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Abstract

This paper1 analyses all 24 possible round construc-
tions using different combinations of the four round
components of the AES cipher: SubBytes, ShiftRows,
AddRoundKey and MixColumns. We investigate how
the different round orderings affect the security of AES
against differential, linear, multiset, impossible differen-
tial and boomerang attacks. The cryptographic strenght
of each cipher variant was measured by the size of each
distinguisher, their probability or correlation value and
the number of active S-boxes. Our analyses indicate that
all these permutations of the AES components have simi-
lar cryptographic strength (concerning these five attacks),
although there are implementation advantages for certain
permutations.
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1 Introduction

The Advanced Encryption Standard (AES) is an SPN-
type block cipher designed by J. Daemen and V. Rijmen
in 1998. The original cipher was called Rijndael, and
it was selected out of fifteen candidates during the AES

Development Process [1], initiated by the National Insti-
tute of Standards and Technology (NIST) in 1997. It
is expected that the AES will become the new de facto
world standard in symmetric cryptography, as the succes-
sor of the Data Encryption Standard (DES) algorithm. In
Sep. 2000, Rijndael was officially standardized as FIPS
PUB 197 [28]. Rijndael (and the AES) have already been
implemented in several programming languages and are
embedded in several software systems [31]. The AES is
the smallest instance of the Rijndael cipher [16], since the
AES operates on 128-bit text blocks, under keys of 128,
192 or 256 bits, for which the cipher iterates ten, twelve
and fourteen rounds, respectively.

The AES has been intensively analysed since 1998.
Most of the known results, though, concern attacks on
reduced-round variants: differential and linear analyses
[12], square [15, 18], impossible differential [6, 30, 29], col-
lision [20], and boomerang attacks [9]. All of these attacks

1Research funded by FAPESP (Fundação de Amparo à Pesquisa
do Estado de São Paulo) under contract 2005/02102-9.

have time complexity lower than that of an exhaustive key
search.

Some papers such as [2, 3] by Biham and Barkan
studied AES variants with different component values
compared to [28], namely, different matrix constants,
primitive and non-primitive irreducible polynomials, and
new parameters of affine transformations. This paper,
nonetheless, analyses the AES cipher without changing

its original components, but only their order, namely,
we change the placement of SubBytes, ShiftRows, Ad-
dRoundKey and MixColumns layers within a round. But,
the order of these four components is the same for all
rounds. Furthermore, the key schedule algorithm does
not change. The contribution of this paper is a study of
the orderings of the round components of AES and its im-
pact on the security of the cipher. Even though the order
of round components in the AES may seem intuitive, one
may ask if there are other orderings that provide either
higher security or significant implementation advantages.
This paper studies the security implications of different
orderings of the round components with respect to dif-
ferential (DC) [7], linear (LC) [27], multiset (M) [11, 14],
impossible differential (ID) [5, 24] and boomerang (B) at-
tacks [9]. The first two techniques are benchmarks for any
modern block cipher. The other ones are considered be-
cause they are among the best known attacks on reduced-
round AES variants2.

This paper is organized as follows: Section 2 give essen-
tial description of AES. Section 3 describes the multiset
attack and its consequences on the 24 round variants of
AES. Section 4 presents differential and linear analyses
of the AES variants. Section 5 describes the encryption
and decryption schemes of the AES variants. Section 6
describes impossible differential distinguishers, and Sec-
tion 7 describes boomerang distinguishers. Section 8 con-
cludes the paper.

2 Round Variants of the AES

The AES is an iterated cipher. But, it is not a Feis-
tel cipher. It rather has a Substitution-Permutation Net-
work (SPN) structure. One full round of the AES con-

2In the sense of requiring much less data than the full codebook,
and much less effort than an exhaustive key search.
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sists of the following four operations in order: SubBytes,
ShiftRows, MixColumns and AddRoundKey. We denote
them by SB, SR, MC, and AKi, respectively, where 0 ≤

i ≤ Nr. Only AddRoundKey is subscripted since it is the
only key-dependent component (and the subkey value is
supposed to change from one round to another). One full
(encryption) round of a text block X in the AES can be
denoted AKi◦MC◦ SR◦SB(X) = AKi(MC(SR(SB(X)))),
namely, composition of operations is evaluated in right-to-
left order. The AES round is just one of the 24 possible
permutations of the four operations: SB, SR, MC, and
AKi. This paper investigates all 24 possible orderings of
round components in the AES, and their security impli-
cations. Concerning the computational cost, all of these
orderings cost the same, since the same components and
the same number of operations are employed in all 24
round variants.

Each round component stands for one quarter of a
round. For convenience, the size of distinguishers will be
measured in quarters of a round, or 0.25 rounds. This
measure is not absolutely precise because some round
components, such as SR and MC, are fixed and key inde-
pendent. It means that they can undone (in the first and
last rounds) effectively shortening the distinguisher.

Every distinguisher contains a number of active S-

boxes, namely S-boxes which effectively participate in the
construction of the distinguisher. For instance, in the
linear cryptanalysis of AES, an active S-box has both
nonzero input and output masks. This concept originated
with the differential cryptanalysis of DES in [13].

3 Multiset Distinguisher

The multiset technique [11] has similarities with the
Square attack [14], the saturation attack [26] and the
integral cryptanalysis [22, 25]. All of these techniques
operate in a chosen-plaintext (CP) setting, and the first
published attack was a dedicated one on the Square block
cipher [14]. Nonetheless, this technique has already been
applied to several ciphers, with or without wordwise op-
erations [17, 23, 25, 26]. A fundamental concept in a mul-
tiset attack is the Λ-set [14], which is a multiset [11] (a set
with multiplicities) containing b full n-bit text block ele-
ments, where n is the block size and b is typically a power
of 2. These n-bit text blocks are analysed by tracing cer-
tain patterns in fixed (but not necessarily contiguous) w

bits, w < n.

The rationale behind the multiset technique is to use
balanced sets of bits to attack permutation mappings (ie.
cipher rounds and its bijective components). Thus, mul-
tiset attacks exploit the bijective nature of internal cipher
components. In particular, ciphers that operate on neatly
partitioned words are the main targets.

The multiset distinguishers for all AES variants in Ta-
ble 2 were constructed similar to the one for Rijndael in
[15]. The multiset trails depend on the internal compo-
nents of the cipher and their order. Figure 1(a) shows a

multiset trail3 (dashed line) for a 4th-order multiset dis-
tinguisher for an AES variant using round scheme (1) in
Table 2. This distinguisher covers 4.25 rounds, holds with
certainty, and has 40 active S-boxes along its trail.

4 Differential and Linear Distin-

guishers

The differential cryptanalysis (DC) technique was devel-
oped by Biham and Shamir [7, 8], and initially applied
to the DES cipher. The linear cryptanalysis (LC) tech-
nique was developed by Matsui in [27]. Both attacks have
become benchmarks for any modern block cipher, includ-
ing the AES [15, 16], as part of the NIST’s requirements
for the AES Development Process. An important feature
of differential and linear distinguishers is the number of
active S-boxes, since the S-box is usually the main nonlin-
ear operator in a cipher. Thus, if a cipher has been care-
fully designed, taking these attacks into account, then the
probability associated to a distinguisher becomes (expo-
nentially) smaller with an increasing number of rounds.

Figure 1(b) depicts a differential trail (a linear trail
uses bit masks instead of differences of pairs of texts)
across four rounds, and involving 25 active S-boxes. The
propagation of differences and masks in the 24 round per-
mutations of AES follows similarly to that of the original
AES in [15].

Taking into account the maximum differential prob-
ability of the AES S-box as 2−6, the probability of
any 4-round differential distinguisher [15] is estimated as
(2−6)25 = 2−150. As a consequence, an attack using this
differential distinguisher would need about 2150 chosen
plaintext, which is infeasible, since the block size is 128
bits. Similarly, assuming the maximum input-output cor-
relation of the AES S-box as 2−3, the maximum input-
output correlation of any 4-round linear distinguisher [15]
is estimated as (2−3)25 = 2−75. As a consequence a lin-
ear attack using such distinguisher would require about
(2−75)−2 = 2150 known plaintexts, which is infeasible.

5 Encryption and Decryption

Frameworks

Each of the twenty four round variants induces an encryp-
tion and a decryption scheme. We have verified separately
that each variant results in similar computational struc-
tures for both encryption and decryption, just like in the
original AES. For example, for scheme (1) in Table 2, the
encryption scheme is C = AKNr ◦ (SR ◦ SB ◦ AKNr−1)
◦ (MC ◦ SR ◦ SB ◦ AKNr−2) · · · ◦ (MC ◦ SR ◦ SB ◦

AK0)(P ).
The corresponding decryption scheme is P = (AK0

◦ SB−1 ◦ SR−1 ◦ MC−1) ◦ (AK1 ◦ SB−1 ◦ SR−1 ◦

3A trail depicts the cipher components along a path taken by
the distinguisher.
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Figure 1: (a) 4th-order multiset (b) differential or linear trail (dashed line) using round scheme (1) of Table 2

Table 1: Differential patterns in ID distinguisher for scheme (1) in Table 2

AK0 δ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SB δ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SR δ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MC δ δ δ δ 0 0 0 0 0 0 0 0 0 0 0 0
AK1 δ δ δ δ 0 0 0 0 0 0 0 0 0 0 0 0
SB δ δ δ δ 0 0 0 0 0 0 0 0 0 0 0 0
SR δ 0 0 0 0 0 0 δ 0 0 δ 0 0 δ 0 0
MC δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ

AK2 δ 0 0 0 0 δ 0 0 0 0 δ 0 0 0 0 δ

SB δ 0 0 0 0 δ 0 0 0 0 δ 0 0 0 0 δ

SR δ 0 0 0 0 δ 0 0 0 0 δ 0 0 0 0 δ

MC δ δ δ δ 0 0 0 0 0 0 0 0 0 0 0 0
AK3 δ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SB δ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SR δ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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MC−1) ◦ · · · ◦ (AKNr−1 ◦ SB−1 ◦ SR−1 ◦ AKNr)(C) =
AK0 ◦ (SR−1 ◦ SB−1 ◦ AK∗

1) ◦ (MC−1) ◦ SR−1 ◦ SB−1

◦ AK∗

2
) ◦ · · · ◦ (MC−1) ◦ SR−1 ◦ SB−1 ◦ AKNr)(C),

where AK∗

i
=MC(AKi). Thus, both schemes share a simi-

lar computational graph, only requiring new subkeys and
inverse round components. A consequence is that both
schemes have the same cryptographic strength, namely,
there is no advantage in attacking one scheme instead
of the other. When a cipher uses significantly different
schemes for encryption and decryption, care must be ex-
ercised to avoid one of them to become weaker than the
other4, and thus more susceptible to cryptanalytic attacks
[4, 21].

6 Impossible-Differential Distin-

guisher

The impossible-differential (ID) technique was due to
Knudsen in [24]. Unlike conventional differential attacks
that look for differentials or characteristics with high
probability, ID techniques look for differentials with prob-
ability zero. The ID approach is the opposite of the one
used in differential analyses. While in the former, the key
suggested most often by the distinguisher is selected as
the potential true candidate, in the latter, all keys sug-
gested by the distinguisher are certainly wrong (the key
not filtered by the ID distinguisher is the correct one). In
this paper, the miss-in-the-middle technique [5] was used
to derive ID distinguishers.

An example of an ID distinguisher for an AES variant
is given in Table 1. This distinguisher applies to scheme
(1) in Table 2 and covers 3.75 rounds. It consists of two
differentials whose (truncated) differences contradict each
other after the MC layer of the second round (16 active
or nonzero byte differences) and before AK2 (12 passive
or zero byte differences). The first (truncated) differential
covers AK0 down to MC in the second round. The sec-
ond (truncated) differential covers SR in the fourth round
up to AK2 in the decryption direction. Both differentials
hold with certainty, but jointly they hold with probabil-
ity zero, because the input to the first differential cannot

cause the output difference of the second differential. The
full distinguisher is depicted in Table 1, where δ denotes a
nonzero xor-difference byte. Similar distinguishers apply
to the other schemes. An good aspect of this distinguisher
is the small number of nonzero byte differences after 3.75
rounds, which reduces the number of key bits recovered
simultaneously during the attack. On the other hand,
the small number of active bytes at the top of the distin-
guisher restricts the number of pairs formed from a single
pool of plaintexts.

4For instance, distinct diffusion layers [10].

7 Boomerang Distinguisher

The boomerang technique is a chosen-plaintext
adaptively-chosen-ciphertext (CPACC) attack, de-
veloped by Wagner in [32]. The approach used for
the AES variants follows that of Biryukov in [9]. The
boomerang technique exploits encryption schemes EK ,
under a secret key K, that can be decomposed into
two pieces EK = E1 ◦ E0, such that E0 is weak in the
encryption direction, and E1 is weak in the decryption
direction. In our context, the term weak means that a
differential (or truncated differential) propagates across
the given Ei piece of the cipher with high probability. A
boomerang distinguisher is composed of short differentials
or truncated differentials covering E0 and E1, separately.
In this way, the original encryption scheme EK is covered
using both chosen plaintext and chosen ciphertext.

For the AES, the E0 part covers (the first) three
rounds, and E1 covers the last 2 rounds of 5-round AES
(Figure 2). The very last round does not have the MC
layer. We have analysed all 24 AES variants separately,
and concluded that the same distinguisher and therefore,
the same attack as described in [9], can be applied to all
24 round variants of the AES. This is a consequence of
the differential patterns that make the E0 and E1 halves
of the boomerang distinguisher.

Table 2 compares the size and minimum number of
active S-boxes (denoted #S) for all 24 round variations
of the AES under five attack techniques described previ-
ously. The line numbered (13) in Table 2 represents the
original AES round structure.

None of the five attacks described in this paper were
implemented. We rather focused on determining the dis-
tinguishers themselves, their size, the number of active
S-boxes and the associated probabilities. These parame-
ters are enough to estimate the attack complexities, and
we noticed that they do not provide significant advantages
compared to the same attacks on the AES.

From these parameters we also observed a correlation
between the minimum number of active S-boxes and the
associated probability of the distinguisher. For instance,
impossible differential (ID) distinguishers hold with prob-
ability zero, and each such distinguisher contains at least
10 active S-boxes. Differential (DC) and linear (LC) dis-
tinguishers hold with estimated probability and correla-
tion values 2−150 and 2−75 (over four rounds [15]), re-
spectively. Both of them contain at least 25 active S-
boxes. Boomerang distinguishers hold with probability
about 2−67.5, and involve 33 active S-boxes. Finally, (4th-
order) multiset (M) distinguishers hold with probability
one and contain at least 40 active S-boxes.

Based on Table 2, we conclude that all permutations
of the four round components in the AES have similar
cryptographic strength against differential, linear, multi-
set, impossible differential and boomerang attacks. Some
orderings of the round components, though, present slight
advantages. For instance, in schemes (19) to (24) in Ta-
ble 2, the SR and MC layers in the first round can be
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Round Inverse Multiset Diff. Characteristic and Imposs. Boomerang
Type Round 1st-order 4th-order Linear Relations Differential

#Rounds #S #Rounds #S #Rounds #S #Rounds #S #Rounds #S
(1) MC◦SR◦SB◦AKi AKi◦SB−1◦SR−1◦MC−1 3.25 21 4.25 40 4 25 3.75 10 5 33
(2) MC◦SR◦AKi◦SB SB−1◦AKi◦SR−1◦MC−1 3.25 21 4.25 40 4 25 3.75 10 5 33
(3) MC◦AKi◦SR◦SB SB−1◦SR−1◦AKi◦MC−1 3.25 21 4.25 40 4 25 3.75 10 5 33
(4) MC◦SB◦SR◦AKi AKi◦SR−1◦SB−1◦MC−1 3.50 21 4.50 40 4 25 3.75 10 5 33
(5) MC◦SB◦AKi◦SR SR−1◦AKi◦SB−1◦MC−1 3.50 21 4.50 40 4 25 3.75 10 5 33
(6) MC◦AKi◦SB◦SR SR−1◦SB−1◦AKi◦MC−1 3.25 21 4.25 40 4 25 3.75 10 5 33
(7) SR◦MC◦AKi◦SB SB−1◦AKi◦MC−1◦SR−1 3.25 21 4.25 40 4 25 4.25 10 5 33
(8) SR◦MC◦SB◦AKi AKi◦SB−1◦MC−1◦SR−1 3.25 21 4.25 40 4 25 4.25 10 5 33
(9) SR◦AKi◦MC◦SB SB−1◦MC−1◦AKi◦SR−1 3.25 21 4.25 40 4 25 4.25 10 5 33
(10) SR◦AKi◦SB◦MC MC−1◦SB−1◦AKi◦SR−1 3.50 21 4.50 40 4 25 4.25 10 5 33
(11) SR◦SB◦AKi◦MC MC−1◦AKi◦SB−1◦SR−1 3.50 21 4.50 40 4 25 4.25 10 5 33
(12) SR◦SB◦MC◦AKi AKi◦MC−1◦SB−1◦SR−1 3.50 21 4.50 40 4 25 4.25 10 5 33
(13) AKi◦MC◦SR◦SB SB−1◦SR−1◦MC−1◦AKi 3.25 21 4.25 40 4 25 4.25 10 5 33
(14) AKi◦MC◦SB◦SR SR−1◦SB−1◦MC−1◦AKi 3.50 21 4.50 40 4 25 4.25 10 5 33
(15) AKi◦SB◦MC◦SR SR−1◦MC−1◦SB−1◦AKi 3.75 21 4.75 40 4 25 4.25 10 5 33
(16) AKi◦SB◦SR◦MC MC−1◦SR−1◦SB−1◦AKi 3.75 21 4.75 40 4 25 4.25 10 5 33
(17) AKi◦SR◦MC◦SB SB−1◦MC−1◦SR−1◦AKi 3.25 21 4.25 40 4 25 4.25 10 5 33
(18) AKi◦SR◦SB◦MC MC−1◦SB−1◦SR−1◦AKi 3.50 21 4.50 40 4 25 4.25 10 5 33
(19) SB◦MC◦SR◦AKi AKi◦SR−1◦MC−1◦SB−1 3.75 21 4.75 40 4 25 4 10 5 33
(20) SB◦MC◦AKi◦SR SR−1◦AKi◦MC−1◦SB−1 3.75 21 4.75 40 4 25 4 10 5 33
(21) SB◦AKi◦MC◦SR SR−1◦MC−1◦AKi◦SB−1 3.75 21 4.75 40 4 25 4 10 5 33
(22) SB◦AKi◦SR◦MC MC−1◦SR−1◦AKi◦SB−1 3.75 21 4.75 40 4 25 4 10 5 33
(23) SB◦SR◦MC◦AKi AKi◦MC−1◦SR−1◦SB−1 3.75 21 4.75 40 4 25 4 10 5 33
(24) SB◦SR◦AKi◦MC MC−1◦AKi◦SR−1◦SB−1 3.75 21 4.75 40 4 25 4 10 5 33

Context CP CP for DC KP for LC CP CPACC
Probability or Correlation 1 ≈ 2−150 for DC ≈ 2−75 for LC 0 2−67.5

CP: Chosen-Plaintext; KP: Known-Plaintext; CPACC: Chosen-Plaintext Adaptively-Chosen Ciphertext.
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Figure 2: 3D view of a boomerang distinguisher for 5-round AES

easily removed. Moreover, it is irrelevant to add a pre-
whitening layer to these schemes because an equivalent
scheme can be obtained by simply commuting the first
subkey after SR and MC, which are all linear operations.
Similarly, the SR layer in the last round in schemes (1) to
(12) can be removed, even with a post-whitening subkey
layer. The AES scheme (13) can also have both the first
and the last SR layers removed (just like the IP and IP−1

in DES [19]).

8 Conclusions

This paper studied all 24 different orderings of the four
round components in the AES cipher against (conven-
tional) differential, (conventional) linear, multiset, im-
possible differential and boomerang attacks. These five
attack techniques were selected since they are among
the most relevant attacks on reduced-round instances of
the AES.Our security evaluation focused on the size, the
probability and the (minimum) number of active S-boxes
for the distinguishers. The minimum number of active
S-boxes is an important security measure because the S-
box is the only nonlinear cipher component in the AES.
From the size and probability of the distinguishers one can
conclude that the attack complexities do not differ signif-
icantly among the 24 permutations of the round compo-
nents (including the AES). Moreover, we have noticed
an apparent correlation between the probability a distin-
guisher holds, and the (minimum) number of active S-
boxes: the higher the probability, the larger the number of

active S-boxes (Table 2).

Our analyses provided evidence that the 24 permuta-
tions of the round components of the AES have similar
cryptographic strength, at least concerning the five at-
tack techniques discussed in this paper. The particu-
lar ordering of round components used in the AES, de-
noted (13), avoids some components to be removed (due
to the non-commutativity of round components, and be-
cause they are key independent), except for the first and
last SR layers. In this case, schemes (8) and (17) (with
pre-whitening) in Table 2 are more attractive than (13)
since the former forbids the first SR layer to be removed,
because the MC and SR operations do not commute.

Whatever the ordering of the round components,
though, both the encryption and the decryption opera-
tions do share a similar computational framework5, which
implies that both operations have the same cryptographic
strength in all 24 round variants. Moreover, this similar-
ity between encryption and decryption also reduces the
implementation costs in hardware and software.
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