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Abstract

Linkable democratic group signatures (LDGS) [29] allow
every member of a group to trace the identity of any other
member who issued a signature while non-members (with
the help of unique pseudonyms) are only able to link the
signatures issued by the same signer without being able
to trace the signer’s identity. LDGS avoid centralized
management authorities (group managers) and grant each
group member the power to trace and identify the signer.
Although LDGS add nice properties to group signatures,
allowing each member of the group to trace the signer’s
identity requires a full trust in each group member not
to trace or disclose the identity of the signer without a
legal reason (e.g. a dispute). Such a requirement repre-
sents a major obstacle in practice. The existence of at
least one saboteur member inside the group totally vio-
lates the anonymity attribute which is the main merit of
group signatures. Such a traitor may reveal the identity
of the signers to non-members without being detected. In
this paper we introduce a simple, yet efficient traitors re-
sistant LDGS (TR-LDGS) as a security improvement to
the LDGS scheme of [29] to resist traitors in the sense
that, the power to trace and disclose the identity of the
signer must not be in the hands of each member. In-
stead, the power to trace and identify a signer will be
distributed among the members of the group such that a
fraction (majority) of the members may join together to
trace and reveal the signer’s identity while no minority
coalitions are able to perform this task or to disturb the
correct and legal progress of this task.
Keywords: Democratic group signatures, group signa-
tures, linkability, threshold cryptography, zero-knowledge
proofs

1 Introduction

Group signatures (GS) originally introduced in [10] allow
members belonging to a group to sign messages on behalf

∗Part of the work in this paper was accomplished while the au-
thor was visiting the department of computer science, ITE-UCONN,
University of Connecticut, USA.

of the group such that, the signature verifier (whether a
group member or a non-member) is able to check that the
signature is a valid group signature but cannot trace the
identity of the signer. In case of a dispute, the trusted
authority (group manager) can trace the identity of the
signer.

Democratic group signatures (DGS) [24] eliminates the
role of a group manager by (i) allowing the group members
themselves to initialize and setup the group, (ii) control-
ling it over dynamic changes in a collective manner and
(iii) distributing traceability rights to each group individ-
ual. In this case, every group member has the individ-
ual right to trace and disclose the identity of the signer
and hence, anonymity is provided against non-members.
The model in [24] requires unlinkability of signatures, i.e.,
the signature verifier cannot distinguish signatures issued
by the same group member without this member being
traced and disclosed.

DGS schemes differ from threshold signature schemes
(e.g. [14, 15, 21, 30, 31]) in the sense that, in DGS each
group member is granted the right to generate a signa-
ture on a given message individually; a non-member veri-
fier recognizes the signature as anonymously generated by
the group. On the other hand, in threshold signatures, the
signature on a given message is generated by the major-
ity of the group (exceeding a certain threshold), yet, no
coalition of minority (less than or equals the threshold)
can generate the signature.

Linkable democratic group signatures (LDGS) [29] re-
alize linkability of signatures issued by the group members
in a way that preserves the anonymity of the signer. More
precisely, a non-member verifier is able to distinguish sig-
natures issued by the same signer for future reference
without being able to trace the identity of this signer. To
achieve this property, LDGS actually employs the idea of
pseudonym systems introduced in [23]. In this scenario,
each group member (in addition to his unique identity)
will be assigned a unique pseudonym. Given a certain
group member, all signed messages generated by this par-
ticular member will carry his unique pseudonym. A non-
member verifier is able to link signed messages of the same
signer via his pseudonym, yet, the verifier gains no infor-



International Journal of Network Security, Vol.9, No.1, PP.51–60, July 2009 52

mation about the signer’s identity from this pseudonym.
On the other hand, each group member knows the secret
tracing trapdoor parameter, by which, he is able to ex-
tract the identity of the signer from the signer’s unique
pseudonym.

Ring signatures introduced in [34] and further studied
in [39] and [4] do not require any group manager to form
a group. For signature generation, every user builds a set
of public keys that includes his public key and the public
keys of other users. A generated signature does not re-
veal the public key of the signer, but a set of public keys
of all possible signers. Therefore, ring signatures can-
not be used for a direct communication between a verifier
and a signer. Additionally, ring signatures provide un-
conditional anonymity, i.e., no party can reveal the signer
identity.

The problem we want to escalate is that, although the
LDGS introduced in [29] adds nice properties to group sig-
natures, it suffers from a serious weakness: The power to
trace and disclose the identity of the signer is in the hands
of each member of the group. Such individual traceabil-
ity violates the anonymity attribute of group signatures,
since, in practice, it maybe possible to guarantee the hon-
esty of one authority (group manager) as in GS but it
is difficult and almost impossible to guarantee the full
honesty of all the group members as in LDGS. Malicious
behavior of at least one of the group members violates
anonymity and consequently, destroys the main merit of
group signatures. Moreover, in LDGS, such traitors are
undetectable.

LDGS consists mainly of four protocols/algorithms:
protocol setup, algorithm sign, algorithm verify and
algorithm trace. The setup protocol takes as input a
security parameter l, and a number of members n. For
each member Mi, the public output is an identity idi from
the set of identities ID and a pseudonym psi from the set
of pseudonyms PS while the private output is the secret
signing key ski from the set of secret keys SK and the
secret tracing trapdoor parameter k known to each mem-
ber. The protocol requires the existence of a PKI that
allows the group members to authenticate their messages
during setup via their certified public keys. Yet, there
is no third party actively involved in the protocol. The
sign algorithm takes as an input a secret key ski and a
message m and outputs a signature σ on m. The verify
algorithm takes as an input a signature σ, a message m
and the set of pseudonyms PS and outputs a pseudonym
psi if it accepts the signature or ⊥ if the signature is re-
jected. Algorithm-trace takes as input a signature σ, a
message m, the secret tracing trapdoor parameter k, and
the set of pseudonyms PS and outputs either an identity
idi or ⊥ in case of failure.

During the setup algorithm, in the computation of the
secret tracing trapdoor parameter k, the LDGS employs
an authenticated Diffie-Hellman based group key agree-
ment protocol as so-called the contributory group key
agreement (CGKA) protocols e.g. [19, 27, 28]. In a
CGKA protocol, each member i of the group contributes

his public key yi for the interactive computation of the
secret common key k.

In our improvement to the LDGS, we perform modi-
fications to the setup and trace protocols to allow the
group to withstand possible traitors members. Our idea
is to remove the CGKA protocol from the setup proto-
col and employ efficient threshold cryptographic proto-
cols. In this case, the secret tracing trapdoor parameter
k will be shared among the members on a threshold basis.
The members are able to jointly share a secret parameter
which allows the tracing to be performed by the majority
of the members. As a result, minority traitors will not
be able to perform the tracing and are prevented from
disclosing the identity of any signer without a legal rea-
son. Also, the system must be robust against possible
malicious behavior of the traitors during the setup and
trace protocols.

2 Related Work

Since the introduction of group signatures in [10], several
studies and improvements appeared, for example, in [6, 7,
8, 20, 37, 40]. However, these efforts assume the existence
of a trusted party called a group manager. The group
manager alone has the capabilities to disclose the identity
of any signer within the group and to relate (link) two or
more signatures as being produced by the same signer.

Democratic group signatures (DGS) introduced in [24]
drift from the standard model of group signatures by elim-
inating the group manager and grant the tracing rights to
each member in the group. Group members initialize the
group and control it over dynamic changes in a collective
manner. Every group member has the individual right
to trace issued signatures to their signers. The signature
anonymity is provided only against non-members assum-
ing that all members within the group are honest in the
sense that no member (a traitor) reveals the identities of
other members to outsiders.

The work model of [24] requires unlinkability of sig-
natures, that is, it is not possible to relate signatures
produced by the same signer. The lose of linkability is
a direct consequence of removing the group manager.

The recent work in [29] noticed the lose of linkability
in DGS and introduced a solution to this problem via
the idea of pseudonyms introduced in [23]. The linkable
democratic group signature (LDGS) in [29] allows a non-
member verifier to link signatures produced by the same
signer within the group via his pseudonym and use this
pseudonym for future reference to this signer without be-
ing able to link a pseudonym to any particular identity
in the group. One more advantage worth noting for the
LDGS of [29] is that the produced signature is efficiently
shorter than that produced by the DGS of [24]. Yet, a
serious weakness in the LDGS scheme is that, every mem-
ber in the group has the individual capability to trace and
identify a signer and to relate any pseudonym to its corre-
sponding identity. At least one traitor within the group is
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able to completely destroy the anonymity property which
is the main merit of group signatures.

3 Motivations and Contributions

In this section we present our motivations behind the work
introduced in this paper and our contributions.

3.1 Motivations

The work in this paper is motivated by the observation
that, although the linkable democratic group signature
(LDGS) introduced in [29] is more efficient and adds new
properties to democratic group signatures via the idea of
pseudonyms, it suffers from a serious security weakness;
the tracing trapdoor parameter is known to each member
in the group and hence, all members must be honest not to
reveal the identity-pseudonym relation to non-members.
We consider such an assumption to be an obstacle in prac-
tice. The existence of at least one traitor within the group
totally compromise the anonymity property which is the
main merit of group signatures. Such a traitor may dis-
close all the identity-pseudonym relations of all the group
members to non-members. Moreover, such a sabotage ac-
tion is undetectable.

3.2 Contributions

The contributions of this paper is to improve the security
of the LDGS introduced in [29] to resist traitors members
within the group. The tracing trapdoor parameter must
not be known to individuals, yet, it could be shared on a
threshold basis such that, the identity-pseudonym link of
any member is kept secret from the members unless there
exists a legal reason (e.g. a dispute). In case of a dis-
pute, the majority of the members join together to recover
the identity of the signer (related to a given pseudonym).
Our traitor resistant LDGS (TR-LDGS) must be robust
against possible malicious behavior of the traitors. Our
work assumes that there exists minority traitors (at most
1/4 of the members). However, this bound can be im-
proved to 1/3 and further to 1/2 but with high computa-
tion and communication complexities.

4 Existing LDGS: An Overview

In this section we give a detailed description of the
LDGS of [29]. The scheme consists of protocol Setup,
algorithms Sign, Verify and Trace. There are n
members in the group, M1, · · · ,Mn, each member has
his own certified public key to allow authenticated and
confidential communications among the group members.
The system public parameters are two large primes p and
q where q|(p− 1) and a generator g ∈ Z∗p .

Protocol.
Setup: The members initialize the group as follows:

• Each member Mi picks xi ∈R Z∗q as a private pa-
rameter and computes yi = gxi mod p, as his public
identity,

• The members run a CGKA using their published
identities, at the end, each member knows the secret
tracing trapdoor parameter k,

• Each member is able to compute the blinded trac-
ing trapdoor parameter bk = gk mod p and the
pseudonym of any member Mi as psi = (bk, y∗i )
where y∗i = yk

i mod p.

Finally, the group members publish the set of iden-
tities, ID = {y1, · · · , yn} and the set of pseudonyms,
PS = {ps1, · · · , psn} as the group public parameters.
Each member Mi sets his secret key as ski = (xi, k, psi).

Algorithm-Sign: For a member Mi to sign a message
m using his secret key ski, he:

• Picks r ∈R Z∗p , hashes m as H = H(m, r) and com-
putes z = Hxi mod p,

• Prepares a NIZK proof of equality of two discrete
logarithms, ΠLogEq which proves that, logH z =
logbk y∗i ,

• Sends the signature σ on m to the verifier where,
σ = (r, z, psi,ΠLogEq).

Algorithm-Verify: On the reception of a signature σ
on m, the verifier:

• Parses σ as (r, z, psi, ΠLogEq) and psi as (bk, y∗i ).

• Checks whether psi ∈ PS, if not, then return ⊥ and
abort,

• Computes H = H(m, r),

• Performs a NIZK proof verification, VLogEq(H, bk,
z, y∗i , ΠLogEq). If the verification is successful, then
accept σ as a signature on m, else, return ⊥ and
abort.

Algorithm-Trace: Given a pseudonym psi = (bk, y∗i ),
any member is able to trace the identity of Mi by simply
computing (y∗i )1/k = yi.

The LDGS was proven secure in the random oracle
model and proven anonymous assuming full honesty
of the members which is not a practical assumption.
The reader can easily notice that, any member is able
to completely violate anonymity by simply revealing k.
Once anonymity is violated, the group structure becomes
totally useless.
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5 Basic Tools

In this section we describe the basic tools that will be used
to build our TR-LDGS. These tools are partitioned into
two categories: threshold cryptography tools and proofs
of knowledge tools. The reader must be familiar with
these tools in order to follow the description of our TR-
LDGS protocol.

5.1 Threshold Cryptography Tools

In this subsection we describe the threshold cryptographic
tools used in building our TR-LDGS.

5.1.1 Secret Sharing over a Prime Field

Let s ∈ Zq be a secret held by the dealer where Zq is
a prime field. In order to share this secret among a
set P= {P1, · · · , Pn} of n > t players [33], the dealer
defines a polynomial f(x) =

∑t
j=0 ajx

j mod q, he sets
a0 = s and each other coefficient aj 6=0 ∈R Zq. ∀i =
1, · · · , n, the dealer secretly delivers f(i) to player Pi.
In the reconstruction phase, each player Pi broadcasts
f(i), the players are able to compute s from any t + 1
shares using Lagrange interpolation formula, s = f(0) =
Σi∈Bλif(i) mod q where B ⊂ P , |B|= t + 1 and λi is la-
grange coefficient for player Pi.

5.1.2 Verifiable Secret Sharing

Verifiable secret sharing (VSS) extends polynomial secret
sharing in a way that allows the recipients of the shares
to verify that their shares are consistent (i.e., that any
subset of t+1 shares determines the same unique secret).
Assuming n > 2t, the protocol can tolerate malicious be-
haviors (e.g., illegal collaboration, sending wrong values,
deleting values, etc.) of at most t players. We distinguish
two different contributions of VSS; the conditionally
secure VSS due to Feldman [13] and the unconditionally
secure VSS due to Pedersen [26]. To achieve best security
[22], both of them will be used in our TR-LDGS protocol.

Feldman’s VSS. Two large primes p and q are
chosen such that q|p − 1. The primes p and q and
an element g ∈ Z∗p of order q are published as the
system public parameters. The dealer shares the se-
cret s among the players on a t-degree polynomial
f(x) =

∑t
j=0 ajx

j mod q, the dealer also broadcasts
the t + 1 commitments cj = gaj mod p ∀j = 0, · · · , t.
These commitments allow each player Pi to verify
the consistency of his share f(i) by checking that,
gf(i) =

∏t
j=0 cij

j mod p. If this check fails for any share
f(i), Pi broadcasts a complaint. If more than t players
broadcasted a complaint, then at least one of them
is honest and consequently the dealer is disqualified.
Otherwise the dealer reveals the share f(i) for each
complaining player Pi, if the share is correct, Pi is
disqualified, otherwise, if the share does not satisfy the
commitments or if the dealer does not respond, the dealer

is disqualified. During reconstruction of the secret, any
player can check the validity of the share broadcasted
by any other player via the published commitments to
filter out bad shares and safely perform the interpolation.
When it comes to the distributed generation of a secret
key k and the joint computation of gk mod p, Feldman’s
VSS alone is not secure due to the attacks described in
[22].

Pedersen’s VSS. The idea is to use double exponentia-
tion which allows randomization. The public parameters
are p, q, g and h where p, q and g are as in Feldman’s VSS
and h is another element in Z∗p subject to the condition
that logg h is unknown and assumed hard to compute.
In addition to the polynomial f(x) =

∑t
j=0 ajx

j mod q
which holds the secret s as the free term, the
dealer sets up a randomizing t-degree polynomial
r(x) =

∑t
j=0 bjx

j mod q. He secretly delivers (f(i), r(i))
to player Pi ∀i = 1, · · · , n. The dealer also publishes
the commitments cj = gaj hbj mod p ∀j = 0, · · · , t. Each
player Pi verifies the consistency of his share f(i) by
checking that, gf(i)hr(i) =

∏t
j=0 cij

j mod p. If this check
fails for any share f(i), Pi broadcasts a complaint. If
more than t players broadcast a complaint, then at
least one of them is honest and consequently the dealer
is disqualified. Otherwise the dealer reveals the pair
(f(i), r(i)) for each complaining player Pi, if the pair
is correct, Pi is disqualified, otherwise, if the pair does
not satisfy the commitments or if the dealer does not
respond, the dealer is disqualified. During reconstruction
of the secret, any player can check the validity of the
share broadcasted by any other player via the published
commitments to filter out bad shares and safely perform
the interpolation.

5.1.3 Joint Secret Sharing

Joint secret sharing allows the players to jointly share
some secret among themselves without the help of the
dealer.

Joint random secret sharing (JRSS). JRSS
[18] allows a set of n players to jointly share a random
secret without the help of the dealer. Each player Pi ∈ P
picks a random integer ki ∈ Zq and plays the role of
the dealer to share ki among the players over a t-degree
polynomial fi(x) = ki +

∑t
j=1 ajx

j mod q. Each player
Pi ∈ P simply sums the shares he receives from the other
players to compute a share f(i) =

∑n
j=1 fj(i) which is

a point on a t-degree polynomial f(x) with its free term
equals a random secret k =

∑n
i=1 ki mod q.

Joint random verifiable secret sharing (JRVSS).
To withstand malicious behavior of at most t < n/2
players during the JRSS, JRVSS combines the JRSS with
Feldman’s VSS for computational security or Pedersen’s
VSS for unconditional security. Simply, each player
Pi ∈ P picks a random secret integer ki ∈ Zq and plays
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the role of the dealer in the VSS protocol to share this
secret among the other players. Complaints are solved as
in the VSS protocol. Finally, each player sums what he
has to compute his share on a t-degree polynomial, f(x)
with its free term f(0) =

∑n
i=1 ki mod q.

Joint zero secret sharing (JZSS). JZSS is a
special case of the JRSS in which the random secret
shared by each player is a zero. At the end of the JZSS,
each player holds a share f(i) on a t-degree polynomial
f(x) with its free term f(0) = 0.

Joint zero verifiable secret sharing (JZVSS).
As in the JRVSS, to with stand malicious behavior of at
most t < n/2 players during the JZSS, JZVSS combines
the JZSS with Feldman’s VSS for computational security
or Pedersen’s VSS for unconditional security. Simply,
each player Pi ∈ P plays the role of the dealer in the
VSS protocol to share a zero among the other players.
Complaints are solved as in the JRVSS protocol. Finally,
each player sums what he has to compute his share on
a t-degree polynomial, f(x) with its free term f(0) = 0.
Notice that, from the published commitments, each
player can verify that the shared secret is really a zero.
This is true since the commitment to a zero will be
g0 = 1.

5.1.4 The Multiplication Protocol

Given two secrets a and b shared over t-degree polyno-
mials A(x) and B(x) respectively, the multiplication
protocol [38] computes ξ = ab mod q in a robust way
with no information revealed about a or b. Each player
Pi locally computes C(i) = A(i)B(i) modq. In this
case, each C(i) is a share on a 2t-degree polynomial
C(x) = A(x)B(x) mod q with C(0) = ξ. However, pub-
lishing and interpolating the shares C(1), · · · , C(n) re-
veals information about A(x) and B(x) [38], consequently,
randomizing the shares of C(x) is necessary. To random-
ize the shares of C(x) without changing C(0) the players
run a JZVSS to share a zero over a 2t-degree polynomial
R(x) with R(0) = 0. Finally, each player P (i) computes
and publishes D(i) = C(i) + R(i). The result ξ could be
reached by interpolating the 2t-degree polynomial D(x)
with the help of the Berlekamp-Welch decoding scheme [5]
to filter out corrupted shares. Since we are interpolating
a polynomial of degree deg = 2t and we have a maximum
of t malicious players (i.e. at most t possible faults),
using the Berlekamp-Welch bound, the number of shares
needed in order to correctly interpolate the polynomial is
at least deg+2faults+1 = 4t+1. Hence, we need n > 4t.

5.1.5 The Reciprocal Protocol

In the tracing protocol of our TR-LDGS we are faced with
the following problem. Given a secret k which is shared
among the players, generate a sharing of the reciprocal of
k modulo q with no information revealed about k. Each

player Pi holds a share f(i) which is a point on a t-degree
polynomial f(x) with f(0) = k. To compute shares of
k−1, we need n > 4t, the n players run the reciprocal
protocol [1] as follows:

• The players run the JRVSS, at the end each player
holds a share v(i) of a random secret v over a poly-
nomial of degree t.

• The players run the multiplication protocol and
reconstruct the value ξ = kv mod q.

• Finally each player Pi computes his share of the re-
ciprocal as ξ−1v(i) mod q, which is a share over a t-
degree polynomial with its free term equals k−1 mod
q.

5.2 Proofs of Knowledge Tools

In this subsection we describe the proof of knowledge tools
used in building our TR-LDGS.

5.2.1 Proof of Equality of Two Discrete Loga-
rithms

We review the protocol of [11, 35] that is believed to be
a zero knowledge proof of equality of two discrete loga-
rithms. In this protocol, the public parameters are two
large primes p and q such that q|p − 1, two elements
α, β ∈ Z∗p and the two quantities G1, G2 ∈ Z∗p . The prover
(P) proves to a verifier (V) that he knows x ∈ Z∗q such
that G1 = αx mod p and G2 = βx mod p. The protocol
is as follows:

• P→V:
Choose r ∈R Z∗q and send (A = αr mod p, B =
βr mod p).

• V→P:
Choose c ∈R Z∗q and send c.

• P→V:
Send y = r + cx mod q.

• V:
Check that αy = AGc

1 mod p and βy = BGc
2 mod p.

The above protocol can be made non-interactive (we
denote it, ΠLogEq ← PLogEq(α, β, G1, G2, x) ) using a
sufficiently strong hash function H() [3] and setting c =
H(A,B). The protocol ΠLogEq becomes as follows:

• P→V:
Choose r ∈R Z∗q and send (A = αr mod p, B =
βr mod p, c = H(A,B) and y = r + cx mod q).

• V: Check that αy = AGc
1 mod p and βy = BGc

2 mod
p.



International Journal of Network Security, Vol.9, No.1, PP.51–60, July 2009 56

5.2.2 Proof of Existence of Discrete Log Equality

Let yi = αxi mod p for i = 1, .., n and let z = βxi mod p
for some i ∈ {1, · · · , n}. A prover P demonstrates to a
verifier V that he knows one of the logarithms of yi (i ∈
{1, · · · , n}) to the base α and that logα yi = logβ z mod q
without revealing which i. Let the relation holds for i = 1
(i.e. x1 = logα y1 = logβ z mod q). The protocol is as
follows [32]:

• P→V :
Choose ki ∈R Z∗q for i = 1, · · · , n, cj ∈R Z∗q for
j = 2, · · · , n and compute:

– r1 = αk1 mod p, ri = αkiy−ci
i mod p for i =

2, · · · , n.

– t1 = βk1 mod p, ti = βkiz−ci mod p for i =
2, · · · , n.

Send the values (r1, · · · , rn, t1, · · · , tn).

• V→P :
Choose and send c ∈R Z∗q .

• P→V :
Calculate c1 = c − ∑n

i=2 modq, s = x1c1 + k1 mod
q and set si = ki for i = 2, · · · , n. Send
(c1, · · · , cn, s1, · · · , sn).

• V:
Check that c =

∑n
i=1 ci and that ∀i = 1, · · · , n:

αsi = yci
i ri mod p and βsi = zciti mod p.

The above interactive proof can be transformed into a
non-interactive proof that we will denote it by:

Π∃LogEq ← P∃LogEq(α, β, y1, · · · , yn, z)
using a strong hash function H() [3]. This can be done by
setting c = H(y1, · · · , yn, α, z, β, αs1y−c1

1 , · · · , αsny−cn
n ,

βs1z−c1 , · · · , βsnz−cn).

6 Assumptions and Model

We assume the existence of n group members,
M1, · · · , Mn, where n > 4t and t ≥ 1 is a particular
threshold. There exists at most t possible traitors (mali-
cious members). We assume a static adversary model,
however, security against adaptive adversary could be
achieved by plugging a suitable non-committing encryp-
tion scheme (see [2, 25]). Also security against coercive
adversaries could be realized by plugging a suitable deni-
able public key encryption scheme (see [9, 12, 16, 17]).

Each group member has his own certified public key
provided to him by a certain certification authority (CA),
yet, this CA does not participate actively in the group.
Certified public keys allow the members to realize authen-
ticated and private channels among themselves. We also
assume that the non-member verifiers are semi-honest in
the sense that, they follow the execution steps word for
word but they are willing to learn any information leaked
during verification. Finally, the bound on the number of

members could be reduced to n > 3t but with an increase
in computation and communication complexities [21].

7 Our Traitors Resistant LDGS

We are ready to describe the details of our TR-LDGS
which consists of: Protocol setup, algorithm sign, algo-
rithm verify and protocol trace. We assume that there
exists n > 4t group members with at most t ≥ 1 possi-
ble traitors. Also we assume that each member has his
own certified public key to realize authenticated and con-
fidential communications among the members. The initial
public parameters of the system are: two large primes p, q
such that q|p − 1 and two elements g, h ∈ Z∗p such that
logg h is unknown and assumed hard to compute.

7.1 The Protocol

Our TR-LDGS is as follows:

Protocol.
Setup: The members initialize the group as follows:

• Each member Mi picks a private key xi ∈R Zq, com-
putes and publishes the corresponding authenticated
public key yi = gxi mod p. At the end, we have the
set of identities ID = {y1, · · · , yn}.

• The members run a JRVSS with Pedersen’s VSS as
the VSS in place. At the end, each member Mi holds
a share K(i) of a random secret k ∈R Z∗q over a t-
degree polynomial K(x) with K(0) = k.

• The members that are not disqualified in the JRVSS
in the previous step broadcast the commitments to
their shared polynomial based on Feldman’s VSS.
More precisely, if Ki(x) = ki+

∑t
j=1 aj is the polyno-

mial of member Mi, Mi broadcasts gki and gaj mod p
∀j = 1, · · · , t.

• For any member Mi who receives at least one valid
complaint in the previous step, the other members
join to reconstruct his polynomial Ki(x) and values
gki and gaj mod p ∀j = 1, · · · , t in the clear.

• Finally, the remaining good members join to safely
compute gk =

∏n
i=1 gki mod p.

At this point, the members share the tracing trap-
door parameter k over a t-degree polynomial and
have jointly computed the blinded tracing trapdoor,
bk = gk mod p. As a preparation for the tracing
protocol, the members need to compute shares of
k−1 mod q, so they proceed:

• The members run the reciprocal protocol, at the
end, each member holds a share D(i) on a t-degree
polynomial, D(x) with its free term D(0) = k−1 mod
q.
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• Each member broadcasts Feldman’s VSS commit-
ments (i.e. to the base g) of all his chosen random
polynomials during the reciprocal protocol. These
commitments allow the members to validate the
quantities Gi = gD(i) mod p ∀i.

Next, the members compute their pseudonyms. We
must emphasize that, in the LDGS of [29], any mem-
ber can compute the pseudonym of any other member,
since the tracing trapdoor parameter k is known to each
member, the pseudonym of member Mi is computed as
psi = (bk, yk

i ). In our case, the pseudonym of member
Mi cannot (and must not) be computed by any member
other than Mi himself so that no member within the group
can relate any pseudonym to a particular identity unless
the tracing protocol is initialized by the majority of the
members or the signer himself declares his identity. So
we proceed,

• Each member Mi computes y∗i = (bk)xi mod p and
parse his pseudonym as psi = (bk, y∗i ).

This finalizes the setup protocol, each member Mi sets
his secret information ski as ski = (xi, D(i), psi). The
public parameters are the set of identities, ID = {y1,
· · · , yn}, the set of commitments, G = {G1, · · · , Gn}
where Gi = gD(i) mod p and the blinded tracing trapdoor
parameter, bk.

Algorithm-Sign: For a member Mi to sign a message
m:

• Picks an integer r ∈R Z∗q , hashes m and r as H =
H(m, r) and computes z = Hxi mod p.

• Generates a NIZK proof,
ΠLogEq ← PLogEq(H, bk, z, y∗i , xi), which proves that
logH(z) = logbk(y∗i ).

• Generates a NIZK proof,
Π∃LogEq ← P∃LogEq(g, bk, y1, · · · , yn, y∗i ), which
proves that there exists some index i ∈ {1, · · · , n}
such that logg yi = logbk y∗i .

• Parses σi as (r, z, psi,ΠLogEq, Π∃LogEq). σi is Mi’s
signature on m.

Algorithm-Verify: On the reception of σi and m by the
verifier:

• The verifier Parses σi as
(r, z, psi,ΠLogEq, Π∃LogEq) and parses psi as (bk, y∗i ).

• The verifier performs the verification algorithm,
VLogEq(H, bk, z, y∗i ,ΠLogEq), if not successful then re-
ject m and abort. Else,

• The verifier performs the verification algorithm
V∃LogEq(g, bk, y1, · · · , yn, y∗i , Π∃LogEq), if not suc-
cessful then reject m and abort. Else, accept σi as a
signature on m.

Protocol Trace: In case of – for example – a dispute,
the members join to reveal the identity of the signer from
the argued pseudonym psj = (bk, y∗j ). Each member Mi:

• Broadcasts Yi = (y∗j )D(i) mod p, where D(i) is Mi’s
share of k−1 mod q.

• Broadcasts ΠLogEq ← PLogEq(g, y∗j , Gi, Yi, D(i)) to
prove that logg Gi = logy∗j

Yi mod q.

From any t+1 quantities, Yi’s, that pass the proof ΠLogEq

successfully, any member can perform interpolation in
the exponent to compute (y∗j )1/k = yj . Interpolation in
the exponent is as simple as computing:∏

i∈B(y∗j )D(i)λi = (y∗j )
∑

i∈B D(i)λi = (y∗j )k−1
= yj , where

|B|= t + 1 and λi is lagrange coefficient of member Mi.

7.2 Members’ Join and Leave

In our scheme, at least t + 1 members are enough to run
the trace protocol, consequently, n− (t+1) members can
leave the group without affecting the correct operations.
Those members simply declare themselves as wanting to
leave the group and their identities are removed from the
group set of identities and their shares of the reciprocal
are made public by the rest of the members. If more than
n− (t + 1) members leave, the rest of the members must
re-initialize the group.

For a member to join the group and be part of the
trace protocol, the existing members simply initialize a
verifiable secret sharing redistribution (e.g. [36]), to dis-
tribute shares of the reciprocal to the new member. In
brief, given that each player Pi holds a share D(i) of k−1,
then k−1 =

∑
i∈BD(i)λi, |B| = t + 1. For the new set

of n′ players, each player Pi in B re-share the quantity
D(i)λi among the other players over a t-degree polyno-
mial. Finally each player sums the shares he receives from
the other players to compute his new share of k−1 for the
set n′. Verifiability is achieved by injecting VSS schemes.

8 Security Analysis

In the core of the setup protocol, the generation of the
tracing trapdoor parameter (which is a random, uni-
formly distributed value k) is distributed on a threshold
basis and the value bk = gk is made public. The protocol
is called t-secure, that is, in the presence of at most t
malicious members:

Correctness:

• All subsets of t+1 valid shares reconstruct to the
same unique secret parameter k.

• Each member is able to compute the common public
value bk = gk.
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• k is uniformly distributed in Zq and hence, bk is uni-
formly distributed in the subgroup generated by g.

Secrecy: No information on k can be learned by the
coalition of at most t members except for what is implied
by the value bk = gk.

Performing JRVSS with Feldman’s VSS alone is in-
secure, since, traitors can influence the distribution of the
result of Feldman’s VSS to a non-uniform distribution
[22]. More precisely, the attack works as follows: Assume
that two traitors – say M1 and M2 – want to bias
the distribution towards values bk whose last bit is
0. M1 gives members, M3, · · · ,Mt+2 shares which are
inconsistent with his broadcast values, the rest of the
members receive consistent shares. Thus, there will be t
complaints against M1, yet t complaints are not enough
for disqualification. The traitors compute α =

∑n
i=1 gki

and β =
∑n

i=2 gki . If α ends with 0 then M1 will do
nothing and continue the protocol as written. If α ends
with 1 then force the disqualification of M1, this is
achieved by asking M2 to also broadcast a complaint
against M1, which brings the number of complaints to
t + 1. This action sets the public value bk to β which
ends with 0 with probability 1/2. An illustrative example
is as follows: Let 00, 01, 10, 11 be the possible two MSBs
of bk. Now, if bk ends with zero (00, 01) then let α be,
but if bk ends with one (10, 11) then M2 complains (let β
be)and hence the probability that bk ends with one (11)
is 1/2 (notice that (11) is the only situation that makes
the attack fails), hence, the attack fails with probability
1/4 and so we have. Thus effectively the traitors have
forced strings ending in 0 to appear with probability
3/4 rather than 1/2. One must notice that synchronous
broadcast does not prevent such attack to take place.
Hence, the third requirement for correctness and the
secrecy requirement dramatically fail. In Pedersen’s VSS,
the view of the traitors is independent of the value of the
secret k, and therefore the secrecy of k is unconditional,
this eliminates the possibility of the described attack.
The security of the JRVSS can be proven via simulation
[22].

In the sign algorithm of the LDGS of [29], it was
enough that a signer Mi proves to the verifier that
logH(z) = logbk(y∗i ) via PLogEq(H, bk, z, y∗i , xi) since the
set of pseudonyms PS is already published by the group
and already known to the verifier. The verifier sim-
ply verifies that y∗i is a valid pseudonym by searching
this value in PS. In our TR-LDGS, the set PS can-
not be published or else the group members are able to
trace each other (notice that, if a member publishes his
pseudonym, he must sign it for authentication using his
certified public key, which discloses his identity to the
group members). Consequently, in our protocol, when
the verifier receives a signed message from a signer for
the first time, the signer must prove that the included
pseudonym is valid (i.e. related to an identity in the set
ID = {y1, · · · , yn}), hence, the signer Mi includes the

proof P∃LogEq(g, bk, y1, · · · , yn, y∗i ) which proves to the
verifier that there exists some index i ∈ {1, · · · , n} such
that logg yi = logbk y∗i with no information revealed about
the exponent xi or the index i.

In the verify algorithm, since ΠLogEq is ZK, a verifier
that receives a signed message with a certain pseudonym
psi = (bk, (bk)xi) is faced with the computational Diffie-
Hellman problem (CDHP) to compute xi given bk and
(bk)xi . Given the set of identities ID, anonymity of
the signer is preserved, since Π∃LogEq is ZK. The veri-
fier is faced with the decisional Diffie-Hellman problem
(DDHP), that is, given, g, gk, gkxi , distinguish gxi from
gxj for a random xj 6=i ∈ Z∗q .

Finally, algorithm trace is t-resilient, that is at most t
members traitors cannot trace the identity of the signer.
This statement follows from the properties of threshold
structures [22, 38].

9 Evaluations and Comparisons

Since we add a new security service to the LDGS [29], it
is predictable that the computations and communications
complexities will increase accordingly. In the setup pro-
tocol, we replaced the CGKA which is used to produce a
common key k, among the members with a verifiable se-
cret sharing protocol to share k and to resist possible mali-
cious behaviors attempted by at most t members. There
is an increase in the computations and communications
complexities due to the need to compute and publicize
polynomial commitments chosen by each member. As a
result of the setup protocol, the group public parameters
increases over that in [29] by n group elements (contained
in the set of public commitments, G). One must notice
that the setup protocol is performed only once for initial-
izing the group.

In the sign algorithm, the length of the signature (as a
first signature from this group signer) increases due to the
need to include Π∃LogEq in the signature. However, this
proof is performed by the signer only once per verifier to
proof that the signer’s pseudonym is a valid pseudonym
related to some anonymous identity yi, once the verifier
successfully verifies the correctness of the pseudonym, he
simply stores the pseudonym for future messages from
this particular signer. Hence, Π∃LogEq is included only in
the first signed message to this verifier and removed from
the future messages. The increase of complexity in the
algorithm verify is also due to the need to perform the
verification step, V∃LogEq() for each new group signer.

In our protocol trace (an algorithm in the LDGS of
[29]), which is not supposed to be frequently performed
unless there is a legal reason (e.g. a dispute) agreed by
the majority of the members, the complexities increase
due to the need to perform the proof ΠLogEq for each
broadcasted quantity Yi and the need to perform interpo-
lation in the exponent.
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10 Conclusions

The linkable democratic group signature of [29] has the
serious weakness that the power to trace the signer is
granted to each member of the group and hence the as-
sumption of the full honesty of each member is a must. At
least one member traitor totaly violates group anonymity
by simply revealing the tracing trapdoor parameter to
a non-member. In this paper, we introduced a solution
to this security flaw by distributing the power to trace
and identify the signer among the group members on a
threshold bases to resist traitors and prevent them from
violating anonymity of the group. Due to the new security
service we provide, the complexities increase accordingly,
yet, our solution is efficient and practical.
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