
International Journal of Network Security, Vol.9, No.1, PP.17–21, July 2009 17

Improvement on a Trapdoor Hash Function

Fuw-Yi Yang
Department of Computer Science and Information Engineering

Chaoyang University of Technology, Taichung County 41349, Taiwan
(Email: yangfy@cyut.edu.tw)

(Received Nov. 27, 2007; revised and accepted Jan. 30, 2008)

Abstract

By appending some bits to the original signature, a trap-
door hash function converts any signature scheme into
secure signature scheme with very efficient online compu-
tation. Many of them have been proposed. However, all
of them require performing a modular reduction during
the online phase. The paper presents a trapdoor hash
function to get rid of the modular reduction in online
computation.
Keywords: Digital signature, trapdoor hash function

1 Introduction

The digital counterpart to a handwritten signature is the
digital signature, which is an important primitive element
in public key cryptosystems. Generally, a signer signed
on a message (document) and then sent receiver (verifier)
the digital signatures. The recipient verifies signatures
by means of a predefined formula for verification of sig-
natures. The signer may be a host computer, a mobile
computer, or a smart card. Usually the latter two enti-
ties (called mobile signers) are powered by battery, which
implies that they have limited processing capability.

Some trapdoor hash functions [3, 11] have been pro-
posed to economize on the online computation when gen-
erating signature. The calculation after receiving message
to be signed is called online computation. We will dis-
cuss this in detail in a later paragraph. The followings
use a popular signature scheme to illustrate the computa-
tional requirement of this scheme and indicate that a mo-
bile signer may be in a computational predicament when
she/he constructing a signature.

In the RSA public key cryptosystem [10], signer’s cryp-
tographic parameters are selected as follows. Firstly, a
signer chooses a random number e. After choosing e, the
signer also chooses two large primes and computes the
product of them, say N. Let φ(N) denote the Euler to-
tient function, i.e. the cardinality of Z∗N = {a| a ∈ ZN

and gcd(a, N) = 1}. Make sure that e and φ(N) are
relatively prime, namely gcd(e, φ(N)) = 1. Then the
modular inverse of e in the finite group Z∗φ(N) is com-
puted, d = 1/e mod φ(N). The signer publishes public

key (N, e) and keeps secret key (d) privately.

Let H be a collision-resistant hash function, defined
by H : {0, 1}∗ → ZN . A digital signature on a message
m ∈ {0, 1}∗ is obtained by computing s = (H(m))d mod
N . The pair (m, s) is called signed message. It is verified
by testing that se = H(m) mod N .

Before discussing computational cost of the RSA sig-
nature described above, we quantify the cost of computa-
tion. For a typical public key cryptosystem, the bit length
of N is 1024. Therefore, we use MM to denote a modular
multiplication of two 1024-bit numbers modulo a 1024-bit
modulus. Also let |a| stand for the bit length of string a.

Ignoring the computational cost of hash function H(),
generation and verification of signature demand 1.5|d| and
1.5|e| MMs (on average) respectively to complete these
processes. A typical value for |d|may be |d| = |N | = 1024.
Thus constructing a digital signature requires an amount
of 1536 MMs. This would consume 63.9 milliseconds. The
timing was obtained using NTL library in a 3.2 GHz Pen-
tium 4 running XP with 512 M Bytes RAM. Thank for
NTL [5] which is a library for doing Number Theory. For
3.57 MHz Motorola 6805 CPU (the case of smart card
in [9]), the timing will be at least 450 seconds. The
heavy computation is not acceptable in some conditions,
e.g. mobile signer, real-time applications. The notion
of online/offline signature has been introduced in [1] to
deal with the problem. The generation of signature is
thus split up into two phases: offline process and on-
line process. The offline computation is performed be-
fore the message is given. Upon receiving the message to
be signed, the signature is constructed by online compu-
tation, using information that was computed during the
offline phase.

Using the technique of trapdoor hash function pro-
posed in [3], the online cost of generating a RSA signature
is downed from 1536 MMs to only one MM. The work in
[11] further reduces the online cost from one MM to only
one modular reduction of a 1184 bit number modulo a
1024 bit modulus (it is estimated to be about 0.13 MMs).
Section 2 will review the processing and discuss the per-
formance.

International Journal of Network Security, Vol.9, No.1, PP.17–21, July 2009 18

1.1 Contributions

Further improvement in the calculation of online phase is
possible. The paper will propose a scheme to replace the
modular reduction with a conventional multiplication (a
160-bit number multiplied by a 1024-bit number). Usu-
ally, the computational cost required to do a modular
reduction is more expensive than a multiplication. Thus
the online computation is cut down. An implementation
shows that our scheme saves about 30% as compared with
the scheme in [11] (Section 3 describes the details). Since
the processing does not require the operation of division,
it is easier than other schemes to implement in the envi-
ronment of smart cards.

1.2 Organization

Section 2 reviews the scheme of trapdoor hash function
in [11]. In order to describe its usage, an example shows
how to integrate a conventional scheme of digital signa-
ture with the trapdoor hash function. The requirements
of a secure trapdoor hash function are also introduced.
Section 3 describes the proposed schemes, proves the cor-
rectness as well as security. To compare the performances
of the proposed scheme and the scheme in [11], the sizes of
public hash key and secret trapdoor key, the bit length of
appended string, offline computation, and online compu-
tation were listed in a table. Finally, Section 4 concludes
the paper.

2 Scheme Review and Definitions

This section reviews the trapdoor hash function, called
TH, presented in [11] and its associated properties. As-
sume that a composite number n is a product of two safe
primes, namely n = PQ, P = 2p + 1, Q = 2q + 1, and
both p and q are large primes with the same bit size. An
element g with order λ(n) = lcm(P − 1, Q − 1) = 2pq is
selected. Then the secret trapdoor key is TK = λ(n),
and public hash key HK = (g, n). Also defines a collision
resistant hash function H1 : {0, 1}∗ → {0, 1}l, where l is
the security parameter, e.g. l = 160.

The hash operation is defined as:

THHK(m1, r1) = gm1||r1 mod n, (1)

where m1 ∈R {0, 1}l, r1 ∈R Zλ(n).
Note that symbol “a ∈R A” means that an element a

is randomly selected from the set A; m||r represents con-
catenation of strings m and r. Since the values of m1 and
r1 are drawn randomly from the corresponding domains,
the quantity R = THHK(m1, r1) can be computed during
idle time (offline). Also, signer applies signing key to gen-
erate signature, s = H(R)d mod N . The triple (m1, r1, s)
is stored for later usage.

Assume that a signer has determined to sign a tar-
get message m2. Then the signer chooses a stored triple
(m1, r1, s) and performs the trapdoor operation which is

defined as:

THTK(m1, r1,m2)
= r2

= 2k(m1 −m2) + r1 mod λ(n). (2)

In Equation (2), k = |λ(n)| is the bit length of the
trapdoor key TK = λ(n).

2.1 An Example

Perhaps an example will help us to describe the usage of
the trapdoor hash function. This example assume that
a trapdoor hash function and a RSA signature scheme
are combined together to improve the efficiency of online
computation when generating signature.

The hash operation and signing signature are per-
formed in the offline phase. Namely, the signer chooses
two random numbers, m1 and r1, and computes the hash
value, R = THHK(m1, r1). Then signer signs on the re-
sultant hash value. Therefore all of the heavy computa-
tions are calculated in the offline phase.

Upon receiving the target message, M , signer initiates
the online phase and executes the trapdoor operation.
Signer uses the secret trapdoor key to find m2 and r2

which shall lead to THHK(m1, r1) = THHK(m2, r2).
Therefore signer needs not to sign again. The details are
as follows.

Offline computation: Signer chooses at random a pair
(m1, r1) ∈R {0, 1}l × Zλ(n) and performs hash operation
on this pair, i.e., R = THHK(m1, r1) = gm1||r1 mod n.
Then using signer’s secret key d, a RSA signature s is
generated, s = H(R)d mod N. The signer stores the
triple (m1, r1, s) in storage.

Online computation: When receiving the tar-
get message M , the signer performs the trapdoor
operation on (m1, r1) and m2 = H1(M); namely
THTK(m1, r1,m2) = r2 = 2k(m1 − m2) + r1 mod λ(n).
Then the signed message on M is the tuple (M, r2, s).
Note that in addition to the message M and signature s,
an appended string r2 is added to the signed message.

Verification: The signed message is verified by
checking that se = H(THHK(m2, r2)) mod N,
where m2 = H1(M). It is easy to see that
THHK(m2, r2) = THHK(m1, r1). Suppose that the
original signature is secure against generic chosen mes-
sage attack, the resultant signature is enhanced to be
secure against adaptive chosen message attack as shown
by Theorem 1 in [11].

Performance: The major contribution to online compu-
tation (performing THTK()) is the reduction of a 1184
bits number modulo a 1024 bit modulus. It is estimated
to be about 0.13 MMs. The offline computation of trap-
door hash function (performing THHK()) requires 1776
MMs, 1776 = 1.5 · 1184.

International Journal of Network Security, Vol.9, No.1, PP.17–21, July 2009 19

Note that the timing of computations is highly depen-
dent on the underlying software and hardware. The run-
ning times obtained are as follows (using NTL library in a
3.2 GHz Pentium 4 running XP with 512 M Bytes RAM):

• Cost of performing THHK() : 74.3× 10−3 seconds,

• Cost of performing THTK() : 9.5× 10−6 seconds.

2.2 Secure Trapdoor Hash Function

A secure and practical trapdoor hash function must pos-
sess some properties. As introduced in [3, 11], Definition 1
lists these properties.

Definition 1. A secure trapdoor hash function has three
properties:

1) Efficiency: Given hash key HK and (m, r) ∈
{0, 1}l × Zλ(n), the hash value THHK(m, r) is com-
putable in polynomial time.

2) Collision resistant: Given hash key HK, there exists
no probabilistic polynomial time algorithm outputs
two pairs (m1, r1) and (m2, r2) producing the same
hash value with non-negligible probability, where
m1 6= m2, (mi, ri) ∈ {0, 1}l × Zλ(n), i = 1, 2.

3) Trapdoor collisions: Given trapdoor key TK and a
triple (m1,m2, r1) ∈ {0, 1}l×{0, 1}l×Zλ(n), there ex-
ists a probabilistic polynomial time algorithm outputs
a value r2 ∈ Zλ(n) and satisfies THHK(m1, r1) =
THHK(m2, r2). Further, if r1 is uniformly dis-
tributed over its domain then r1 and r2 have statis-
tically indistinguishable distribution in the same do-
main.

3 The Proposed Trapdoor Hash
Function

If we interchange the concatenation order of r and m in
Equation (1) (the Definition of hash operation), the new
Definition of hash operation is as follows:

THHK(m, r) = gr||m mod n.

Then the new trapdoor operation would be

THTK(m1, r1,m2)
= r2

= 2−l((m1 −m2) + 2lr1)
= 2−l(m1 −m2) + r1 = x(m1 −m2) + r1,

where x = 2−l mod λ(n).
Note that the modular reduction in the original trap-

door operation (Equation (2)) disappears. The first pa-
pers in which online signature computations save the
cost of modular reduction are Girault at Eurocrypt’91
[2] and Poupard-Stern at Eurocrypt’98 [8]. The quan-
tity r2 is computed using integer arithmetic as those in

[2, 6, 7, 8, 9]. The bit length of r2 may vary in a wide
range because that r2 is a result of integer arithmetic.
Therefore the new definition is forced to switch the posi-
tion of r and m. We describe the details of the proposed
trapdoor hash function as below.

The setting of parameters are similarly to the setting of
the scheme TH reviewed in Section 2, i.e. n = PQ, P =
2p + 1, Q = 2q + 1, and both p and q are large primes
with |p| = |q|. An element g ∈ Z∗n with order λ(n) = 2pq
is selected. Then publish the hash key HK = (g, n). On
the other hand, the secret trapdoor key TK is computed
as TK = x = 2−l mod λ(n), where l is the security pa-
rameter, e.g. l = 160.
The hash operation is:

THHK(m1, r1) = gr1||m1 mod n. (3)

In Equation (3), m1 ∈R {0, 1}l, r1 ∈R {0, 1}k+l, k =
|λ(n)|.
The trapdoor operation is:

THTK(m1, r1, m2) = r2 = x(m1 −m2) + r1, (4)

where (m1,m2, r1) ∈R {0, 1}l × {0, 1}l × {0, 1}k+l.

3.1 Performance

The running times obtained are as follows (computing
environment is the same as those in Section 2.1):

• Cost of performing THHK() : 97.9× 10−3 seconds,

• Cost of performing THTK() : 6.5× 10−6 seconds.

The online computational cost has been reduced from
9.5 µs to 6.5 µs, save 31.5%. We know that doing a mod-
ular reduction requires more computational power than
that of multiplication. Therefore, the result is consistent
with expectations, since the modular reduction has been
replaced with a conventional multiplication.

However, the appended string, i.e. r, has been length-
ened from 1024 bits to 1184 (or 1185) bits. Also, the tim-
ing of computing hash operation is increased from 74.3 ms
to 90.5 ms, spend 21.8%. The lengthened appended string
causes this increment. Table 1 summarizes the compari-
son between the proposed scheme and scheme TH in [11].

Table 1: Comparison among proposed scheme and TH
Proposed scheme TH in [11]

Trapdoor operation 6.5 µs 9.5 µs
Hash operation 90.5 ms 74.3 ms
Trapdoor keys (bits) 2048 2048
Hash key (bits) 1024 1024
Bits appended 1184 or 1185 1024

* Trapdoor operation is executed in the online phase;
Hash operation is performed during the offline phase.

International Journal of Network Security, Vol.9, No.1, PP.17–21, July 2009 20

3.2 Security of the Proposed Scheme

Section 2.2 requires that a useful trapdoor hash func-
tion must satisfy the properties of efficiency, trapdoor
collisions and collision resistant. In the followings, we
will illustrate that the proposed trapdoor hash function,
satisfies all of the three properties.

Efficiency: Equation (3) describes how to perform
the hash operation. It can be seen that the quantity
THHK(m, r) = gr||m mod n is computed at the cost of
2016 MMs, 2016 = 1.5(|r|+ |m|).

Trapdoor collisions: The trapdoor operation is defined
in Equation (4). Using the trapdoor key x, the quantity
THTK(m1, r1,m2) = r2 = x(m1 −m2) + r1 is calculated
at the cost of a conventional multiplication. It is clear
that if r1 is uniformly distributed over {0, 1}k+l, then r2

is also uniformly distributed over {0, 1}k+l.
Before proving the property of collision resistant, a

lemma is borrowed from [4].

Lemma 1. [4] Assume that n is an RSA modulus, L
is any multiple of φ(n), and |L| = O(|n|k). If n and
L are available, then the factorization of n can be ef-
ficiently computed in time complexity O(|n|4+kM(|n|)),
where M(|n|) = O(|n|log|n|loglog|n|).
Collision resistant: This property will be proved by
contradiction. Assume that public hash key HK = (g, n)
is given and there exists a polynomial time adversary A
outputs two pairs (m1, r1) and (m2, r2) producing the
same hash value with non-negligible probability, where
m1 6= m2 and (mi, ri) ∈ {0, 1}l×Zλ(n), i = 1, 2. Thus the
following equations hold true.

gr1||m1 = gr2||m2 mod n

r12l + m1 = r22l + m2 mod λ(n)
L = (m1 −m2) + 2l(r1 − r2) = 0 mod λ(n)

Since (m1 −m2) 6= 0 we conclude that L 6= 0, which is
a multiple of λ(n).

Now, the quantities of n and 2L (a multiple of φ(n)) are
available. By Lemma 2, we can factor the large composite
number n. The result contradicts the assumption that it
is infeasible to factor a large composite number, which is
a RSA modulus.

4 Conclusions

Trapdoor hash functions can aid any signature scheme to
generate signatures online efficiently. An efficient TH has
been proposed in [11], with our knowledge, it is the most
efficient TH among trapdoor hash functions that have
been proposed.

With the sacrifice of more appended bits and longer
hash operation, the paper proposes a trapdoor hash func-
tion with very efficient in online computation. The on-
line computation is showed to be more efficient than

scheme TH. The proposed scheme seems attractive to the
battery-powered computing devices because no more op-
eration of modular reduction is required in online phase.

Acknowledgments

The author is grateful to the anonymous reviewers for
valuable comments.

References

[1] S. Even, O. Goldreich, and S. Micali, “On-
line/Offline digital signature,” Advances in Cryptol-
ogy (Crypto’89), LNCS 435, pp. 263-277, 1990.

[2] M. Girault, “Self-certified public keys,” Advances in
Cryptology (Eurocrypt’91), LNCS 547, pp. 490-497,
1992.

[3] H. Krawczyk, and T. Rabin, “Chameleon signa-
tures,” Symposium on Network and Distributed Sys-
tems Security, pp. 143-154, 2000.

[4] G. Miller, “Riemann’s Hypothesis and tests for pri-
mality,” Journal of Computer and System Sciences,
vol. 13, pp. 300-317, ACM, 1976.

[5] NTL, Available at http://shoup.net/ntl/.
[6] T. Okamoto, M. Tada, and A. Miyaji, “Efficient ’on

the fly’ signature schemes based on integer factor-
ing,” Proceedings of the 2nd International Confer-
ence on Cryptology in India, Indocrypt, LNCS 2247,
pp. 275-286, 2001.

[7] D. Pointcheval, “The composite discrete logarithm
and secure authentication,” Public-Key Cryptogra-
phy, LNCS 1751, pp. 113-128, 2000.

[8] G. Poupard and J. Stern, “Security analysis of a
practical ’on the fly’ authentication and signature
generation,” Advances in Cryptology (Eurocrypt’98),
LNCS 1403, pp. 422-436, 1998.

[9] G. Poupard and J. Stern, “On the fly signatures
based on factoring,” Proceedings of the 6th ACM
Conference on Computer and Communications Se-
curity, pp. 48-57, 1999.

[10] R. Rivest, A. Shamir, and L. Adleman, “A method
for obtaining digital signature and public key cryp-
tosystems,” Communications of the ACM, vol. 21,
no. 2, pp. 120-126, 1978.

[11] A. Shamir and Y. Tauman, “Improved on-
line/offline signature schemes,” Advances in Cryp-
tology (Crypto’01), LNCS 2139, pp. 355-367, 2001.

[12] D. R. Stinson, Cryptography, Theory and Practice,
CRC Press, 2nd Edition, 2002.

Fuw-Yi Yang received the B.Sc. degree and M.Sc. de-
gree in the electronic engineering from National Taiwan
University of Science and Technology, Taiwan, and the
Ph.D. degree in the Department of Applied Mathematics,
National Chung Hsing University, Taiwan. He is currently
an associate professor with the Department of Computer

International Journal of Network Security, Vol.9, No.1, PP.17–21, July 2009 21

Science and Information Engineering, Chaoyang Univer-
sity of Technology. He is a member of the Chinese Cryp-
tology and Information Security Association (CCISA).
His research interests include computer cryptography,
network security, and information security.

