
of bytes.

(I) SubBytes look-up table neglecting SubBytes
operation cost

Neglecting SubBytes in complexity model, the com-
putational effort required for AES-Rijndael encryption of
one block of data is a function of the block size, the key
size, and the number of processing cycles required for per-

forming basic operations bytewise-AND (Ta), bytewise-
OR (To), and bytewise shift (Ts) and expressed in general
terms as:

TAES−ENCRY PT

= (46NbNr − 30Nb)Ta + [31NbNr + 12(Nr − 1)

−20Nb]To + [64NbNr + 96(Nr − 1)

−61Nb]Ts.

A critical limitation of AES-Rijndael is related to its
decryption because the cipher and its inverse make use of
partially different code. The decryption code has InvMix-
Columns operation, which uses a transformation with an-
other polynomial, 0Bx3 + 0Dx2 + 09x + 0E. This leads
to an additional complexity for decryption as multipli-
cation by bigger coefficients costs much more. Overall,
InvMixColumns transformation needs 134Nb bytewise-
ANDs, 99Nb bytewise-ORs and 32Nb shifts of bytes to
be implemented. Hence, the difference in computation
between one InvMixColumn and MixColumn operation
is [96NbTa + 72NbTo – 32NbTs]. Therefore, the to-
tal number of processing cycles in computational effort
required for AES-Rijndael decryption of one block of
data is given by:

TAES−DECRY PT

= TAES−ENCRY PT + {[96NbTa + 72NbTo

−32NbTs] × (Nr − 1)}.

Table 2 shows the number basic operations AND, OR
and SHIFT calculated for Encryption, Decryption and
key Expansion in AES-Rinjdael with SubBytes look-up
table.

If Sd is the size of an unencrypted user data packet in
bits, i.e. plaintext, the number of operations required to
do the encryption, OPAES(Sd):

OPAES(Sd) = TAES−ENCRY PT × dSd/blocksizee,

where d e denotes ceil function.
Assuming, a processor executes Cp Millions Instruc-

tions Per Second (MIPS), and TIMEAES(Sd,Cp) refer
to time required by the processor for encrypting one user
packet of length Sd bits with AES-Rijndael. Then,

TIMEAES(Sd,Cp) = TAES−ENCRYPT

×dSd/blocksizee/Cp.

(II) For SubBytes with mathematical operation

TmAES−ENCRY PT

= (46NbNr − 30NbTa) + [31NbNr + 12(Nr − 1)

−20Nb]To + [64NbNr + 96(Nr − 1)

−61Nb]Ts + [3NbTa + 2NbTo](Nr − 1).

And

TmAES−DECRY PT

= TmAES−ENCRY PT + [96NbTa + 72NbTo

−32NbTs] × (Nr − 1).



International Journal of Network Security, Vol.9, No.1, PP.82–94, July 2009 87

Table 2: Rijndael complexity with subByte lookup table

Key size/ Rijndael Encryption Rijndael Decryption
block size OR AND Shift (Bytes) OR AND Shift (Bytes)

128/128 1268 1720 408 3860 5176 1272
128/192 1540 2088 496 4708 6312 1552
128/256 1812 2456 584 5556 7448 1832
192/128 2310 3132 744 7062 9468 2328
192/192 2310 3132 744 7062 9468 2328
192/256 2718 3684 876 8334 11172 2748
256/128 3624 4912 1168 11112 14896 3664
256/192 3624 4912 1168 11112 14896 3664
256/256 3624 4912 1168 11112 14896 3664

Table 3 shows the number basic operations AND, OR
and SHIFT calculated for Encryption, Decryption and
key Expansion in AES-Rinjdael with SubBytes computa-
tions.

4.3 RC5 Computational Analysis

RC5 cipher implementation uses three basic operations
(and their inverse for decryption): namely, modulo 2w ad-
dition (or its inverse, subtraction), bitwise XOR of words
and left-rotation (or its inverse operation, right-rotation).
By examining the operations in RC5 algorithm, we de-
termine the number of processing cycles required to per-
form RC5 encryption and decryption using primitive op-
erations bitwise-AND (Ta), bitwise-OR (To) and bitwise
circular shift or rotate (Ts).

TRC5−ENCRYPT = 2 (w) Ta + [2(2wTa+ wTo) +
2wTs + 2wTa] × Nr

TRC5-DECRYPT = 2 (w) Ta + [2(2wTa+ wTo) +
2wTs + 2wTa] × Nr

Neglecting required constant values computations; the
number of processing cycles needed to initialize the array
S and mixing the secret key for key expansion is expressed
as:

TKEY-X = {[2(2wTa + wTo) + 3Ts + 2(2wTa +
wTo) + (2wTa + wTo) + wTs + 2Ta] × 6(Nr +1)}+
[2(Nr +1) (2Ta + To)].

Using same notations as for AES computational analy-
sis, OPRC5(Sd) = TRC5-ENCRYPT × dSd/block sizee,
where d e denotes ceil function.

TIME-RC5(Sd, Cp) = TRC5−ENCRYPT ×dSd/block
sizee/Cp.

Table 4 summarizes the number of basic AND, OR
and SHIFT operations in RC5. For comparison, the
cryptographic algorithms analysis in [2] has remarkably
high execution times, e.g. the execution of a single AES
operation on an array of 1kByte lasted approximately
1.67s. Performing adequate security operations for sen-
sor communication is very expensive since multiple en-
cryption/decryption operations are needed for data ag-
gregation or in-operation network. An approximate per-
formance model of execution time of encryption algorithm

is defined in [2] as:

Texec = {A + B * msg length / block size }/
{processor freq * bus width}

Where d e is the ceiling function, msg length is
the size of the plaintext in bytes, processor freq and
bus width are the frequency and bus width of the mi-
crocontroller, respectively. Block size is the size of the
blocks in the algorithm. Parameter A includes all the
initialization overheads while B captures the time spent
in operations repeated for each block and Table 5 gives
typical values for A and B.

From this analytical model, RC5 is faster compared
to AES-Rijndael and therefore more energy-efficient un-
der memory constraints for both encryption and decryp-
tion, but it suffers from a relatively costly key expan-
sion. Hence, RC5 is a potential candidate for encryption
of large amounts of data since in this case the costly key
expansion does not fall into account. Conversely, AES-
Rijndael will normally be preferred for the encryption of
small amounts of data or medium-sized messages such as
in intermittent communication and has a faster key ex-
pansion.

5 Experimental Methodology

Evaluations of security architectures are usually based
on analytical modelling and performance evaluations are
usually based on simulation models.

5.1 Experimental Framework

The simulation framework to test efficiency of encryption
algorithm consists of measuring the performance metrics
such as execution time, number of instructions executed
(type of operations involved in the algorithm), and energy
usage by the encryption algorithm. Parameters of the al-
gorithm that are varied include key length, word size and
number of rounds. Both cryptographic algorithm, RC5
and AES are run on different hardware platforms such
as laptops and PDAs. Using the Advanced Configuration
and Power Interface (operating on Linux OS), the voltage



International Journal of Network Security, Vol.9, No.1, PP.82–94, July 2009 88

Table 3: Rijndael Complexity with SubBytes mathematical operation

Key size / Encrypt Decrypt Key Expansion
block size OR AND SHIFT OR AND SHIFT OR AND SHIFT
128/128 1340 1828 3180 3932 5284 2028 290 340 120
128/192 1956 2742 4338 5844 7926 2610 288 384 96
128/256 2572 3656 5496 7756 10568 3192 299 430 84
192/128 1628 2220 3884 4796 6444 2476 543 630 228
192/192 2376 3330 5298 7128 9666 3186 431 598 132
192/256 3124 4440 6712 9460 12888 3896 471 678 132
256/128 1916 2612 4588 5660 7604 2924 841 986 348
256/192 2796 3918 6258 8412 11406 3762 703 950 228
256/256 3676 5224 7928 15208 11164 4600 630 924 168

Table 4: RC5 complexity

Cipher
parame-
ters

Key expansion – bit-
wise op.

Encryption – bitwise
op.

Decryption – bitwise
op.

AND OR SHIFT AND OR SHIFT AND OR SHIFT
RC5
w=32/Nr

12

25168 12506 2730 2368 768 768 2368 768 768

RC5
w=64
bits/16
rounds

65688 32742 6834 6272 2048 2048 6272 2048 2048

Table 5: Parameters for performance model [2]

Algorithm A B Block size
(bytes)

RC5 -Init/Encrypt 352114 40061 8
RC5 - Init/Decrypt 352114 39981 8



International Journal of Network Security, Vol.9, No.1, PP.82–94, July 2009 89

and current drawn by the operating device are measured
and the power consumed for each algorithm are deter-
mined by subtracting the idle power consumption. The
processing times of different encryption stages are deter-
mined by including different timers in the source codes.
Using the Oprofile tool [1], the number of processor cy-
cles used by each algorithm are determined since it is well
know that processor cycles is linearly correlated to en-
ergy usage. Each functional block of the cryptographic
algorithm, such as initialization, encryption and decryp-
tion, is executed many times with the same input, and
the modal value of results are taken over these runs. The
above measurements will be repeated by varying the block
size to be encrypted, key size and number of rounds. Then
the correlation to energy consumption and processor cy-
cle usage can be determined. The methodology adopted
in the analysis of cryptographic computational complex-
ity and energy-efficiency for wireless sensor network se-
curity is shown in Figure 1. The main components are
the analytic computational load and energy cost models.
Two components are included; a model for computational
complexity that derives the computational overhead of a
particular encryption algorithm in terms of IPS (instruc-
tions per second) or processor cycles per second and an
energy cost model that estimates energy consumption in
terms of Joules/bit. In order to derive results from these
models (either in the form of one optimal design for a
given set of parameters or more general design tradeoffs),
a number of input parameters are specified: computa-
tional complexity parameters (e.g., key length, number of
encryption rounds, processor speed etc.) and energy cost
parameters (e.g., memory requirements, CPU utilization,
throughput etc.). The cryptographic algorithm simula-
tion environment is also used to verify the accuracy of
the analytical model.

6 Execution Time Measurement

ANSI C implementations of the AES and RC5 block ci-
phers are used to evaluate their computational perfor-
mance and energy cost characteristics. For encryption
the libraries Crypto++ and OpenSSL providing imple-
mentation of RC5 and AES in C Language have been
adapted. Sim-Panalyzer [16], a cycle accurate instruction
set simulator, Oprofile and Wattch [1] are used to mea-
sure both the execution time and the energy consumption
of software running on processor. In order to evaluate the
performance of the cryptographic algorithms, the follow-
ing simulation tests are carried out:

1) Encrypting data arrays of different size up to 8192
byte with RC5/AES. For each size, the test was exe-
cuted multiple times and the median execution time
was calculated.

2) Encrypting different size data up to 8192 byte with
RC5/AES while periodically measuring the battery
voltage/power consumption for different rounds.

Figure 1: Cryptographic analysis model and optimization
methodology



International Journal of Network Security, Vol.9, No.1, PP.82–94, July 2009 90

Figures 2 and 3 illustrates the execution time measure-
ment in the cipher simulation procedure. In Figure 2,
Initialization of data array, and different bit pattern (files
such as image, audio etc) are considered for the AES-
Rijndael encryption. Time measurement is a complex op-
eration on real sensor nodes, and timestamp T1 describes
start time of encryption in the simulation operation. Dif-
ferent block sizes up to 1024 bytes are considered during
execution of AES-Rinjdael (and RC5). Intermediate exe-
cution times of encryption (decryption) modules are cap-
tured after each rounds to determine the execution time
of each encryption (decryption) stage and timestamp T2

represents finishing time of process. The battery volt-
age was also periodically measured. For each block size,
the test was executed multiple times to achieve an ad-
equate confidence interval and the mean execution time
was taken. Tb[i], Ts[i], Tm[i], Tk[i] are the time recorded
for the ith round, Byte substitution, Shift row, Mix col-
umn and Key addition steps.

7 Performance Analysis

7.1 Simulation results and Costs analysis

The simulation performance of AES-Rijndael and RC5
cryptographic techniques are assessed in terms of com-
putational overhead, complexity, execution time and en-
ergy cost. The computation times are linearly dependent
to the amount of data being processed. The amount of
computational energy consumed by a security function
on a given microprocessor is primarily determined by the
number of clocks needed by the processor to compute
the security function, which in turn depends largely on
the code efficiency of the cryptographic algorithm.

RC5 requires that a pre-computed key schedule to be
stored in memory taking up significant bytes memory for
each key. While, Rijndael needs another code for decryp-
tion because of the asymmetry of encryption and decryp-
tion and it takes almost twice memory for code since most
part of it cannot be shared. The execution time and the
battery consumed are proportional to the complexity of
operations per round as proved by complexity equations
derived and the number of data moves required making
it difficult to affirm how much effect each type of low-
level operation has in the performance of the schemes. It
is mainly because data transfers are difficult to analyze
with different register allocations that can be done by the
compiler and state of the operation system. From above
metrics and results, although it seems that an increase
in power consumption is directly proportional to the in-
creased operations, the increase is less amplified. This
can be attributed to the fact that the data access from
the file over which the operations are performed. How-
ever, the increased power consumption of larger key size
represents a compromise that should be considered before
choosing the size of the key. For normal applications, 128
bits key is considered very secure hence going for higher
key sizes would mean unnecessary wastage of resources

Figure 2: Timing of different stages in AES-Rijndael



International Journal of Network Security, Vol.9, No.1, PP.82–94, July 2009 91

Table 6: Overall performance of AES-Rijndael/RC5 block ciphers
Scheme Encryption Decryption Encryption Decryption Energy for Energy for

code code +Key +Key Key Expansion Key Expansion

size size expansion expansion and encryption and encryption

clock cycles clock cycles for 128-bit block for 128-bit block

AES - 128 2390 bytes 2752 bytes 3638 4235 23.6µJ 36.5 µJ

RC5 -128 756 bytes 992 bytes 140452 140452 42.5µJ 42.5µJ

Figure 3: Timing of RC5 encryption algorithm

for the added security that is actually not required. Thus
it is necessary to define what would constitute as ade-
quate security which in turn varies from one application
to another. RC5 encryption algorithm is very compact,
and is coded efficiently. The Table S is relatively small
size and accessed sequentially, thus minimizing issues of
cache size.

Key observations for design choice of general-purpose
cryptographic algorithm for resource constrained wireless
sensor network in the near future:

AES-Rinjdael has lower power consumption and is
faster to compute than RC5, as well as being cryptograph-
ically more secure. Although the fastest cryptographic
engines are still nearly twice as fast performing RC5 than
AES, we believe this is primarily a matter of the new-
ness of AES and fully expect that, in the next few years,
the fastest encryption engines will be targeting AES. For
devices of the laptop variety (>=100,000J batteries) and
larger, power usage from cryptographic algorithms is not a
huge concern. For PDA devices and smaller ones, crypto-
graphic algorithm selection should be taken seriously; run
time differences of 2:1 can result from improper choices
[12].

Low-power software design is effectively constrained to
coming up with more efficient instruction sequences to
implement the algorithm in question, as most processors
and/or the operating system perform all system power se-
quencing. This does, however, allow hand-coded assem-
bly language software to execute both faster and with
lower power than software written in a high-level lan-
guage. High-level compilers do have many avenues to op-
timize code, though; the power of such optimizers should
not be underestimated.

Table 7: Execution Time profile of encrypt() simulation
AES-128 Mean %
Encrypt() computational time
SubBytes 1.9 %
ShiftRows 33 %

MixColumns 63 %
AddRoundKey 2.1 %

Results from Tables 7 and 8 on the different stages
of the AES-Rijndael cipher algorithm code optimiza-
tion revealed that the MixColumns() function execution
was consuming substantially more time than other sub-



International Journal of Network Security, Vol.9, No.1, PP.82–94, July 2009 92

Table 8: Percentage of operations with encrypt() computation model
AES 128/10 Encrypt() Bytewise-AND Bytewise-OR Shift (bytes)

SubBytes 120Ta (6.6%) 80To (6.0%) 0 (0.0%)
ShiftRows 0 (0.0%) 120To (9.0%) 120Ts (5.0%)

MixColumns 1368Ta (75.7%) 972To73.0% 2304Ts (95.0%)
AddRoundKey 320Ta (17.7%) 160To (12.0%) 0 (0.0%)

modules combined in encrypt() function. The main rea-
son is due to the multiplication operation in the Mix-
Columns() function, which is used to perform the GF(28)
field multiplication on the data operands. Comparing
the simulation values and computation model values, in
Tables 7 and 8 reveal that cyclic shift (rotation) opera-
tions are more costly than bytewise-AND or bytewise-OR,
hence adding extra computational load on microproces-
sor. Results in Table 6 confirms that decrypt () has more
computational overhead than encrypt(), approximately
20-35% more clock cycles, because of the additional com-
plexity of the GF multiplication in InvMixColumns() of
decrypt (). The InvMixColumns() needs to perform four
multiplications while MixColumns() performs only two
multiplications per each byte of the State. This com-
plies with the mathematical model analysis where the dif-
ference in computation between one InvMixColumn and
MixColumn operation is [96NbTa + 72NbTo – 32NbTs].

As expected, the energy values are almost proportional
to the corresponding execution times. Going from AES-
128 bits key to AES-192 bits causes increase in power and
time consumption by about 10% - 15% and to 256 bit key
causes an increase of 16% - 25%. AES-128 has 3396, AES-
192 has 6186, and AES-256 has 9704 different byte oper-
ations, which implies 35% and 45% more operations for
AES-192 and AES-256 when compared to AES-128. Al-
though RC5 algorithm seems well suitable algorithm for
sensor networks, there are two considerations about why
this choice may not be optimal for all resource-limited ar-
chitecture. First, the key expansion step of the algorithm
may not be integrated in the encryption process. This re-
sults in the need to have round keys stored for the whole
encryption process which leads to a slightly higher mem-
ory requirement than desired (at least 112 bytes for RC5-
32/12/8 when the original key needs to be kept). Second,
the RC5 algorithm extensively uses circular shifts. This
operation is often not supported by low cost processors
and must be emulated by single step shifts, which leads
to bad runtime behaviour. The AES-Rijndael algorithm
can thereby offer the best performance, but requires large
lookup-tables. Also this algorithm is not constructed for
a key length shorter than 128-bit, which are often used in
sensor networks

7.2 Optimisation Scope

The cipher algorithms need to perform highly complex
sets of arithmetic functions, which can be simplified us-
ing look-up tables, caching and bit-manipulation. The

SubBytes() in AES-Rijndael can be implemented using
mathematical formula but consumes higher processor cy-
cles and more energy. Hence, it is more efficient to imple-
ment it using a look-up table. But, look-up tables con-
sume a lot of memory and efficient algorithms should gen-
erate it before encryption or decryption starts. Although,
the code size will increase, it certainly improves overall
cryptographic performance by minimising the dormant
memory occupation. The basic operations of each block
cipher can be implemented in different ways; however, im-
plementations that are suitable for resource-constrained
nodes are favoured. The programming codes are made
more flexible for module reusability in the application.
The Mulitplication () function is made common to both
MixColumns() and InvMixColumns(). Finally, the Mix-
Columns() and InvMixColumns() functions are the high-
cost critical paths in the encryption and decryption pro-
gram, respectively. It is more important to optimise
the critical paths to a higher extent than the less criti-
cal paths. If the finite field inversion, InvMixColumns(),
were implemented using Boolean functions only, then the
required execution time and the energy cost would be
very high. A moderate sized look-up table would be more
efficient even on memory-restricted devices. To provide
variable security strengths with limited amount of compo-
nents, code efficiency, reusability and flexibility are impor-
tant factors when choosing the components. In addition,
the communication overhead of the algorithm, e.g., addi-
tional bytes we need to add to each data packet, should
also be taken into consideration. RC5 is a highly efficient
and flexible cryptographic algorithm, for which many pa-
rameters (key size, block size, number of rounds) can be
adjusted to tradeoff security strength with power con-
sumption. The comparison of RC5 implementations is
provided in Table 9.

Table 9: Comparison of RC5 implementation gain
RC5 Operation Execution

Implementation cycles Time
C version 5750 1.70 ms

SPINS (C+ ASM) 2775 0.75 ms
TinySec (C+ ASM) 1775 0.50 ms

Table 10 gives the average speed performance gain
from AES optimization. Encrypt() and Decrypt() achieve
up to 21% and 11% execution time gain, respectively.
ShiftRows() are optimized better than all other sub-



International Journal of Network Security, Vol.9, No.1, PP.82–94, July 2009 93

Figure 4: Energy consumption for AES-Rijndael and RC5 for different rounds

Table 10: Speed performance gain with optimization
AES Percentage Speed Performance (%)

Main () 12
Encrypt() 21
Decrypt() 11
SubBytes() 26
ShiftRows() 50

MixColumns() 1.4
AddRoundKey() 29

functions, whereas MixColumns() are the least improved
due to the implementation of look-up table.

Optimizing block cipher implementations towards low
energy consumption and low computational overhead is of
paramount importance for virtually any battery-powered
wireless device, especially sensor nodes. Memory utiliza-
tion is also a critical concern since RAM and cache size
is a precious resource in sensor nodes. Hence, code size
optimization and lightweight block cipher software imple-
mentations that meet operational requirements of WSNs
are important.

8 Conclusions and Future Re-

search

The performance evaluation of cryptographic algorithms
is vital for the safe and efficient development of cryp-
tosystem in devices with low computational power. In
this paper, we presented a systematic model of crypto-
graphic algorithms complexity and in particular analyzed
the suitability of RC5 and AES-Rijndael encryption tech-
niques to provide efficient link layer security. The ap-
proach presented in this paper and its respective tools

allow efficiency estimation of the algorithms in resource-
constrained devices. The results’ evaluations bring the
possibility of verifying the viability of the algorithm ap-
plication in resource-limited device. The simulation re-
sults presented quantify the differences in computational
complexity overhead and energy cost of AES-Rijndael and
RC5 algorithm with varying operational parameters. Be-
sides, a simple and low overhead analytic model has been
presented to compare the execution time and number of
processing required for RC5 and AES-Rijndael. These
outcomes can be helpful for security designers in adopting
a specific cryptographic scheme for resource constrained
wireless environment. AES-Rijndael is suitable on all as-
pects and future research in optimization techniques will
definitely make it the de facto encryption for resource-
constrained wireless networks. RC5 is good on the code
point of view, but the key schedule consumes more time.
Resource and cost constraints remain a challenge in de-
signing efficient security mechanisms for WSNs. Several
directions for future research arise from work. One future
research is to explore adaptive cryptographic mechanisms
to optimize energy consumption by varying cipher param-
eters with timely acquisition of resource-context in WSN
environment. The adaptability of the security system will
improve sensor nodes battery’s lifetime.

References

[1] D. Brooks, and et. al, “Wattch: A framework
for architectural-level power analysis and optimiza-
tions”, ISCA, pp. 83-94, 2000.

[2] P. Ganesan, R. Venugopalan, and P. Peddabacha-
gari, “Analyzing and modelling encryption overhead
for sensor network nodes,” ACM in Proceedings of
WSNA’03, pp. 151-159, Sep. 2003.



International Journal of Network Security, Vol.9, No.1, PP.82–94, July 2009 94

[3] F. Granelli and G. Boato, “A novel methodology for
analysis of the computational complexity of block ci-
phers: Rijndael, Camellia and Shacal-2 compared,”
Third Conference on Security and Network Architec-
tures (SAR’04), pp. 1-7, June 2004.

[4] J. Grobschadl, S. Tillich, C. Rechberger, M. Hof-
mann, and Marcel Medwed, “Energy evaluation of
software implementations of block ciphers under
memory constraints,” Proceedings of the 10th Con-
ference on Design, Automation and Test in Europe,
pp. 1110-1115, 2007.

[5] V. Gupta, M. Millard, S. Fung, Y.Zhu, N. Gura, and
S. Shantz. “Sizzle: a standards-based end to end se-
curity architecture for the embedded internet,” Pro-
ceedings of third IEEE International Conference on
Pervasive Computing and Communications, PerCom
2005, pp. 247-256, Kaua, Huwaii: IEEE, Mar. 8-12,
2005.

[6] C. T. R. Hager, S. F. Midkiff, J. M. Park, and T.
L. Martin, “Performance and energy efficiency of
block ciphers in personal digital assistants,” Third
IEEE International Conference on Pervasive Com-
puting and Communications, pp. 127-136, Mar. 8-12,
2005.

[7] A. Hodjat and I. Verbauwhede, “Interfacing a high
speed crypto accelerator to an embedded CPU,” Pro-
ceedings of the 38th Asilomar Conference on Signals,
Systems, and Computers, vol. 1, pp. 488-492, IEEE
Press, 2004.

[8] C. Karlof, N. Sastry, and D. Wagner. “TinySec:
a link layer security architecture for wireless sen-
sor networks,” ACM SenSys 2004 in Proceedings of
the 2nd International Conference on Embedded Net-
worked Sensor Systems, pp. 162-175, Nov. 2004.

[9] Y. W. Law, S. Dulman, S. Etalle, and P. J. M.
Havinga. “Assessing security-critical energy-efficient
sensor networks,” Proceedings 18th IFIP TC11 In-
ternational Conference in Information Security, Se-
curity and Privacy in the Age of Uncertainty (SEC),
pp. 459-463, Athens, Greece, May 2003.

[10] Y. Law, J. Doumen, and P. Hartel. “Benchmarking
block ciphers for wireless sensor networks (extended
abstract),” 1st IEEE International Conference Mo-
bile Ad-hoc and Sensor Systems, IEEE Computer So-
ciety Press, pp. 447-456, Oct. 2004.

[11] A. Perrig, J. Stankovic, and D. Wagner, “Security
in wireless sensor networks,” Communication ACM,
vol. 47, no. 6, pp. 53-57, 2004.

[12] N. R. Potlapally, S. Ravi, A. Raghunathin, and N. K.
Jha, “Analyzing the energy consumption of security
protocols,” Proceedings. 2003 International Sympo-
sium on Low Power Electronics and Design, pp. 25-
27, Aug. 2003.

[13] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattan-
gady, “Security in embedded systems: Design chal-
lenges,” ACM Transactions on Embedded Computing
Systems, vol. 3, no. 3, pp. 461-491, Aug. 2004.

[14] R. L. Rivest, “The RC5 encryption algorithm”, Pro-
ceedings of the 1994 Leuven Workshop on Fast soft-
ware Encryption, pp. 86-96, Springer-verlag, 1995.

[15] B. Schneier, Applied Cryptography:Protocols, Algo-
rithms and Source Code in C, John Wiley & Sons
Inc. 2nd Edition, 1996.

[16] Sim-Panalyzer Project, Last Accessed, May 2007.
http://www.eecs.umich.edu/˜panalyzer/.

[17] H. S. Soliman, and M. Omari, “Application of syn-
chronous dynamic encryption system (DES) in wire-
less sensor networks,” International Journal of Net-
work Security, vol. 3, no. 2, pp. 160-171, Sep. 2006.

[18] A. P. R. Szewczyk, V. Wen, D. Culler, and J. D.
Tygar, “SPINS : security protocols for sensor net-
works,” Wireless Networks, vol. 8, no. 5, pp. 521-534,
Sep. 2002.

[19] A. Vitaletti, “Gianni palombizio: Rijndael for sen-
sor networks: is speed the main issue?,” Electronic
Notes Theorem Computer Science, vol. 171, pp. 71-
81, 2007.

[20] J. P. Walters, Z. Liang, W. Shi, and V. Chaudhary,
“Wireless sensor network security: Survey,” Security
in Distributed, Grid, and Pervasive Computing, pp.
367-403, CRC Press, Yang Xiao, Editor, Auerbach
publications, 2006.

[21] Y. Wang, G. Atterbury, and B. Ramamurthy, “A
survey of security issues in wireless sensor networks,”
IEEE Communications Surveys & Tutorials, vol. 8,
no. 2, pp. 2-23, 2006.

[22] C. Xenakis, N. L. Merakos, and I. Stavrakakis, “A
generic characterization of the overheads imposed by
IPsec and associated cryptographic algorithms,” El-
sevier Journal of Computer Networks, pp. 3225-3241,
2006.

[23] Y. Xiao, H. Chen, B. Sun, R. Wang, and S. Sethi.
“MAC security and security overhead analysis in
IEEE 802.15.4 wireless sensor networks,” EURASIP
Journal on Wireless Communication and Network-
ing, pp. 1-12, 2006.

M. Razvi Doomun holds a B.Eng (Hons) in Electronic
and Communication Engineering from University of
Mauritius and an MSc in Multimedia Communications
from University of Surrey, UK. He is at present lecturer
in the Department of Computer Science and Engineering
at University of Mauritius and currently doing his PhD in
Wireless Security. He has published articles on Wireless
security and multimedia communication.

KM Sunjiv Soyjaudah received his BSc. (Hons.) de-
gree in Physics from Queen Mary College, University of
London in 1982, his M.Sc. degree in digital electronics
from King’s College, University of London in 1991 and
his PhD degree from University of Mauritius in 1998.
He is a chartered engineer and a member of the IEEE.
He is presently Professor in the department of electrical
and electronic engineering of the University of Mauritius.
His interests are communication theory, cryptography and
wireless network security.


