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Abstract

A multilevel secure (MLS) database is intended to pro-
tect classified information from unauthorized users based
on the classification of the data and the clearances
of the users. The concurrency control requirements
for transaction processing in multilevel secure database
management systems (MLS/DBMSs) are different from
those in conventional transaction processing systems. In
MLS/DBMSs, coordination of transactions at different se-
curity levels is needed to avoid both covert channels and
the starvation of high security level transactions. In this
paper we outline the transaction processing requirements
in MLS/DBMSs, and survey the mechanisms proposed
to address these requirements and propose a new secure
multiversion concurrency control protocol. We also inves-
tigate the relative performance of existing secure concur-
rency control protocols while varying workloads.
Keywords: Multilevel security, database system, concur-
rency control, covert channel

1 Introduction

Database security is concerned with the capability of a
database management system to enforce a security policy
controlling the disclosure, modification or destruction of
data. Security in database systems can be discretionary
and mandatory (multilevel) [10]. Discretionary security
restricts access of data at the discretion of the owner.
Most commercial database management systems use some
form of discretionary control, by controlling access priv-
ileges and modes of users to data [13]. Discretionary se-
curity is not appropriate for certain applications such as
military, because it provides a low level of assurance and
is subject to Trojan Horse attacks. These applications re-
quire mandatory security to restrict access to data items
to cleared database users. It is widely used in military ap-
plications and provides a high level of assurance. In this
paper, we focus on security aspects of database systems

that enforce mandatory access control.
Multi-level secure database systems (MLS/DBSs) are

shared by concurrent transactions with different clearance
levels and manage data objects with different classifica-
tion levels [35]. Many civilian, defense and commercial
applications require MLS/DBSs that support data having
different access classes and users with different authoriza-
tion, or clearances. In such environments, multiple users
share the same database, although some of the users can
have restricted access to information from the database.
Hence, it is necessary to provide database security for
these databases.

Most of MLS/DBSs use an access control (mandatory)
mechanism based on the Bell-LaPadula model [6]. This
model is stated in terms of subjects and objects. An ob-
ject is a data file, record or a field within a record. A
subject is an active process that requests access to ob-
jects. Every object is assigned a classification level (i.e.
unclassified, confidential, secret, and top secret are usual)
based on the security requirement and every subject has a
clearance level (i.e. unclassified, confidential, secret, and
top secret) based on the degree to which it is trusted by
the system. Classification levels and clearance levels are
collectively referred to as security levels and are partially
ordered.

In the context of MLS/DBs, each transaction as well as
each data item is assigned a security level. Transactions
are subject to the following restrictions [6]:

Simple Security Property: A subject (transaction)
is allowed read access to an object (data item) only if
the former’s clearance is identical to or higher than the
latter’s classification.

The *-Property: A subject (transaction) is allowed
write access to an object (data item) only if the former’s
clearance is identical to the latter’s classification [21].

The above two restrictions are intended to ensure that
there is no flow of information from higher security level
objects to lower security level subjects. Database systems
that support the Bell-LaPadula properties are called mul-
tilevel secure database systems (MLS/DBMSs).
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The Bell-LaPadula model prevents direct flow of in-
formation from a higher security level to a lower se-
curity level, but the conditions stated above are not
enough to prevent indirect transfer of information from a
higher security level subject to a lower security level sub-
ject through covert channels [24]. There are two types
of covert channels: storage covert channels and timing
covert channels. Storage covert channels disclose informa-
tion from high security level to low security level subjects
by manipulating a physical object, which can or cannot
be seen by the low security level subjects. For example,
consider a secure operating system, which insists that a
file name should be unique. A file name ”SDB” exists
and is classified ”High”. The mandatory access control
does not allow a ”Low” subject to see ”SDB” in the di-
rectory catalog. If the subject attempts to create a new
file named ”SDB” the request is denied. Through this
denial, the subject learns of the existence of the ”High”
file ”SDB”. A cooperating High subject can remove and
create ”SDB” to signal information to the Low subject.
In contrast, timing covert channels signal information by
modulating an observable delay. A timing covert chan-
nel depends on a resource shared between subjects with
different security classification levels e.g. a processor or
a disk drive. Let us consider the case of Low and High
subjects sharing a single disk drive. By modulating the
rate of disk accesses, the High subject can delay the Low
subject’s computation, and information is transferred to
the Low subject. The High user may perform many disk
accesses to transmit a ’one’ and no disk access to trans-
mit a ’zero’. In this way it can communicate a string
of binary digits. The receiving process measures the de-
lay experienced by its disk requests. Important classes
of covert channels that are usually associated with con-
currency control mechanisms are timing channels. In the
context of concurrency control approaches, a covert chan-
nel arises when a resource or an object in the database
is shared between subjects with different security levels.
MLS/DBSs must be designed to avoid such covert chan-
nels and security protocols in the systems must guarantee
that the low security level transactions are not delayed or
aborted by high security level transactions [30].

Concurrency control is used in databases to manage
the concurrent execution of operations by different sub-
jects on the same data object such that consistency is
maintained. Concurrency control in MLS/DBs, in addi-
tion to ensuring correct concurrent execution of transac-
tions must also preserve security. The security community
recognizes secrecy, integrity and availability as inherent
components of security.

In this paper, we address the requirements of transac-
tion processing in MLS/DBMSs and surveys the mecha-
nisms proposed to address these requirements. This paper
is organized as follows: Section 2 addresses the require-
ments of traditional transaction processing and require-
ments of secure concurrency protocols. Section 3 outlines
the MLS/DBMSs architectures. Section 4 explains how
conventional processing techniques can conflict with mul-

tilevel security constraints. Section 5 presents the efforts
of a number of researchers in designing concurrency con-
trol protocols for MLS/DBSs. New secure multiversion
concurrency control protocol is presented in Section 6. In
Section 7, we evaluate the performance of secure concur-
rency control protocols through detailed simulation study.
Section 8 concludes the paper.

2 Requirements of Transaction
Processing

2.1 Traditional Transaction Processing

A database system consists of a collection of interrelated
data and a set of programs that access [37] the data. The
goal of the database system is to support efficient storage,
retrieval and processing of large amount of data. Applica-
tions interact with the database system through transac-
tions, which constitute the basic unit of work. Trans-
actions provide the so-called ACID [7] semantics, (i.e.
Atomicity, Consistency, Isolation, Durability).A proper
concurrency control protocol ensures isolation property
of transactions even in the presence of other concurrently
running transactions. A proper recovery protocol ensures
the atomicity and durability property.

2.2 Requirement of Secure Concurrency
Control Protocol

There are three security requirements [20] for multilevel
secure concurrency control protocol.

• Integrity requirements: A secure concurrency control
protocol must ensure correct execution of transac-
tions (serializability).

• Secrecy requirements: A secure concurrency control
protocol must be free of covert channels.

• Availability requirements: A secure concurrency con-
trol protocol should not cause starvations (indefinite
delays).

3 Multilevel Secure DBMS Archi-
tectures

According to ”The Woods Hole Report” [31], there are
three architectures for MLS/DBSs, which protect classi-
fied information from unauthorized users based on the
classification of the data and clearance level of users.

In the integrity lock architecture [11], as shown in Fig-
ure1, several classification levels of data are integrated in
the same database and encryption is used to handle the
secrecy of data items. It is basically a front-end and back-
end architecture. The front-end is further divided into an
untrusted and a trusted front-end. The un-trusted front-
end works with query parsing, optimization, and compu-
tation. The trusted front-end (TFE) handle tasks such as
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Figure 1: Integrity lock architecture

authenticating users, installing integrity locks, and check-
ing integrity locks. The trusted front-end basically encap-
sulates a filter that encrypts the sensitivity level of the
data item to be stored in the database. It then stamps
that data item with a checksum or integrity lock. The
integrity lock is a function of the data item’s sensitivity
level, along with the data item itself. The integrity lock
is stored, along with the corresponding data item, in the
front-end or in the back-end database system. Upon re-
trieval of a data item, the TFE decrypts the integrity lock
of the data item being queried and compares it with the
one just computed. It also checks whether the sensitivity
level of the data item is less than that of the user, then
the data item retrieved is forwarded to the querying user.

The kernalized architecture [25], as shown in Figure
2, relies on decomposing the multilevel database into sin-
gle level databases, which are stored separately, under
the control of security kernel enforcing a mandatory ac-
cess control policy. The trusted front end ensures that
the user’s queries are submitted to the DBMS with the
same security level as that of the user, while the trusted
backend makes sure that a DBMS at a specific level ac-
cesses data without violating the mandatory security pol-
icy (Bell-LaPadula restrictions). Processing of a user’s
query accessing data from multiple security levels involves
expensive joins that may degrade the performance since
different levels of data are stored separately. On the other
hand, since this architecture has separate DBMSs for each
security level, the scheduler that is responsible for the con-
currency control also can be separated for each level.

The third architecture known as the replicated archi-
tecture [12], shown in Figure 3, uses a physical distinct
backend database managements system for each security
level. Each backend database contains information at a
given security level and all data from lower security lev-
els. The system security is assured by trusted front end,
which permits a user to access only the backend database
system, which matches his/her, security level.

If a high transaction wishes to read data from a low
level, it will be given the replica of the low level data
maintained in the high container. As a result, this archi-
tecture is impractical for large number of security levels.

Figure 2: Kernelized architecture

Figure 3: Replicated architecture

Though the query processing is not expensive as in the
kernalizied architecture, the critical issue of transaction
in this architecture is the propagation of the update of
the lower level data to high level DBMSs in a secure and
correct manner.

4 Security Threats to Traditional
Concurrency Control Protocols

There are number of concurrency control protocols to pro-
duce serializable executions of transactions [7], the most
commonly used are two phase locking, time stamp or-
dering, optimistic and multiversion concurrency control
protocols.

4.1 Locking Protocol

Two-Phase Locking (2PL) is the most widely used concur-
rency control protocol in database systems. According to
this protocol, a transaction should acquire a read (write)
lock before it reads (writes) a data item, and every trans-
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action must go through two-phases: a growing phase and
a shrinking phase.

A transaction should acquire all the required locks dur-
ing the growing phase and should release these locks dur-
ing the shrinking phase. However, once a transaction re-
leases a lock, it cannot acquire any more locks. Unfortu-
nately, this protocol is not suitable for multilevel secure
databases since it is prone to covert channels .The follow-
ing example [5] illustrates how a covert channel can be
created by malicious transactions under 2PL.

Figure 4: A covert channels with 2PL protocol

Consider a database that stores information of two se-
curity levels: high and low. Any low security level infor-
mation is made accessible to all users of the database by
the DBMS; on the other hand, high security level infor-
mation is available only to a select group of users with
special privileges. In accordance with the security policy,
a transaction executing on behalf of a user with no special
privileges would only be able to access (read and write)
low security level data elements, while a high transaction
(initiated by a high security level user) would be given
full access to the high security level data elements and
read-only access to the low security level elements.

Suppose that only two transactions T1 and T2 are cur-
rently active as shown in Figure 4. T1 is a transaction
initiated by a low security level user and T2 is a transac-
tion initiated by a high security level user and, therefore,
able to read all data elements. If T2 requests to read a
low security level data element x, a lock will be placed
on x for that purpose. Suppose that next T1 wants to
write x. Since x has been locked by another transac-
tion, T1 will be forced by the scheduler to wait. T1 can
measure such delays, for example, by going into a busy
loop with a counter. Thus, by selectively issuing requests
to read low security level data elements, transaction T2
could modulate delays experienced by transaction T1, ef-
fectively sending signals to T1. Since T2 has full access
to high security level data, by transmitting such signals,
it could pass on to T1 information that the latter is not
authorized to see. The information channel thus created
is a covert channel and is shown in Figure 4.

4.2 Timestamp Ordering Protocol

Timestamp ordering protocol assigns a unique time stamp
to every transaction and maintains two values for each
data item: a read timestamp and a write timestamp.
When a transaction issues a read (write) operation on

a data item, the scheduler allows this operation only
if the write (read) timestamp of the data item is not
larger than the timestamp of the transaction; otherwise
the scheduler rejects the operation. When a transaction
reads (write) a data item, the scheduler modifies the read
(write) timestamp of the data item with the timestamp
of the transaction. For example T1 and T2 are assigned
unique timestamps ts(T1) and ts(T2) respectively. Let
ts(T1) < ts(T2). Here, T2 modifies the write stamp of x
to ts(T2). Since it is grater than ts(T1), T1’s write is re-
jected, thus covert channel is established in time stamping
protocol.

4.3 Optimistic Concurrency Control Pro-
tocol

In a traditional optimistic algorithm, transactions are al-
lowed to read and update data items without any restric-
tion. All data updates are made permanent during the
commit time before which a transaction must pass a vali-
dation test where it tests that there is no currently execut-
ing conflicting transaction [23]. The validating transac-
tion restarts if the test fails. Optimistic concurrency con-
trol (OCC) has the properties of non-blocking and dead-
lock freedom. These properties make the OCC scheme
especially attractive to multilevel-secure transaction pro-
cessing. Unlike all the pessimistic mechanisms such as
two-phase locking (2PL) and timestamp ordering (TO),
the MLS/OCC scheme never delays or rejects an op-
eration submitted by a lower-level transaction which is
passed by the mandatory access control. Optimistic con-
currency control for a secure database can be made to
work by ensuring that whenever a conflict is detected be-
tween a transaction at a higher security level in its vali-
dation phase and a transaction at a lower security level,
the transaction at the higher security level is aborted,
while the transaction at the lower security level is not
affected. A major problem with using optimistic concur-
rency control is the possible starvation of higher security
level transactions. For example, consider a long-running
transaction Th (higher security level) that must read sev-
eral lower security level data items before the validation
stage. In this case, there is a high probability of con-
flict, and as a result, Th may have to be rolled back and
restarted an indefinite number of times.

5 Concurrency Control Protocols
for MLS/DBSs

Concurrency control is important for MLS/DBs because
a covert channel can be easily created through collabora-
tion of multilevel secure transactions in most traditional
concurrency control protocols. In a MLS/DB, the con-
currency control protocol must ensure that there are no
covert channels between the transactions at different se-
curity levels. Traditional concurrency control protocols
such as 2PL and Timestamp Ordering protocols are not
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suitable for MLS/DBs, because when those concurrency
control mechanisms are applied to multilevel secure trans-
actions, problems such as covert channel, too much delay
or repeated aborts of high security level transactions, and
retrieval anomaly [14] can occur. Consequently, concur-
rency control algorithms for MLS/DB must address the
problems originated by the security and availability issues
of the MLS/DB. Several protocols have been proposed for
concurrency control in MLS/DBMS. Due to the influx of
these protocols, we have classified the protocols into fol-
lowing five categories:

5.1 Secure Locking Protocol

In the locking-based approaches, in order to prevent tim-
ing channels, the executions of transactions at lower secu-
rity level are never delayed by the actions of a transaction
at a higher security level. This can be accomplished by
providing a high priority to a low transaction whenever a
data conflict occurs between a high transaction and a low
transaction.

In [26], Keefe, Tsai and Srivastava examined the se-
curity issues and present a formal framework for secure
concurrency control in multilevel databases. In this, they
have characterized several level of assurance in secure sys-
tem and show how a scheduler can affect the security in
this framework.

A secure locking-based protocol called S2PL was pro-
posed by Jajodia and McCollum [16], which modified the
strict two phases locking protocol to covert channel free
protocol. In this protocol, a high security level transaction
must release its lock on a data item when a low security
level transaction requests a write lock on the same data
item. When a read lock by a high security level trans-
action is broken, high security level transaction is to be
aborted. Since a low security level transaction is never
blocked or restarted by a high security level transaction,
this protocol satisfies the secrecy (covert channel free) and
integrity requirement, but a malicious low security level
transaction may cause a high security level transaction to
be aborted repeatedly, resulting in starvation.

McDermott and Jajodia [29] provide a way to reduce
the amount of starvation. According to their approach,
whenever a high security level transaction prematurely
releases its read lock on a low security level data item
due to security reasons, it does not abort and roll-back
entirely, but holds its write locks on high security level
data items, marks the low security level data item in its
private workspace as unread and retries reading this data
item by entering into a queue. This queue maintains the
list of all high security level transactions waiting for retrial
to read that particular data item and enables the first
transaction in the queue to be serviced first. The modified
approach, however, does not always produce serializable
schedules [17].

Another secure two-phase locking-based protocol
(S2PL), is based on a completely different approach was
proposed by Son and David [38]. The basic principle

behind this S2PL is to try to simulate the execution of
conventional 2PL without blocking the actions of low se-
curity level transactions by high security level transac-
tions. This is accomplished by providing a new lock type
called virtual lock, which is used by low security level
transactions that develop conflicts with high security level
transactions. The actions corresponding to setting of vir-
tual locks are implemented on private versions of the data
item. When the conflicting high security level transaction
commits and releases the data item, the virtual lock of the
low security level transaction is upgraded to a real lock
and the operation is performed on the original data item.
To complete this scheme, an additional lock type called
dependent virtual lock is required apart from maintain-
ing, for each executing transaction Ti, lists of the active
transactions that precede or follow Ti in the serialization
order.

Another solution that has been proposed is to allow
users to read and write information at multiple classifica-
tion levels by decomposing the original transaction into
multiple sub-transactions, each of which is assigned a sin-
gle classification level, and all actions performed by sub-
transactions obey the Bell-LaPadula properties. However,
even in such a scenario, it is impossible to simultane-
ously guarantee both transaction atomicity and absence
of covert channels [9, 28, 39].

Jajodia et al. [17] proposed two secure locking protocol
that attempts to detect all cycles in the serialization graph
by painting certain transactions and data items accessed
by the high security level transactions whose low security
level locks are broken and by detecting a cycle at the mo-
ment. The first protocol produces pair-wise serializable
histories while the second protocol produces serializable
histories if the security levels form a total order.

E. Bertino et al. [8] presented an approach to secure
concurrency control for transactions in a multilevel secure
environment. This approach, which uses single- version
data items, is based on the use of nested transactions,
application-level recovery, and notification-based locking
protocols. The notification protocol is based on the use
of signal locks. A signal lock is acquired by a transaction
whenever it needs to read lower security level data; such a
lock does not delay a write lock request by a low security
level transaction on the same data item. Hence, timing
covert channels arising from synchronization are elimi-
nated. When a data item on which a write lock is acquired
by a transaction is modified, all high security level trans-
actions holding signal locks on that data are notified by
the trusted lock manager, and thus may perform recovery
actions. To better support recovery activity, transactions
are organized according to the nested transaction model
extended with specific primitives for supporting the noti-
fication protocol. The proposed approach satisfies most of
the properties pointed out in Atluri et al. [5], as basic re-
quirements for a secure concurrency control mechanism in
a multilevel environment: it avoids starvation and timing
channels, and guarantees serializability.
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5.2 Secure Timestamp Ordering Protocol

Ammann and Jajodia [1] have proposed two single-version
timestamp ordering (TO) protocols. In their first proto-
col, a high security level transaction trying to read a low
security level object is delayed until all low security level
transactions before it in the timestamp order have com-
pleted. A modification of this protocol allows the high
security level transaction to read the low security level
object when it needs to but delays its commit until all
the low security level transactions with earlier timestamps
have completed. In both algorithms, meet all secrecy and
integrity requirements but they are prone to starvation.

5.3 Secure Optimistic Protocol

Kang and Moon [18] presented two different approaches
in the area of optimistic concurrency control for MLS,
single version database. Firstly, read-down conflict pre-
serving serializability captured MLS database consistency
requirements and secures transaction correctness proper-
ties via a single notion. Secondly, it presented a MLS op-
timistic concurrency control scheme that has two proper-
ties: If lower security level transactions were somehow al-
lowed to continue with its execution in spite of the conflict
of high security level transactions, timing covert channel
freeness would be satisfied. This sort of optimistic ap-
proach for conflict insensitiveness and the properties of
non-blocking and deadlock freedom make the optimistic
concurrency control scheme especially attractive to MLS
transaction processing.

5.4 Secure Multiversion Protocol

To eliminate starvation, instead of single version, multi-
ple versions of data is to maintain. The contention to
the same data items by high and low security level trans-
actions can be resolved by maintaing multiple versions of
data where high security level transactions are given older
version of data. The significant efforts based on multiver-
sion time stamp ordering techniques are made by Keefe
and Tsai [19], Jajodia and Atluri [14] and Maimone and
Greenberg [26].

Maimone and Greenberg [26] presented two algorithms
that are based upon multiversion timestamp ordering
technique implemented with single level subjects. These
algorithms avoids covert channel but does not guarantee
one-copy serializability.

It has been argued that the serializability requirement
is overly restrictive for secure databases [26]. Therefore,
alternative and weaker notions of database correctness for
MLS/DBs, such as level-wise serializability, one-item read
serializability, and pair-wise serializability; have been pro-
posed in [14]. These weaker notions of correctness can be
used as alternatives for one-copy serializability. They ex-
ploit the nature of integrity constraints in MLS/DBs to
improve the amount of concurrency.

A multi-version timestamp ordering (MVTO) protocol
for kernelized models based on multilevel secure sched-

uler was suggested by Keefe and Tsai [19]. The difference
between basic MVTO and secure MVTO is that secure
MVTO will sometimes assign a new transaction a times-
tamps that is earlier than the current timestamp. This
effectively moves the transaction into the past respect to
active transactions. To be more precise, when a trans-
action begins, it is assigned a timestamp that precedes
the timestamps of all transactions active at strictly dom-
inated security levels classes and follows the timestamps
of all transactions at its own security level. This approach
to timestamp assignment is what makes it impossible for
a transaction to invalidate a read from a higher security
level. This method has the drawback that transactions at
a higher security level are forced to read arbitrarily old
values from the database due to timestamp assignment.
This problem can be especially serious if most of the lower
security level transactions are long running transactions.
Also, the number of versions required by the protocol does
not have an upper bound, and the version pool being
physically separate from the primary version pool can re-
duce the overall physical clustering and therefore affect
the system performance.

Kogan and Jajodia [15] discussed a concurrency control
mechanism in secure databases using a replicated archi-
tecture, which guarantees serializable execution of concur-
rent transactions. This protocol, however, has the same
problem as that associated with the Secure MVTO algo-
rithm, where transactions at a higher security level might
be forced to read arbitrarily old values.

Amman et al.[3] have proposed a timestamp-oriented
concurrency control protocol that ensures one-copy seri-
alizability [7]. This protocol represents a significant im-
provement over [19], as it requires a fixed number of ver-
sions. Their protocol uses two snapshots of the database,
in addition to the most recently committed version on
which same security level reads (i.e., read operations in
which the issuing transactions are at the same security
level as the accessed objects) and committed updates ex-
ecute. Amman and Jajodia [2] have proposed an exten-
sion of their two-snapshot algorithm to support the exe-
cution of long read-only transactions. A long transaction
T reads old snapshot even at its own security level; this
sets a deadline by which T must complete, failing which
T aborted. In both these papers, the authors assume a
kernelized architecture for data access.

Jajodia and Atluri’s single level scheduler [14] is based
on multiversion timestamp ordering protocol, but differs
from Keefe Tsai [19] scheduler in many respects. Here,
when low security level transaction tries to write a data
item x while high security level transaction already ac-
quired a read lock on x, low security level transaction
creates a new version of x. Consequently, there will be
no chance to open a covert channel, since conflicts are
resolved by giving different versions to each multilevel
transaction. However, there will be an additional problem
of inconsistent versions given to the read operations of a
high transaction, termed a retrieval anomaly [14]. For ex-
ample, when high security level transaction that has been
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blocked waiting for low security level transaction to be
finished resumes, it may see new versions created by low
security level transaction while high security level trans-
action is blocked. In order to solve the retrieval anomaly
for the multilevel transactions, the one-copy serializabil-
ity algorithm is proposed [14]. In the proposed algorithm,
if a data item read by a high security level transaction is
updated and invalidated by a low level transaction, then
after low security level transaction commits, high secu-
rity level transaction is re-executed starting from reading
that invalidated data item in order to produce one-copy
serializable schedule.

The existing multilevel secure concurrency control al-
gorithms [14, 19, 26] use Timestamp ordering protocol
[7] to establish serialization of transactions among var-
ious security levels. However, as the inherent problem
of the timestamp ordering protocol, the scheduler rejects
operations that arrive too late and then aborts the cor-
responding transaction. Due to security reasons, in a
MLS/DBS, all high security level transactions trying to
read low security level data are bound to wait and thus are
aborted later. Considering the fact that the end result of
high security level transactions leads to real-time decision-
making processes, abortion of high security level trans-
actions is never an acceptable solution. Moreover, the
system must maintain a clock in these protocols, which
should be accessed by all transactions at all security levels
in order to obtain the timestamp. This method not only
creates a bottleneck in the system, but also possesses the
threat of a covert channel.

S. Pal. [32] has proposed a locking protocol using two
committed versions of data, which produced one-copy se-
rializable and strict schedules. In this protocol, higher
security level transactions read down on an earlier com-
mitted version of the data while transactions accessing
data at their own security level execute on the later com-
mitted version. The protocol is free of starvation of higher
security level transactions because a higher security level
transaction is never aborted due to a lower security level
transaction. However, the protocol is too conservative. It
imposes a deadline within which transaction must com-
plete if they read data at dominated levels. If they can-
not, then such transactions have to be aborted, possible
resulting in indefinite delay of such transactions. More-
over, higher security level transactions are always given
older versions of the data to read and this may not be
acceptable always.

Mancini and Ray [27] proposed a secure concurrency
control algorithms that is based on locking strategy and
that requires only two versions - one committed and one
non-committed version of data. All read operations pro-
ceed on the committed version while the write operations
proceed on the uncommitted version. All transaction
processing mechanism maintain before image information
(i.e. last committed version) of at least those data items
which have been updates by active transactions (i.e. the
current non-committed version) for recovery purposes in
case these updating transactions abort. Thus using these

two versions of data for concurrency control does not en-
tail any additional cost to data management and hence
seems to be useful. Version management is thus cheaper
than that in [19]. Moreover unlike [32], this algorithm
does not impose any deadlines within which transactions
must complete if they read data at dominated levels.

Kim and Kim [22] proposed a multiversion secure con-
currency control algorithm that satisfies both require-
ments of security and integrity and security is viewed as
correctness criteria stated in [41]. This algorithm is free
of starvation of high transactions by introducing the con-
cepts of conflict transaction set, invisible area and t-lock
while it generates no covert channel and produces serial-
izable schedule using multiversion data regardless of the
number of security levels considered in the concurrency
control. Additionally, it can enhance the availability of
the MLS/DB by the simple strategy of version manage-
ment that is based on the t-locks and only write times-
tamps.

Y. Sohn and S. Moon [40] proposed multiverison
database based secure concurrency controller, named ver-
ified ordering-based secure concurrency controller (VO),
which maintains the information about ordering relation-
ships among transactions. Whenever VO receives an op-
eration from a transaction, it verifies an ordering relation-
ship between the transactions. By referencing the infor-
mation, VO is capable for guarding unnecessarily aborted
transactions and reading excessively outdated data ver-
sions. They also compare the performance of VO with
orange-locking secure concurrency control [29] and order-
stamp secure concurrency control [19] through simulation.

5.5 Other Secure Protocol

Another MLS concurrency control algorithm was pub-
lished in [34] that is based on the ROLL [36]. Although
this method neither aborts high security level transac-
tions nor has the potential of any covert channels, it does
require that the transactions must predeclare their read
and write sets. This is not possible in many applications,
in particular, where the data to be accessed by an oper-
ation is determined by the result of another operation of
the same transaction.

B. Panda [33] presented a concurrency control algo-
rithms based on the Serialization Graph Testing (SGT)
technique to eliminate the problem with all secure con-
currency control algorithms [14, 19, 26]. This approach
uses stored serialization graphs (SSGs) to determine the
appropriate execution order of various MLS transactions
to ensure correctness of transaction execution. The al-
gorithm provides global serializability, guarantees multi-
level security, substantially reduces abortion of high secu-
rity level transactions, allows multiple concurrent transac-
tions at any security level, eliminates system-wide times-
tamp assignment bottlenecks, and allows single-level con-
currency control activities to execute in parallel.
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6 Proposed Secure Multiversion
Concurrency Control Protocol

Recently Kim et al. [22] and Sohn et al. [40] proposed
multiverison database based secure concurrency proto-
cols. [40] has to maintain ordering relationships among
transactions whenever it receives operations, resulting
need more storage space and more access overheads over
[22]. With such advantages in mind, we propose a new se-
cure multiversion concurrency control protocol based on
[22]. Kim et al proposed protocol avoids starvation of
high level transactions and schedules transactions based
on their priorities.

Let L(T ) be the security level of transaction T . Trans-
action Ti has higher priority over transaction Tj if L(Ti) <
L(Tj). Kim et. al. defined invisible area to a high trans-
action Tj as an interval from the time when Tj is blocked
by the execution of another transaction Ti to the time
when Tj resumes its execution. A conflict transaction
set of a transaction Tj denoted as C-setTj , consists of
the transactions that enter an invisible area of Tj due to
conflicts with Ti. Suppose Ti is submitted to the sched-
uler with its read and write sets. If R-setTj

⋂
W-setTi is

not empty, then Ti ∈ C-setTj . To avoid retrieval anomaly
the value updated by transactions in C-setTj are visible
to Tj .

We show the improvement of [22] by modifying the
condition that is used to add a transaction into C-setTj .
Our proposed protocol provides higher degree of concur-
rency, reads recent version by high transaction and fair
execution of all transactions, regardless of their security
levels than existing protocols.

We show that the size of C-setTj can be considerably
reduced by relaxing the condition used in [22] without
compromising on consistency or security of the database.
The examples given below explain this.

Let Tj and Ti be high and low transactions respec-
tively. x and y are low data objects and access by both
Tj and Ti whereas z is high data object and only access by
Tj .r, w and c stands for read, write and commit operation
respectively.

Example 1. Suppose that Tj is currently in execution
when Ti is submitted and L(Ti) < L(Tj). Ti blocks the
execution of Tj and writes y1. Tj may be allowed to read
y1 without creating retrieval anomaly.

Tj : rj [x0] rj [y1]wj [z0]cj

Ti : ri[x0]ri[y0]wi[y1]ci.

Example 2. Suppose that Tj is currently in execution
when Ti and Tk are submitted and L(Ti) < L(Tj).Tj may
be allowed to read zk but not y1 as Ti writes x.

Tj : rj [x0] rj [y0]wj [zk]cj

Ti : ri[x0]wi[x1]ri[y0]wi[y1]ci

Tk : rk[z0]wk[zk]ck.

Based on these observations we modify the membership
of conflict transaction set by modifying the condition that
is used to add a transaction into C-setTj.

Modified Condition:
We divide R-setTj into two parts R-setdoneTj and R-
setremainingTj. Both R-setdoneTj and R-setremainingTj

are dynamically updated when Tj read a data object and
R-setdoneTj ∪ R-setremainingTj = R-setTj.

R-setdoneTj contains data objects read by Tj.

R-setremainingTj contains data objects to be read by Tj.

Let Ti be the transaction submitted to the scheduler
with its read and write sets and L(Ti) < L(Tj). It is
added to C-setTj iff

(R-setdoneTj ∩ W-setTi 6= 0) or ((R-setremainingTj ∩
W-setTi 6= 0) & (R-setTi ∩ W-setTk 6= 0))—(i) where
Tk ∈ C-setTj.

This modification increases concurrency and reduces
the blocking time of high transactions resulting into im-
provement of their response time. The example explains
this.

Example 3. Suppose that Tj is executing when Ti is sub-
mitted and L(Ti) < L(Tj). As at the time of arrival of
Ti condition (i) is not satisfied, Ti is added into C-setTj.
Both Tj and Ti execute concurrently and Tj reads y1 writ-
ten by Ti.

Time : 1 2 3 4 5 6 7 8
Tj : rj [x0] rj [y1]wj [z1] cj

Ti : ri[x0]ri[y0]wi[y1]ci.

This can also be verified that modified condition pro-
duces one-copy serial schedule Ti Tj . The modified version
of the algorithm given in [22] is as follows:

Algorithm 1.

Step 1. The scheduler receives R-setTi and W-setTi

when Ti is submitted.

Step 2. When there is no transaction in execution, the
scheduler executes Ti. When Ti commits, the sched-
uler performs Step 6.

Step 3. When there is a transaction Tj that is currently
in execution, the scheduler has three cases according
to the security levels of engaging transactions:

• Case 1: L(Ti) > L(Tj). Step 4 is performed.

• Case 2: L(Ti) = L(Tj). Step 5 is performed.

• Case 3: L(Ti) < L(Tj). Scheduler blocks Tj

and let Ti enter an invisible area of Tj for the
whole duration of Ti’s execution. The scheduler
executes the operations of Ti immediately such
that a covert channel should not be created. Ti is
added into C-setTj if R-setdoneTj ∩ W-setTi 6=
0. When Ti commits, Step 6 is performed.
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Step 4. Since a low transaction Tj has been running, the
scheduler makes the high transaction Ti wait until
Tj terminates. When Tj commits, the scheduler per-
forms Step 6.

Step 5. Because both transactions are in the same secu-
rity level, the scheduler executes them concurrently
if ((W-setTj ∩ R-setTi = 0) & (W-setTj ∩ W-
setTi = 0)) However If (i) is satisfied the new version
created by Ti are t-locked and not visible to Tj. When
each of Ti and Tj commits, Step 6 is performed.

Step 6. When T was the only transaction executed at
Step 2, the scheduler waits for other transactions to
be submitted. Otherwise, the scheduler selects and
executes those transactions, say Tk, whose security
levels are the lowest among the blocked transactions,
along with new transactions in the same security level
as Tk submitted while Tk has been blocked. Those t-
locks set on the new versions created in the invisible
areas of Tk must not be released until Tk commits.
When Tk terminates, the scheduler releases all the
t-locks by obtaining information from C-setTk. And
the old versions are discarded at this point, if they
are not accessed by any other transaction.

7 Performance Evaluation

We evaluate the performance of proposed secure concur-
rency control protocol and SMVCC [22] via simulation
at two security levels (high and low). In this section, we
first describe the workload and system model used in our
simulations and metrics used to access the performance
of secure concurrency control protocols. We then describe
our results.

In our model, the system consists of a shared-memory
multiprocessor DBMS operating on disk-resident data.
The database itself is modeled as a collection of pages that
are uniformly distributed across all of the disks. Transac-
tions are generated in a Poisson stream and each transac-
tion has an associated security clearance level. A trans-
action consists of a sequence of page read and page writes
accesses. A read access involves a concurrency control
request to get access permission, followed by a disk I/O
to read the page, followed by a period of CPU usage for
processing the page. Write requests are handled similarly
except for their disk I/O, their disk activity is deferred
until the transaction has committed. Here we assume
that the DBS has sufficient buffer space to allow the re-
tention of updates until commit time. A transaction that
is restarted due to a data conflict follows the same data
access pattern as its original incarnation. The following
two subsections describe the workload generation process
and the hardware resource configuration.

7.1 Workload Model

The workload model characterizes transactions in terms
of their security clearance levels and their data accesses.
Table 1 summarizes the key parameters of the workload
model. Transactions arrive in Poisson stream, i.e., their
inter arrival rates are exponentially distributed. The Ar-
riRate parameter specifies the mean rate of transaction
arrivals. A transaction is equally likely to belong to any
of the ClearLevels security clearance levels.

The number of pages accessed by a transaction is de-
termined by normal distribution with mean TransSize,
and the actual pages to be accessed are determined uni-
formly from the database. Due to security reasons, each
transaction can only access data from a specific part of
the database. The database is equally partitioned into
ClassLevels security classification levels. Transaction ac-
cess to data pages is given strictly based on Bell-LaPadula
specifications. That is, a transaction cannot read pages
classified above its clearance level. Also, a transaction is
not allowed to write to pages that have a security clas-
sification below and above its own clearance level. The
WriteProb parameter determines the probability that a
transaction operation is a write.

7.2 System Model

The physical resources of the database system consist of
multiple CPUs and multiple disks. There is a single com-
mon queue for the CPUs whereas each of the disks has its
own queue.

Table 2 shows the resource parameters of the system.
The DatabaseSize parameter gives the number of pages
in the database. The NumCPUs and NumDisks parame-
ters specify the hardware resource composition, while the
PageCPU and PageDisk parameters capture CPU and
disk processing times per data page. The ClassLevels pa-
rameter specifies the number of classification levels in the
system.

7.3 Performance Metrics

In our simulation experiments, the primary performance
metric used is average response times of transactions at
each security level for varying arrival rates. The response
time of a transaction is the time from the start of the
transaction to its final commitment, regardless of the
number of times it has been aborted and restarted. This
is not only a measure of comparison between the different
secure concurrency control protocols, but is also one esti-
mate of fairness since a fair concurrency control protocol
must ensure near identical response times across different
security levels. Throughput can be inferred from response
time. We therefore have omitted the presentation of re-
sults of throughput.
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Table 1: Workload parameters

Parameter Meaning Base Value
ArriRate Mean transaction arrival rate Varies (0- 100)

ClearLevels Number of clearance Levels 2
TransSize Average transaction size 10
WriteProb Write probability 30

Table 2: System parameters

Parameter Meaning Base Value
DatabaseSize Number of pages in the database 500
NumCPUs Number of processors 2
NumDisks Number of disks 4
PageCPU CPU time for processing a data page 12ms
PageDisk Disk service time for a page 35ms

ClassLevels Number of classification levels in the system 2

7.4 Experiments and Results

The simulation program is written in C language. For
each experiment, we ran the simulation with same pa-
rameters for six different random number seeds. Each
simulation ran terminated where at least 2,000 transac-
tions of each security level had committed. The results
depicted are the average over four runs. All results re-
ported in this paper have 95% confidence intervals. In
our simulation experiments, the workload and system pa-
rameter settings are set such that there is significant data
and resource contention in the system, thus helping to
bring out the differences. The parameter settings used
for experiments are shown in Tables 1 and 2.

In Figure 7.4.1, the response times of proposed and
SMVCC [22] are measured for varying arrival rates. In
this figure, we first see that the response time of both
concurrency control protocols is same at low arrival rates.
This is because the contention levels are low, and the
majority of time is spent in disk access and CPU access
rather than in resource queues, lock queues, or transac-
tion aborts. As the arrival rate increases, the impact of
these factors increases, and depending on how much they
increase in each concurrency control approach, the perfor-
mance varies. As the arrival rate increases, the contention
level for data items increases. As a result, in SMVCC
more high security level transactions are blocked to give
the higher priority to low security level transactions than
that of proposed protocol.

The fairness of both protocols can be measured by mea-
suring the response times at each security level for varying
arrival rates. The resulting graph is shown in Figure 7.4.2.
The performance margin of proposed protocol at both se-
curity levels (high or low) is small, indicating a better
measure of fairness than in SMVCC.

8 Conclusions

This paper is an attempt to summarize available literature
pertaining to work in the direction of developing concur-
rency control protocols for multilevel secure database sys-
tems, since the traditional concurrency control protocols
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such as two phase locking, timestamp ordering and opti-
mistic cannot satisfy the multilevel secure requirements.
Although researchers have made efforts to modify the tra-
ditional concurrency control protocol to make them secure
but these protocols suffer from starvation of high secu-
rity level transactions. In this paper, we proposed and
evaluated a new secure multiversion concurrency control
protocol. It was observed that our protocol has better
response than SMVCC. In addition to this, results show
that our protocol achieve fair performance than SMVCC
across different security levels. In this paper, we have re-
stricted ourselves to only two security levels. As a part of
future work, we would like to relax this assumption and
consider multiple security levels.
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