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Abstract

We propose a new infinite family of cryptographic hash
functions, Edon–R, based on a recently defined candidate
one-way function. Edon–R is a class of hash functions
with variable output lengths. It is defined using quasi-
groups and quasigroup string transformations.
Keywords: Hash function, one-way function, quasigroup

1 Introduction

This is an updated version of the paper [9] with the same
title that was presented at the Second NIST Crypto-
graphic Hash Workshop that was held in August, 2006
in University of California - Santa Barbara, USA.

Cryptographic hash functions are used in a wide range
of applications including message integrity, authentica-
tion, digital signature and public key encryption. A cryp-
tographic hash function takes an input of arbitrary size
and produces an output, also called the hash value, of a
fixed, predetermined size. The important properties of
a cryptographic hash function are the collision-resistance
and the preimage-resistance. Most hash functions are it-
erative and are built using the Merkle-Damg̊ard design of
hash functions [5, 21]. Although the mathematical knowl-
edge about practical construction of cryptographic hash
functions was increasing with slow rate during the last
15–20 years, we can locate at least four breakthroughs in
their theoretical understanding. Those are given in the
following list:

1) The first result from 1989 is that of Merkle [21] and
Damg̊ard [5] where they proved that for the iterated
hash function h to be collision resistant it is sufficient

that its compression function f is a collision resistant
function.

2) The second theoretical result from 1992 is due to Lai
and Massey in [15] where they proved that finding
second preimages of some iterated hash function h
(having a compression function f in its design) and
by fixed initial IV in less than 2n operations is equiv-
alent of finding second preimages of the compression
function f with arbitrary IV in less than 2n opera-
tions.

3) The third important theoretical result is that of Joux
[13] in 2004 were he showed that the workload for
finding second-preimage collisions with equal length
for iterated one-way hash functions is about log(k)×
2n/2, where k is the number of computed hash values.

4) The fourth theoretical result from 2005 is that of
Kelsy and Schneier in [14] where they showed that
the workload for finding second-preimages that are
expandable messages with different length is about
k × 2n/2+1.

Concerning the Merkle-Damg̊ard design, Coron et al.
in [3] and Lucks in [16] made several suggestions how
to strengthen that design while Gauravaram, Millan and
Neito in a recent ePrint paper [6] gave an interesting dis-
cussion on the possibilities that Merkle-Damg̊ard design
for MDx family was, in fact, not properly implemented.

Although general in their approach, the above men-
tioned breakthroughs in the analysis of iterated hash func-
tions are connected with the latest successes in the crypt-
analysis of MD4 family of hash functions [30]. This family
of hash functions was being in use around 15 years and it is
one of the most used cryptographic primitives. Recently,
Wang et al. [33] pointed out some weaknesses of SHA-1
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hash function. Many researchers immediately proposed
SHA-1 to be replaced by SHA-256 (which outputs 256
bits instead of 160 bits of SHA-1). Other candidates from
SHA family include SHA-n, where n ∈ 224, 256, 384, 512.
We can mention here several other members of MDx
family: RIPEMD-160 [25], as well as RIPEMD-256 and
RIPEMD-320 [28].

To have in a reserve hash functions with bigger output
was a strategy that was adopted from several interna-
tional standardization organizations (including NIST and
ISO). However, the costs of transition from one function
to another are enormous, and the time for introducing a
new hash function is estimated from 5 to 10 years.

In this paper we support the concept of designing cryp-
tographic hash functions with variable output lengths.
One such hash function with variable hash lengths, but re-
stricted to 128, 160, 192, 224 or 256 output bits is HAVAL,
proposed in 1993 by Zheng, Pieprzyk and Seberry [34].
However, the principles of the design of HAVAL are simi-
lar to those of MDx family of hash functions and collisions
were found for 128 bit version of the function by Wang
et al. in [32]. Our design allows hash digest sizes with
160, 256, 512, 1024, 2048, or any other number of bits.
As far as we know by that property our design is unique
among proposed cryptographic hash functions. Moreover,
that property becomes even more important from the per-
spective of ever increasing computing power. Namely, at-
tacks with complexity 264 are already accessible using dis-
tributed internet computing, while attacks with complex-
ity 280 may also be feasible after 5–10 years. Therefore,
hash functions with output size less than 160 bits are not
a good choice for long term security. The ever-growing
computing power is forcing designers to redesign secure
hash functions, which is not at all trivial designing pro-
cess. Instead of redesigning and creating new secure hash
functions with larger (but still fix) digest size, we advo-
cate for the design of hash functions with variable length
of output. As an additional argument for our standing we
can mention the analogy with RSA algorithm [29] and its
usage during the last 20 years. As the computing power
was increasing, the length of prime numbers used in RSA
was increasing, but the basic algorithm is still unchanged.

The design of a cryptographically secure hash function
is a sufficient motivation and challenging problem by it-
self, but we had additional motive in the light of the last
visions and revisions on Merkle-Damg̊ard design. Actu-
ally, the number of cryptographically secure hash func-
tions is not very large – see for example the excellent re-
view of Preneel [26] or visit the web page [27] where you
can find a good and updated review of almost all known
secure hash functions.

From the point of view of used mathematical tech-
niques, our design can be treated as one of those designs
which does not rely on ad-hock techniques using XOR-ing
and rotating, but tries to relate the claims of their secu-
rity on some mathematically hard problem. Our design
is based on theory of quasigroups and quasigroup string
transformations [8, 19] and recently introduced one-way

candidate functions [10]. The main point is the hard-
ness of solving non-linear systems of quasigroup equa-
tions, since quasigroups are algebraic structures with one
binary operation, which do not satisfy the usual algebraic
laws used in solving equations (the commutative law, the
associative law, the idempotent law, having zeros or units,
and so on).

A similar approach have been taken by Damg̊ard in
1988 [4] and Gibson in 1991 [7], who designed hash func-
tions based on intractability of discrete log problem, as
well as recently by Contini, Lenstra and Steinfeld in
2005 [2], who proposed a hash function which crypto-
graphic strength relies on the hardness of the number
factorization problem.

The organization of the paper is as follows: In Section
2 we give some basic mathematical definitions and a def-
inition of a one-way function, in Section 3 we define the
hash function Edon–R, in Section 4 we analyze the cryp-
tographic properties of the proposed hash function, and
we conclude the paper by Section 5.

2 Definition of a One-Way Func-
tion R1 : Qr → Qr

In this section we need to repeat some parts of the defi-
nition of the class of one-way candidate functions R1 re-
cently defined in [10] as well as the parts of the conjec-
tured computational difficulties for their inversion. For
that purpose we will need also several brief definitions for
quasigroups and quasigroup string transformations.

A quasigroup (Q, ∗) is an algebraic structure consisting
of a nonempty set Q and a binary operation ∗ : Q2 → Q
with the property each of the equations a ∗ x = b and
y ∗ a = b to have unique solutions x and y in Q. We
deal with finite quasigroups only. Closely related com-
binatorial structures to finite quasigroups are the Latin
squares, since the main body of the multiplication table
of a quasigroup is just a Latin square. More detailed in-
formation about theory of quasigroups, quasigroup string
processing, Latin squares and hash functions you can find
in [1, 17, 18, 20].

In our design we are using finite quasigroups (Q, ∗) of
order |Q| = n, where n ≥ 2 and n = 2w. That means that
the hash functions use |Q|2 = n2, w-bit words of internal
memory for storing the quasigroup. For example if we
take w = 8 then n = 2w = 256 and we will work with
a set of 256 8-bit words (bytes), i.e., we will work with
the set Q = {0, 1, . . . , 255} which in fact is representing
the ASCII set. In such a way, we will need 2562 = 65536
bytes, i.e., 65Kb of internal memory for storing the quasi-
group, which is not small amount if we want to implement
it in some embedded microprocessor. However, the design
allows us to use quasigroups of any order which is a power
of 2, i.e. 8, 16, 32, 64, ..., but the corresponding opera-
tions inside the hash functions will not be on bytes (8-bit
words) but on different w-bit words. Then the needed
internal memory for storing the quasigroup would be 24
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bytes, 128 bytes, 640 bytes, 3 Kb, and so on.
For the description of the algorithm we will use the

following definitions:

Definition 1. ([10] Quasigroup reverse string
transformation R1 : Qr → Qr)

Let r be a positive integer, let (Q, ∗) be a quasigroup
and aj , bj ∈ Q. For each fixed m ∈ Q define first the
transformation Qm : Qr → Qr by

Qm(a0, a1, . . . , ar−1) = (b0, b1, . . . , br−1)

⇐⇒ bi :=
{

m ∗ a0, i = 0
bi−1 ∗ ai, 1 ≤ i ≤ r − 1.

Then define R1 as composition of transformations of
kind Qm, for suitable choices of the indexes m, as follows.

R1(a0, a1, . . . , ar−1) :=
Qa0(Qa1 . . . (Qar−1(a0, a1, . . . , ar−1))).

Definition 2. (Shapeless quasigroup) A quasigroup
(Q, ∗) of order n is said to be shapeless if it is non-
commutative, non-associative, it does not have neither left
nor right unit, it does not contain proper sub-quasigroups,
and there is no k < 2n for which are satisfied the identi-
ties of the kinds:

x ∗ (· · · ∗ (x︸ ︷︷ ︸
k

∗y)) = y, y = ((y ∗ x) ∗ . . . ) ∗ x︸ ︷︷ ︸
k

. (1)

Shapeless quasigroups can be effectively constructed by
using, for example, the Hall’s algorithm [12] for construc-
tion of systems of different representatives of a family of
finite sets. The reason why it is possible to construct
shapeless quasigroups is the huge number of quasigroups
(for example, there are around 2430 quasigroups of order
16 and much more than 2192672 quasigroups of order 256).
Basically, our claims that the family of hash functions
Edon–R that we will define in the next section is infinite
relies upon the fact that the number of finite quasigroups
(and shapeless quasigroups) is infinite and it grows with
double exponential rate with the order of the quasigroup
(see for example [20]).

We want to note that linear quasigroups that are men-
tioned in [10] and that are not suitable for design of quasi-
group one-way functions R1 actually does not satisfy the
criterion of being shapeless, concretely the criterion de-
scribed by the Equation (1).

Our statement that R1 is one-way function, i.e., for
a given string A ∈ Qr it is easy to compute R1(A) and
it is computationally infeasible, for a given B ∈ Qr, to
find an A ∈ Qr such that B = R1(A), is based on the
following hypothesis:

Hypothesis. There is no effective algorithm for solving a
system of non-linear quasigroup equations in a shapeless
quasigroup.

In this moment there is not enough mathematical
knowledge for solving systems of quasigroup equations in
order to prove or disprove the above hypothesis. How-
ever, our quasigroup string transformations can be seen
as a special type of cellular automata operations. The pre-
dictability of cellular automata was investigated by Moore
et al. in [22, 23] in cases when the obtained quasigroups
have some of the properties that shapeless quasigroups
don’t. Moreover Goldmann and Russell [11] have shown
that solving system of equations in non-abelian groups is
NP-complete and Moore, Tesson and Thérien in [24] have
shown NP-completeness for even more general algebraic
structures, i.e., monoids that are not product of Abelian
group and commutative idempotent monoid. Based on
all this discussion we state the following conjecture:

Conjecture 1. In a shapeless quasigroup (Q, ∗), the
function R1 : Qr → Qr is one-way function.

From the previous discussion we can say that having a
shapeless quasigroup, i.e., a quasigroup that does not have
any mathematical property that will help us to reduce
the complexity of the equations that have to be solved,
it seems that only method for solving systems of quasi-
group equations is by combinatorial exhaustive search and
reading from the lookup table that defines the quasigroup.
Next, we give arguments that support the Conjecture 1
from the lookup table point of view, by the following The-
orem (similar but slightly more concise then it is in [10]):

Theorem 1. If the quasigroup (Q, ∗) of order n is shape-
less, then the number of computations based only on the
lookup table that defines the quasigroup (Q, ∗) for finding
a preimage of the function R1 : Qr → Qr is O(nb r

3c).
Proof. It is clear that R1(A) can be effectively com-
puted for any string A = (a0, a1, . . . , ar−1) ∈ Qr in
O(r2) operations. For the inverse task, given a string
B = (b0, b1, . . . , br−1) ∈ Qr, we have to find a string
A = (x0, x1, . . . , xr−1) such that

B = R1(A) = Qx0(Qx1 . . . (Qxr−1(x0, x1, . . . , xr−1))).

Further on, let denote Qxr−1(x0, x1, . . . , xr−1) = (x(1)
0 ,

x
(1)
1 , . . . , x

(1)
r−1) and Qxr−i(x

(i−1)
0 , x

(i−1)
1 , . . . , x

(i−1)
r−1 ) =

(x(i)
0 , x

(i)
1 , . . . , x

(i)
r−1) for i = 2, 3, . . . r. Then

B = Qx0(x
(r−1)
0 , . . . , x

(r−1)
r−1 ) = (x(r)

0 , . . . , x
(r)
r−1),

i.e., bj = x
(r)
j for j = 0, 1, . . . , r − 1. In order for clearer

presentation of these computations, we use the Table 1,
where x

(1)
0 = xr−1 ∗ x0, x

(i+1)
0 = xr−i−1 ∗ x

(i)
0 for i =

1, 2, . . . , r−1, x
(1)
j = x

(1)
j−1 ∗xj for j = 1, . . . , r−1, x

(i)
j+1 =

x
(i)
j ∗ x

(i−1)
j+1 for i = 2, . . . , r, j = 0, . . . , r − 2.

It can be seen from Table 1 and from the definition
of the transformations Qm that we can find the solu-
tions of the equations bi ∗ x

(r−1)
i+1 = bi+1 in indeterminate

x
(r−1)
i+1 , i = 0, . . . , r − 2, and let denote them by b

(r−1)
i+1 .
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Table 1: Tabular representation of the computations of
the function R1.

x0 x1 x2 . . . xr−2 xr−1

xr−1 x
(1)
0 x

(1)
1 x

(1)
2 . . . x

(1)
r−2 x

(1)
r−1

xr−2 x
(2)
0 x

(2)
1 x

(2)
2 . . . x

(2)
r−2 x

(2)
r−1

...
...

...
...

...
...

...
x2 x

(r−2)
0 x

(r−2)
1 x

(r−2)
2 . . . x

(r−2)
r−2 x

(r−2)
r−1

x1 x
(r−1)
0 x

(r−1)
1 x

(r−1)
2 . . . x

(r−1)
r−2 x

(r−1)
r−1

x0 b0 b1 b2 . . . br−2 br−1

After that we can find the solutions b
(r−2)
i+1 of the equa-

tions b
(r−1)
i ∗ x

(r−2)
i+1 = b

(r−1)
i+1 in indeterminate x

(r−2)
i+1 for

i = 1, . . . , r − 2, and so on. After r − 2 steps we have the
solution b

(1)
r−1 of the equation b

(2)
r−2 ∗ x

(1)
r−1 = b

(2)
r−1. Then

Table 1 transforms to Table 2. We can see that no value
for the indeterminate x0, . . . , xr−1 can be obtained.

Let choose a value a0 for x0. Then, as we explained
above, we can determine from Table 2 the values for
x

(r−1)
0 , x

(r−2)
1 , . . . , x

(1)
r−2 and xr−1 and let denote them

as a
(r−1)
0 , a

(r−2)
1 , . . . , a

(1)
r−2 and ar−1. Then we can

also compute the value x
(1)
0 = ar−1 ∗ a0 and let denote

it by c
(1)
0 . After that we can choose a value a1 for x1

and we can transform the Table 2 with new known val-
ues as it is shown in Table 3. It is an elementary fact
from analytic geometry that the intersection will occur
for s ≤ br/3c. (Namely, we can interpret the main diago-
nal as the line y = x which is perpendicular to the minor
diagonal y = a− x. Then the ‘points’ {c(1)

0 , c
(2)
1 , . . . } are

‘laying on’ the main diagonal y = x and the points {a0,
a
(r−1)
0 , a

(r−2)
1 , . . . , ar−1}, are ‘laying on’ the minor diag-

onal. For different values of a (a = r − 1, . . . ) we have
parallels above the minor diagonal y = a− x such as {a1,
a
(r−2)
0 , a

(r−3)
1 , . . . , ar−2} and so on.)

After choosing s = b r
3c values for x0, x1, . . . , xs we

will reach the intersection point between the main di-
agonal and a parallel that lies above the minor diago-
nal. Then a collision can happen in fulfilling the Ta-
ble 3. In fact, we have to check if several equalities of kind
c
(s)
s ∗c

(s−1)
s+1 = a

(s)
s+1, c

(s+1)
s−1 ∗c

(s)
s = a

(s+1)
s , c

(s−1)
s+1 ∗c

(s−2)
s+2 =

a
(s−1)
s+2 , . . . are satisfied. (Again by the analogy with the

analytic geometry representation, we have to address to
one ‘plane point’ two values, and those values have to be
equal.) There are |Q|br/3c = nbr/3c possible choices for
x0, x1, . . . , xs. In average, after 1

2nbr/3c choices we will
find the right choice. It follows that we have to make
O(nbr/3c) guesses for exact completing of the Table 1, i.e,
for finding a pre-image A = (a0, a1, . . . , ar−1) of the given
string B = (b0, b1, . . . , br−1) such that B = R(A).

Table 2: Straightforward computations for inverting the
function R1, from the knowledge of the vector B.

x0 x1 x2 . . . xr−2 xr−1

xr−1 x
(1)
0 x

(1)
1 x

(1)
2 . . . x

(1)
r−2 b

(1)
r−1

xr−2 x
(2)
0 x

(2)
1 x

(2)
2 . . . b

(2)
r−2 b

(2)
r−1

...
...

...
...

...
...

...
x2 x

(r−2)
0 x

(r−2)
1 b

(r−2)
2 . . . b

(r−2)
r−2 b

(r−2)
r−1

x1 x
(r−1)
0 b

(r−1)
1 b

(r−1)
2 . . . b

(r−1)
r−2 b

(r−1)
r−1

x0 b0 b1 b2 . . . br−2 br−1

Table 3: Computations for inverting the function R1,
from the knowledge of the vector B and guessed values
for a0 and a1.

a0 a1 x2 . . . xr−4 xr−3 ar−2 ar−1

ar−1 c
(1)
0 c

(1)
1 x

(1)
2 . . . x

(1)
r−4 a

(1)
r−3 a

(1)
r−2 b

(1)
r−1

ar−2 c
(2)
0 c

(2)
1 x

(2)
2 . . . a

(2)
r−4 a

(2)
r−3 b

(2)
r−2 b

(2)
r−1

xr−3 x
(3)
0 x

(3)
1 x

(3)
2 . . . a

(3)
r−4 b

(3)
r−3 b

(3)
r−2 b

(3)
r−1

...
...

...
...

...
...

...
...

...
x3 x

(r−3)
0 a

(r−3)
1 a

(r−3)
2 . . . b

(r−3)
r−4 b

(r−3)
r−3 b

(r−3)
r−2 b

(r−3)
r−1

x2 a
(r−2)
0 a

(r−2)
1 b

(r−2)
2 . . . b

(r−2)
r−4 b

(r−2)
r−3 b

(r−2)
r−2 b

(r−2)
r−1

a1 a
(r−1)
0 b

(r−1)
1 b

(r−1)
2 . . . b

(r−1)
r−4 b

(r−1)
r−3 b

(r−1)
r−2 b

(r−1)
r−1

a0 b0 b1 b2 . . . br−3 br−4 br−2 br−1

We can derive r quasigroup equations from Table 1
with indeterminate x0, x1, . . . , xr−1, but the form of those
equations is quite complicated. Example 1 shows how
the system of equations looks like for a simple case when
r = 3.

Example 1. Let r = 3. Then at first we have the follow-
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ing equalities from Table 1:

x
(1)
0 = x2 ∗ x0;

x
(1)
1 = (x2 ∗ x0) ∗ x1;

x
(1)
2 = ((x2 ∗ x0) ∗ x1) ∗ x2;

x
(2)
0 = x1 ∗ (x2 ∗ x0);

x
(2)
1 = (x1 ∗ (x2 ∗ x0)) ∗ ((x2 ∗ x0) ∗ x1);

x
(2)
2 =

(
(x1 ∗ (x2 ∗ x0)) ∗ ((x2 ∗ x0) ∗ x1)

)

∗(((x2 ∗ x0) ∗ x1) ∗ x2

)
.

From them, we obtain the following system of quasigroup
equations with indeterminate x0, x1, x2:





b0 = x0 ∗ (x1 ∗ (x2 ∗ x0))
b1 = b0 ∗

(
(x1 ∗ (x2 ∗ x0)) ∗ ((x2 ∗ x0) ∗ x1)

)

b2 = b1 ∗
((

(x1 ∗ (x2 ∗ x0)) ∗ ((x2 ∗ x0) ∗ x1)
)∗

∗(((x2 ∗ x0) ∗ x1) ∗ x2

))
.

Since the above system is enough simple, one can
show that for any given x0 ∈ Q there are uniquely de-
termined values of x1 and x2. Thus, the system has
|Q| = n = nb3/3c different solutions (x0, x1, x2). After
that we have to check which one of the solutions is a
preimage of (b0, b1, b2).

We notice here that the expressions x
(j)
i are quite com-

plicated when i ≈ j, and in this case they contain expo-
nential number of terms. Hence, even solving a system of
equations for not so large values of r is not effective.

3 Edon–R Hash Algorithm

Having one-way quasigroup function R1, we now define a
hash algorithm named “Edon–R” that map a message M
of arbitrary length of l ≤ 264 words (where by word we
mean a w-bit word) into a hash value of N words. The
number N is the input parameter as it is the message M
as well.

The definition of Edon–R hash function includes one
string of length 2N and one string of length N , where
N is the desired hash digest size in w-bit words. Those
strings are the following:

1) String H = (h0, h1, . . . . . . , h2N−1) of length 2N that
holds intermediate values of hashing Hi. The initial
value H0 is

H0 = (h0, h1, . . . , h2N−1)
= (0 mod 2w, 1 mod 2w, . . . , 2N − 1 mod 2w).

2) The string Mi = (m0, m1, . . . , mN−1) which holds
the i-th part of the padded message M ′. More con-
cretely, having a message M = b1||b2|| . . . ||bj || . . . ||bl

that has length of l w-bit words, (we use the sym-
bol || for operation of concatenation) by padding
the message we will produce a new message

M ′ = b1||b2|| . . . ||bj || . . . ||bl||l1||l2|| . . . ||lt||b1|| . . . ||bj ,
where l1||l2|| . . . ||lt is the w-bit conjugate of the num-
ber l (l is considered as 64 bit number and t =
b 64

w c + 1), and j ≥ 0 is the smallest nonnegative in-
teger such that l + t + j ≡ 0 mod N . Then, we will
denote the parts of N consecutive w-bit words as

M ′ ≡ M1||M2|| . . . ||Mk

where k = l+t+j
N , and the length of every Mi is N

w-bit words.

Note that our padding is very similar with popular
Merkle-Damg̊ard strengthening, but still it differs from
it by the usage of message bits from its beginning.

Edon–R algorithm

Input: (Q, ∗), N and M , where:
(Q, ∗) is a shapeless quasigroup of order 2w, w ≥ 4,
the number N is such that the length of the hash
output is w ×N bits and
M is the message to be hashed.

Output: A hash of length w ×N bits.

1. Pad the message M , so the length of the padded
message M ′ is multiple of N w-bit words i.e. |M ′| =
k ×N .

2. Initialize H0 = (0 mod 2w, 1 mod 2w, . . . , 2N −
1 mod 2w).

3. Compute the hash with the following iterative pro-
cedure:

For i = 1 to k do
Hi = R1(Hi−1||Mi) mod 22wN ;

Output:
Edon-R(M) = Hk mod 2wN

The one-way function R1 in this concrete realization is
considered as transformation Q3N → Q3N (i.e., we take
r = 3N) and then, for obtaining the intermediate value
Hi, we just apply the operation mod 22wN that takes the
last 2N w-bit words from the result of R1. Finally, since
the requested output from the hash function is N w-bit
words, we take just the last N w-bit words from the Hk

and that is denoted as the operation mod 2wN .
The doubling of the internal memory in our design is

done by the fact that in every iterative step of its com-
pression function, the strings of length 3N are mapped
to strings of length 3N and then only the last significant
2N letters are kept for the next iterative step. Thus, by
similar discussion as in the previous subsection (on the
infeasibility of solving nonlinear quasigroup equations in
shapeless quasigroups) we can claim that the workload
for finding preimages and second-preimages for any hash
function of the family Edon–R is 2N hash computations.
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Table 4: Experimental testing of the Birthday attack on
Edon-R with differen number of n bits of the hash output.
The column T = 2

n
2 is the theoretically expected num-

ber of messages before finding a collision and the column
Edon-R shows the actual number of random messages
that we examined before finding a collision.

n T = 2
n
2 Edon-R

24 212 = 4, 096 6,258
32 216 = 65, 536 50,681
40 220 = 1, 048, 576 1,023,436
48 224 = 16, 777, 216 19,280,524

Table 5: Experimental examination of the avalanche cri-
terion. The first column labelled as n is the number of
bits of the hash output. The column Edon-R has the cal-
culated average Hamming distance H̄ and standard devi-
ation σ.

n Edon-R

40 H̄ = 20.00, σ = 3.16
64 H̄ = 32.00, σ = 4.00
80 H̄ = 40.00, σ = 4.47
128 H̄ = 64.00, σ = 5.66
160 H̄ = 79.89, σ = 7.03
256 H̄ = 128.00, σ = 8.01
320 H̄ = 159.39, σ = 13.27
384 H̄ = 191.43, σ = 14.34
512 H̄ = 255.97, σ = 11.31
1024 H̄ = 512.00, σ = 16.01

3.1 Some Initial Experimental Tests of
Edon–R

The Edon–R’s property to give hash outputs with vari-
able lengths can be used to test Edon–R algorithms for
collisions and resistance on “Birthday attack”. With the
C reference implementation of Edon-R we have chosen
the number of output bits to be relatively small (24, 32,
40 and 48 bits), since for those cases we could examine
all possibilities with modern PC computer in reasonable
time. The number of examined input messages before
finding a collision is shown in Table 4 and it is in compli-
ance with the “Birthday attack” level of 2

n
2 , where n is

the number of bits in the hash output.
We have also examined the avalanche property of

Edon–R family of hash functions. Namely, we have made
experiments measuring Hamming distance of the hash
outputs when original messages differ in 1 bit. For that
purpose for every n bits (n ∈ {40, 64, 80, 128, 160, 256,
320, 384, 512, 1024}) we generated 1,000,000 pairs of
messages (M1,M2) with random length from 100 to 1100

bytes and the difference between M1 and M2 was 1 bit
(the position of that one bit was also randomly chosen).
The summary of the experiments is presented in Table 5.
As it is shown on Table 5, Edon–R hash functions posses
expected avalanche property, i.e., when two messages dif-
fer only in one bit, the expected Hamming distance be-
tween their n-bit hashes should be approximately n

2 .

3.2 Speed Analysis of the Algorithm

If we look at the definition of Edon–R, we will notice
that the operations are mostly operations to determine
memory location and the value in that location, (i.e., ref-
erences to one dimensional or two dimensional arrays).
So, from the perspective of the design of other hash func-
tions (that are using mostly bit operations in registers,
but also have references to one dimensional arrays) we
can say that Edon–R is using slower approach, because
operations with memory are several times slower then op-
erations with registers. Nevertheless, we think that the
properties to have variable lengths of hash output, to have
stronger mathematical indications about function’s strong
collision resistance, as well as the fact that we have infi-
nite number of cryptographically strong hash functions,
is worthwhile. Moreover, modern microprocessors have
enough cash memory of Level 1, working with the speed
of the microprocessor, for storing the whole quasigroup (of
order 64 × 64, or 256 × 256) and other one-dimensional
strings of Edon–R, so the operations can be executed in-
side the microprocessor and its Level 1 cash memory.

Another approach that can further increase the speed
of execution of Edon–R can be in design of hardware im-
plementation in a special microprocessor that will execute
its compression function R1 in parallel, reducing the ex-
ecution time to O(N) microprocessor cycles.

4 Conclusions

We have defined an infinite class of one-way hash func-
tions Edon–R with variable length of output. The cryp-
tographic strength of Edon–R hash functions relies on
conjectured computational infeasibility to solve system of
quasigroup equations in shapeless quasigroups.

The property of having possibility to choose the length
of hash output can be used in implementation of the ap-
plications that require hashes that have lengths different
then 128, 160, 256, 384 or 512 bits. With Edon–R you
can produce hash outputs that are 11 or 10111 bytes long.
If some day, the computing power of the computers would
allow to find collisions of 20 bytes long hashes by brute
force, then the design of Edon-R will not change. Only
the output of the hash functions will be increased.

Edon–R is not a single cryptographic hash function
but a huge (infinite) class of cryptographic hash func-
tions, and that fact can be effectively used in the design
of different cryptographic protocols.
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The compression function R1 of Edon–R can be im-
plemented in hardware in parallel manner and then its
execution time can be reduced only to O(N) micropro-
cessor cycles.
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