
International Journal of Network Security, Vol.8, No.3, PP.243-252, May 2009 243

LCASE: Lightweight Cellular Automata-based
Symmetric-key Encryption

Somanath Tripathy1 and Sukumar Nandi2

(Corresponding author: Somanath Tripathy)

Indian Institute of Information Technology and Management, Gwalior (Email: somanath.tripathy@gmail.com)1

Indian Institute of Technology, Guwahati (Email: sukumar@iitg.ac.in)2

(Received Feb. 21, 2008; revised May 9, 2008; and accepted May 30, 2008)

Abstract

We propose a lightweight block cipher that supports 128-
bit block size with 128-, 192- and 256-bit keys, to confirm
with the Advanced Encryption Standard (AES) specifica-
tion. All components of LCASE are chosen to be cellular
automata-based so as to achieve higher parallelism and
simplify the implementation. Apart from that, the other
virtues of LCASE are its high speed and cheap cost along
with being resistant against timing analysis attacks.
Keywords: Block cipher, cellular automata, lightweight
cryptography

1 Introduction

Recent advancement of communication and computing
technologies introduces different types of portable devices
that populate in our day to day life. These devices have
limited battery power, restricted storage and low compu-
tation power to bring the device in affordable cost and
portable size. Information security is of primary concern
for all users irrespective of the computing device being
used. Among the different approaches for achieving in-
formation security, the present work concerns with sym-
metric key cryptography [15]. Variety of encryption al-
gorithms are available to encrypt the data. Execution
of the traditional encryption algorithms consume time,
space and energy. Moreover, side channel attacks are
based on time and power that can be applied to the block
ciphers implemented on smart card technology [12]. Also
protecting implementation against these kinds of attacks
is usually difficult and expensive.

Application of cryptographically strong algorithm such
as AES-Rijndael [8] leads to significant transmission de-
lay, and require high computations as well as large storage
capacity. It leads to infeasible to incorporate the strong
cryptographic algorithms in the resource constrained de-
vices. On the other hand, encryption algorithm ICE-
BERG [24] proposed for its implementation with special
emphasis to the reconfiguration hardware. However, the

software implementation is not suitable i.e., not cost ef-
fective with respect to storage requirement and/ or speed.

Data dependent permutation (DDP)-based fast en-
cryption algorithms are appeared to be faster and efficient
for high speed networks. Recently, Cobra-H64 and Cobra-
H128 were proposed in [22] use switchable operations to
prevent the weak keys identified against the earlier DDP-
based encryption techniques. These ciphers are specially
emphasized for high speed performance hardware imple-
mentation but requires more hardware resources. On the
other hand, Cobra-S128 [16] proposed for software imple-
mentation uses addition and subtraction modulo 232 op-
erations. These DDP -based techniques even though are
optimized for hardware or software implementation, con-
sumes more resources (area,storage, computation power)
lead them unsuitable for implementing in resource con-
strained devices. A suitable alternative to this is to use
techniques those are fast in terms of parallel operations
and lightweight in terms of both, computation and stor-
age requirements.

The inherent parallelism property of Cellular Au-
tomata (CA) has been exploited by several researchers
to design high speed encryption schemes [18, 27]. The
cipher proposed in [27] can not guarantee security un-
less the size of key is so high. Because the same rule
is applied repeatedly, the seed value i.e, the secret key
can be determined easily [11]. The cipher proposed in
[17] was broken in [5] due to the affine property of used
CA in [19]. Recently, a reversible CA (RCA) based en-
cryption algorithm is proposed in [19] that satisfies the
strict avalanche criteria, but trades off with additional
communication overhead. In [18] a CA based cryptosys-
tem (CAC) is proposed, where non-linearity is achieved
by intermixing affine CA with non-affine transformations.
CAC uses two CAs called major CA and minor CA, the
later one used to transform a secret key into a secret state
by which the major CA is operated. Unfortunately, the
CAC scheme lacks in detail on how to construct the mi-
nor CA, major CA and has been broken successfully in [2]
using a few chosen plaintexts. It is due to the fact that
the whole encryption operation can be converted to an



International Journal of Network Security, Vol.8, No.3, PP.243-252, May 2009 244

equivalent transformation in which the secret key compo-
nents linearly involved with. Thus, none of these works is
reported to propose a secure and resource efficient crypto-
algorithm. The main reason for non-satisfying function-
alities of the above mentioned cryptosystems is basically
due to the structure of encryption technique which can-
not be attributed to the characteristics of CA. Instead,
CA can be used as a high speed cipher constructing de-
vice exploiting its complex and random output generation
capability.

In this paper, we propose a resource efficient, eas-
ily realizable, and faster symmetric-key cryptosystem
called LCASE (Lightweight Cellular Automata-based
Symmetric-key Encryption). A rudimentary idea of this
work, without taking into account the proper key schedul-
ing and security analysis, has been presented in [26]. The
proposed block cipher is simpler to implement in both
hardware and software, along with being resistant against
timing analysis attack. Furthermore, the resulting de-
sign does not require any cost-effective S-box which needs
extra storage. Nevertheless, implementation of (non-
optimized code) LCASE is faster than (optimized code)
AES-Rijndael [7].

The paper is organized as follows. The Section 2 dis-
cusses briefly about CA. Section 3 discusses the design
rationale which is chosen for the proposed cryptosystem.
Operational details of the proposed encryption process
and key schedule are presented in Section 4. Security
of the proposed technique, against various cryptanalysis
attacks is discussed in Section 5. Section 6 shows the
effectiveness of the implementation aspect of LCASE by
comparing with some of the existing schemes.

2 Cellular Automata (CA)

Cellular automata (CA) is a dynamic system which con-
sists of a number of identical cells. The states of each
cell are updated synchronously at discrete time steps
according to a local update rule. This local rule is a
function of the present state of its neighbors. For in-
stance, in a 2-state 3-neighborhood CA, the evolution
of ith cell (xi) of X can be formulated as a function
of the present state of (i − 1)th, ith, and (i + 1)th cells;
xi(t + 1) = f(xi−1(t), xi(t), xi+1(t)). The vector X(t) =
(x1

(t), x2
(t), . . . , xn

(t)) is called the configuration at time
t of the n-cell CA. Here, f denotes the next state function.
There are 223

= 256 possible different next state functions
for a 2-state, 3-neighborhood CA. Each of these next state
function specified by a decimal number, is called as rule
number. Table 1 shows the next states computed accord-
ing to rule 30, rule 45 and rule 218. The topmost row
shows all possible 8 configurations at instant t. The states
at the instant of time (t + 1) are computed according to
the rules as given in subsequent rows of the table.

Denoting the symbols ¬,∨,∧, and ⊕ respectively for
logical NOT, OR, AND and XOR operations, the Equa-
tions (1), (2), and (3) are respectively representing the
combinational logics for rule 30, rule 45 and rule 218 CA.

It is evident from Table 1.

xi(t + 1) = xi−1(t)⊕ (xi(t) ∨ xi+1(t)); (1)

xi(t + 1) = xi−1(t)⊕ (xi(t) ∨ x¬i+1(t)); (2)

xi(t + 1) = (xi(t) ∧ xi+1(t)) ∨ (xi−1(t)⊕ xi+1(t)). (3)

Preserving the inheritance property of CA the 3-
neighborhood dependency positions can be altered. The
ith bit of the resultant configuration depends on ith, (i +
1)th, (i+2)th bits rather than (i−1)th, (i)th, (i+1)th bits
in customized CA. This form of CA with skewed rule 30
and skewed rule 45 can be defined as

xi(t + 1) = (xi(t)⊕ (xi+1(t) ∨ xi+2(t)); (4)
xi(t + 1) = (xi(t)⊕ (xi+1(t) ∨ x¬i+2(t)). (5)

The important feature of these skewed rules is that
these operations are reversible i.e.,

xi(t) = (xi(t + 1)⊕ (xi+1(t + 1) ∨ xi+2(t + 1));
xi(t) = (xi(t + 1)⊕ (xi+1(t + 1) ∨ x¬i+2(t + 1)).

The CA rules that involve only non-linear logic opera-
tions are called non-linear CA. On the contrary, the CA
involves only XOR logic (linear operations) is called linear
CA.

Multi-dimensional CA having different number of
neighborhood dependencies also exist. As an example
a two-dimensional CA in which the cells are arranged
in a grid fashion. The next state function depends on
9-neighbors (including self). However, increasing of the
number of neighborhood dependencies raises the imple-
mentation cost. Therefore, to simplify the implementa-
tion we have chosen one-dimensional 3-neighborhood CA
for LCASE designing. In practice, we consider the finite
n-cell CA, so the boundary conditions need to be consid-
ered. This work considers periodic boundary conditions
in which, if i ≡ j (mod n), then xi

(t) = xj
(t) (more details

about CA please refer [29] and [6]).

2.1 Non-autonomous CA (NCA)

Unlike the formal CA, external inputs are incorporated
into each cell of NCA. Therefore, it evolves different suc-
cessor configurations from a single input configuration
controlled by the external input. The evolving state of
ith cell at time (t + 1), xi(t + 1) from an NCA by giving
external input τi can be expressed as Equation (6).

xi(t + 1) = f(xi−1(t), xi(t), xi+1(t)) c©τi

= F(xi−1(t), xi(t), xi+1(t), τi), (6)

where c© denotes for a logical operation. The resulting
state of NCA rule 218 with c© as ∧ (logical AND), can be
expressed as

xi(t + 1) = ((xi(t) ∧ xi+1(t)) ∨ (xi−1(t)⊕ xi+1(t))) ∧ τi.

Let X and Y respectively represent the initial config-
uration X(t) and resulting configuration X(t + 1). The



International Journal of Network Security, Vol.8, No.3, PP.243-252, May 2009 245

Table 1: Next state configuration for CA rules 30, 45 and 218
Neighborhood State: 111 110 101 100 011 010 001 000 Rule#

Next State: 0 0 0 1 1 1 1 0 30
Next State: 0 0 1 0 1 1 0 1 45
Next State: 1 1 0 1 1 0 1 0 218

operation Y = NCA(τ,X) can be expressed as Equa-
tion (7), and its logic diagram (for 4-cell periodic bound-
ary) is depicted in Figure 1.

yi = ((xi ∧ xi+1) ∨ (xi−1 ⊕ xi+1)) ∧ τi. (7)

x1 x2 x3 x4

1 2 3 4

y1 y2 y3 y4

Figure 1: Logic structure of 4-cell periodic boundary NCA

2.2 Reversible CA (RCA)

A cellular automata is said to be reversible, if the previ-
ous configurations can be retrieved from the given current
configuration(s). Our proposed algorithm uses second or-
der reversible class CA (RCA) [25] in which, the configu-
ration of the ith state on clock cycle (t + 1) is determined
by the states of the n-neighborhood configuration at clock
cycle t and the self configuration at (t− 1) clock cycle. In
reverse, one can determine the configuration at (t − 1)
clock cycle from the configurations at t and (t + 1) clock
cycle. For example a 3-neighborhood second order RCA
can be expressed as

xi(t + 1) = f(xi−1(t), xi(t), xi+1(t))⊕ xi(t− 1);
xi(t− 1) = f(xi−1(t), xi(t), xi+1(t))⊕ xi(t + 1).

Let, ξi and yi respectively denote for xi(t + 1) and
xi(t− 1). Depending on two initial configurations (Y,X)
at time steps (t − 1) and t, the next configuration (ξ)
is evolved. Again, using two consecutive configurations
(ξ,X) the initial configuration Y can be deduced. We
denote these operations as

ξ = RCA(Y, X);
Y = RCA(ξ,X).

Logic diagram of a second order periodic boundary 4-
cell RCA using elementary CA rule 30 is depicted in Fig-
ure 2. The evolved configuration of such an RCA can be
expressed as

xi(t + 1) = (xi−1(t)⊕ (xi(t) ∨ xi+1(t))⊕ xi(t− 1)).

x1

1 2 3

x2 x3 x4

4

y1 y2 y3 y4

Figure 2: Logic structure of 4-cell periodic boundary
RCA.

3 Design Rationale

The basic design goal of LCASE is to provide an efficient
algorithm for both hardware and software implementa-
tions, as well as to meet the traditional security require-
ments. Following criteria are taken into consideration for
designing the proposed algorithm:

- Resistant against conventional cryptanalysis attacks

- Simpler to implement in hardware with reduced cost

- Easily fit into resource constraint devices

- Fast and code compactness on a wide range of plat-
forms

- Resistant against timing analysis attack.

The cipher has been designed primarily for fast and
easy implementation in both, hardware and software
platforms. Parallel implementation at the bit-level can
make the implementation faster. Therefore, the design
choices have been related to use CA-based components.



International Journal of Network Security, Vol.8, No.3, PP.243-252, May 2009 246

LCASE uses second order RCA based on CA rule 30, CA
skewed rule 30, CA skewed rule 45 and NCA based on CA
rule 218. The choice of these rules has been opted from
the pseudo-exhaustive simulation. It is observed that the
combination of these rules provide effective non-linearity.

Key mixing in the Encryption process is not a simple
XOR of the key-bits but performs through an RCA or
NCA operation. RCA and NCA are the function of 3
key-bits and one text bit. This adds extra difficulty for
an attacker to deduce the key from the given cipher.

4 The Proposed Scheme (LCASE)

A complete LCASE round comprises of first-half (FH)
round and last-half (LH) round. The encryption algo-
rithm is consisting of r complete rounds while the last
(r+1) round is an half-round (FH-round) to make the ci-
pher and its inverse similar structure. The values of r
is chosen to be 12 / 14/ 16 respectively for 128/ 192/
256- bit user selected keys. Each round of encryption/
decryption process uses a key sub-block that is generated
from user-selected key by a simple key schedule. Detail
description of the proposed encryption algorithm and key
schedule are discussed subsequently.

4.1 Encryption/decryption Process

Encryption is a one-to-one function for possible decryp-
tion. Each encryption round uses one-dimensional (3-
neighborhood) 32-cell periodic boundary CA. Following
basic operations are involved in the encryption round.

RCA: Initial configuration of RCA is set up with key-
word kj

l, where kj
l denotes the jth key sub-block for

lth round (1 ≤ l ≤ r+1). The previous configuration
of that RCA is loaded with the plaintext (intermedi-
ate ciphertext) sub-block X. The state of ith cell yi of
the resultant configuration Y = RCA(X, K) on CA
rule 30 is expressed as in Equation (8)

yi = kj
l
i−1 ⊕ (kj

l
i ∨ kj

l
i+1)⊕ xi. (8)

RS: The Reversible-Substitution (RS) operations sub-
stitute byte by byte (or word by word) using self
invertible operations. The objective of two different
RS (i.e. RS1 and RS2) in encryption process en-
sures that the differential is not zeroed out. Both
these RS operations are chosen to be CA based for
achieving high parallelism. The periodic boundary
CA skewed rule 45 and skewed rule 30 are chosen.
The state of ith cell xi evolved using RS1 and RS2
are respectively shown in Equations (4) and (5).

BP: The Bit-Permutation (BP) operation permutes the
ith bit into ((9 ∗ i)mod 31 + 1)th bit. The idea be-
hind this permutation is to place the three neighbor-
hood bits into three different bytes. This increases

the rate of diffusion and makes differential cryptanal-
ysis difficult. Moreover implementation of this per-
mutation is very simple can be hard-wired simply by
wire-crossings.

NCA: Diffusion-box in the LH-round of the proposed
encryption/decryption algorithm uses NCA rule 218
(discussed in Section 2).

4.1.1 Operational Details

The 128-bit plaintext block P can be repre-
sented as sequence of four (32-bit word) sub-blocks
(p1, . . . , p4). These four plaintext sub-blocks are
transformed into the four ciphertext sub-blocks
(c1, . . . , c4) under the influence of (r ∗ 5+4) key sub-
blocks in ((r + half) rounds) complete operation. A
single complete round operation comprises of two half
rounds. ζFH and ζLH represent respectively for the
first-half and last-half round operations discussed as
follows.

FH-round: Each FH-round operation (ζFH) ac-
cepts ic1

l, . . . , ic4
l and k1

l, . . . , k4
l 32-bit as input

performs very simple RCA based operation for key-
mixing followed by a (skewed CA rule) reversible op-
eration. The plaintext p1, . . . , p4 is treated here as
ic1

1, . . . , ic4
1

a1
l, a2

l, a3
l, a4

l = ζFH [ic1
l, ic2

l, ic3
l, ic4

l,

k1
l, k2

l, k3
l, k4

l]
i.e., a1

l = RS1(RCA(k1
l, ic1

l))
a3

l+1 = RS1(RCA(k2
l, ic2

l))
a2

l+1 = RS2(RCA(k3
l, ic3

l))
a4

l+1 = RS2(RCA(k4
l, ic14

l)).

LH-round: LH-round operation (ζLH) accepts
al
1, . . . , a

l
4 (the outputs of FH-round), and kl

5 to gen-
erate the intermediate ciphertext to be used in next
(l + 1) round.

[ic1
l+1, . . . , ic4

l+1] = ζLH [a1
l, . . . , a4

l, k5
l].

These intermediate cipher for next round can also be
expressed as

[ic1
l+1, ic2

l+1, ic3
l+1, ic4

l+1]
= [a1

l ⊕ t4
l, a2

l ⊕ t5
l, a3

l ⊕ t4
l, a4

l ⊕ t5
l],

where t4
l, t5

l can be represented as

t4
l = NCA(BP (NCA(a1

l ⊕ a2
l, k5

l), BP (a3
l ⊕ a4

l)))
t5

l = NCA(BP (a3
l ⊕ a4

l), BP (NCA(a1
l ⊕ a2

l, k5
l))).

The computational flow for the proposed block cipher
is depicted in Figure 3 and the pseudocode for encryption



International Journal of Network Security, Vol.8, No.3, PP.243-252, May 2009 247

process is given below.

Pseudocode for proposed encryption scheme:
//Uppercase alphabetset represent 128-bit block and
// corresponding lowercase sets specify 32-bit words
Input: P (p1,p2,p3,p4): plaintext block, K: user selected
key
Output: C (c1,c2,c3,c4): ciphertext block
IC (ic1,ic2,ic3,ic4) :intermediate cipher block
a1,..,a4, t1..t5 are 32-bit words
Ek[l][j]:jth key sub-block in lth round.

BEGIN
// Call subroutine to generate key sub-blocks for each
round//

Keyschedule(K);
IC := P;
for l := 1 to r do
// Stage-1//

a1:=RCA(ic1,Ek[l][1]); a2:=RCA(ic2,Ek[l][2]);
a3:=RCA(ic3,Ek[l][3]); a4:=RCA(ic4,Ek[l][4]);
RS1(a1); RS1(a2); RS2(a3); RS2(a4);

//Stage-2//
t1 := a1 ⊕ a3; t2 := a2 ⊕ a4;
BP(t2); t3 := NCA(Ek[l][5], t1); BP(t3);
t4 := NCA(t3, t2); t5 := NCA(t2,t3);
ic1 := a1 ⊕ t4; ic2 := a3 ⊕ t4;
ic3 := a2 ⊕ t5; ic4 := a4 ⊕ t5;

endfor
// Last (r+1)th round (FH-round)//
c1:= RCA(ic1,Ek[r+1][1]); RS1(c1);
c2:= RCA(ic3,Ek[r+1][2]); RS1(c2);
c3:= RCA(ic2,Ek[r+1][3]); RS2(c3);
c4:=RCA(ic4,Ek[r+1][4]); RS2(c4);

END.

4.1.2 Why Decryption Works?

The computational flow of the decryption process is essen-
tially same process as that of the encryption process. The
only change being that the schedule of the key sub-blocks
are computed for that of the encryption as presented in
the key schedule. Denoting Dkl

i and Ekl
i for decryption

key and encryption key for ith sub-block of lth round.

∀1 ≤ l ≤ r

[Dkl
1, Dkl

2, Dkl
3, Dkl

4, Dkl
5] =

[Ek1
r+2−l, Ek3

r+2−l, Ek2
r+2−l, Ek4

r+2−l, Ek5
r+1−l];

[Dk1
r+1, Dk2

r+1, Dk3
r+1, Dk4

r+1] =

[Ek1
1, Ek1

3, Ek1
2, Ek1

4].

The reason behind the same structure works for both
encryption and decryption is as follows.

• Each FH-round uses a reversible key mixing opera-
tion followed by a reversible substitution operation
and therefore, the effect can be cancelled by using
the same key blocks in the decryption process.

RS2RS2

k1
1

k3
1

k5
1

⊕

k4
r+1

r-1 more Rounds

p1 p2

RCA RCA RCA

⊕

⊕ ⊕

⊕⊕

c1 c2 c3 c4

RCA RCA

pj : j
th

32-bit plain text sub-block cj : j
th

32-bit cipher sub-block

kj
l
: j

th
32-bit key sub-block in l

th
round ⊕ : Boolean XOR operation

RCA: Reversible CA NCA: Non-autonomous CA

RS1, RS2: Reversible Substitution BP: Bit Permutation

RCA RCA

p3

k2
1 k4

1

k1
r+1

k2
r+1

k3
r+1

p4

BP

NCA

NCANCA

BP

RS1 RS1

RCA

RS1 RS1 RS2 RS2

Figure 3: Computation flow for LCASE

• The structure used in the LH-round has self invert-
ible property i.e., the input sub-blocks a1

l, . . . , a4
l

can be obtained using the output sub-blocks
ic1

l+1, ic2
l+1, ic3

l+1, ic4
l+1.

4.2 Key Schedule

The primary objectives of our proposed key-schedule are

• The key sub-block should be a cryptographic pseudo
random, and collision resistant;

• Each round key should involve maximum number of
user selected key bits;

• Ease of implementation.

The proposed key schedule uses a function called key
sub block generator (KSG(.)). The function KSG(.) as
depicted in Figure 4 involves 16 number of 8-cell peri-
odic boundary RCA based on CA rule 45. The subrou-
tine KSG(.) is illustrated in pseudocode for proposed key
schedule that accepts α of size 128-bits and returns β
(same size) as a result.



International Journal of Network Security, Vol.8, No.3, PP.243-252, May 2009 248

We describe here, the key expansion of 192-bit user
selected key to generate 74 number of 32-bit key-sub
blocks to be used in 14 and half rounds complete encryp-
tion process (key schedules for other 128 /256-bit user
selected keys are similar to this). The bit stream of K can
be treated as an array of 32 bit-words. The user selected
key K is initialized to kk[1], . . . , kk[kw], where kw is the
size of key in number of words (e.g. for 192-bit key kw is
6). The first 4 words of kk (i.e., kk[1]...,kk[4]) are used to
generate the next key sub blocks (using the subroutine
KSG(.))and the resulting sub-blocks are treated as
kk[7]..kk[10]. Next, kk[5]..kk[8] sequence is used to
generate kk[11]..kk[14] and so on. The process is iterated
until kk[74] is obtained. The sequence kk[1],. . .,kk[5*r+4]
can be treated as 2-dimensional encryption key Ek[l][j].
Here, Ek[l][j] represent a 32-bit jth key word of lth

round. The decryption keys(Dk) are computed from
encrypted key sub-blocks (Ek). The pseudocode for the
proposed key schedule is presented below.

Pseudocode for proposed key-schedule
Input : K (k[1]..k[kw]): key
Output: Ek[l][j],Dk[l][j] // jth key sub-block for lth round
r: the number of rounds, kk[t]: tth 32-bit sub-block.
BEGIN

// Encryption Key computation//
for j := 1 to kw do kk[j] := k[j];
l:=1; j := kw + 1; t:=1;
// Generate key sub-blocks for each round//
while (j ≤ (r ∗ 5 + 4)) do

// Call subroutine KSG //
(kk[j]..kk[j+kw]) := KSG(kk[t]..kk[t+kw]);
t:= t + kw; j:= j + kw;

endwhile
for l:= 1 to r do

for j := 1 to 5 do Ek[l][j] := kk[t++];
for j := 1 to 4 do Ek[l][j] := kk[t++]; //Last round

key//
// Determination of Decryption Key Dk from Ek//
for l:= 1 to r do

Dk[l][1] := Ek[r+2-l][1]; Dk[l][4]):=Ek[r+2-l][4];
Dk[l][2]:=Ek[r+2-l][3]; Dk[l][3]:=Ek[r+2-l][2];
Dk[l][5]:=Ek[r+1-l][5];

endfor
Dk[r+1][1] :=Ek[1][1]; Dk[r+1][2] := Ek[1][2];
Dk[r+1][3] := Ek[1][3]; Dk[r+1][4]):=Ek[1][4];

END.

Subroutine KSG(α)
//α(β) can be considered as α1, . . . , α16 (β1, . . . , β16)

//
for i:=1 to 16 do

t:= := (i+7) mod 16 + 1;
βt := RCA(αi, αi+1 mod 16);

endfor
return(β)

1
RCA

2

3

9

10

11

15

16

8

RCA

RCA

RCA

RCA

RCA

RCA

9

10

RCA
16

1

7

Figure 4: Key sub-block generation

5 Security Analysis

Security analysis may be treated as the process of ana-
lyzing the robustness against known attacks. However,
the basic design properties are primary requirements to
achieve the security.

5.1 Design Properties

Diffusion and confusion [21] are the most desirable
criteria for a block cipher. The resulting design achieves
them as follows:

Diffusion: The purpose of diffusion on a cipher is to
spread out redundancy of plaintext all over the cipher,
i.e., each bit of the plaintext needs to contribute to
as many cipher bits. LCASE satisfies the diffusion re-
quirement by the clever arrangement of 3-neighborhood
CA based operations with 2 BP (Bit Permutation)
operations. The FH-round of LCASE round raises the
dependencies of each bit to 10 key-bits and 6 text-
bits which are attributed to the 3-neighborhood RCA
operation followed by RS operation. The two 32-bit
XOR operations situated in parallel immediate after the
FH-round operation makes double the bit dependencies.
Further, the involution operation comprising of BP
and NCA operations. The BP operation splits three
adjacent bits into three separate bytes so that would



International Journal of Network Security, Vol.8, No.3, PP.243-252, May 2009 249

influence 3x3 =)9-different bits of 3 different bytes by
the application of a 3-neighborhood CA-based operation.
It will expedite the rate of diffusion in which the output
bit of the involution raises the dependencies of at least
61 key-bits and 36 text-bits. After completion of one
LCASE round operation each text-bit depends on at least
66 key-bits and 39 text-bits. Hence, it can be observed
that after successive two LCASE rounds, each output
(intermediate cipher) bit depends on all the plaintext
bits i.e, the LCASE achieves complete diffusion after two
successive rounds.

Confusion: Confusion makes the relationship between
key and statistics of the cipher bits complex and non-
linear. LCASE achieves higher degree of confusion be-
cause of the following reasons.

• As discussed earlier, during a single round of LCASE,
each output bit depends on at least 66 key-bits and
39 text bits of that round.

• The involution of RCA, based on CA rule 30 and
the two RS operations based on skewed rule 45 and
skewed rule 30, along with NCA, based on rule 218,
results in the higher degree of non linearity.

• The inequality Expressions (9),(10) and (11) can be
verified easily from the Equations (8) and (7), which
makes the input-output relation more complex.

RCA(Z, X ⊕ Y ) 6= RCA(Z, X)⊕RCA(Z, Y ); (9)
NCA(Z, X ⊕ Y ) 6= NCA(Z, X)⊕NCA(Z, Y ); (10)
RCA(RCA(X,Z), RCA(Z, Y )) 6= RCA(X, Y ). (11)

5.2 Robustness against Known Attacks

In this section, security of the LCASE is measured
considering its resistance against various known attacks

Differential cryptanalysis attack: Differential crypt-
analysis [3, 13] is known to be an important conventional
attack against block ciphers, introduced by Biham and
Shamir, to attack against DES. The attack exploits the
difference propagation from the plaintext to the cipher-
text. These difference propagations can be used to assign
probabilities to the possible keys, and then to locate the
most probable one.

A block cipher is assumed to be secure against differen-
tial cryptanalysis attack (DCA), if the maximum differen-
tial probability is small enough to make DCA ineffective.
To measure this probability, let us consider the 8-cell CA
based RS operations used in the LCASE. These RS oper-
ations can be assumed as an (8-bit input to 8-bit output)
S-boxes. Thus there are 16 S-boxes placed in parallel.
The differential characteristic probability of LCASE has
been calculated by using the following theorem discussed
in [1].

Theorem 1. If Pd be the maximum differential probabil-
ity of all S-boxes and D be the minimum number of active
S-boxes. Then, the maximum differential characteristic
probability P is bounded by Pd

D.

We searched for the worst case assumption from all
entries in the difference distribution table for both the
RS operations(RS1, RS2). It is found to have probability
2−2. At the same time, difference in one input bit of an
S-box reflects 6 different bytes after a complete round
operation. So 6 active S-boxes would exist after a single
round LCASE. Using Theorem 1, 11-round LCASE will
have differential probability of P ≤ 2−2∗6∗11 = 2−132. It
shows that there is no effective differential cryptanalysis
attack on LCASE reduced to 11 or more rounds.

Linear cryptanalysis attack: Linear cryptanalysis [14]
which is also known to be a powerful attack is a generic
way to exploit the correlation between the input and out-
put bits of each round. The probability that a linear
expression holds true is the product of the linear proba-
bility bias in the active S-boxes and the number of active
S-boxes.

LCASE design principle adopts the approaches to pro-
vide security against linear cryptanalysis have focused on
optimizing the S-boxes (i.e., minimizing the largest bias)
and finding structures to maximize the number of active
S-boxes. Considering the 8-cell CA based RS operations
used in LCASE as an (8-bit input to 8-bit output) S-
boxes, there are 16 S-Boxes placed in parallel. An ap-
proximate linear expression whose output correlates to
the output of non-linear function is calculated for Equa-
tions (4) and (5). The maximum probability value work
out to be 12

16 for both. The linear probability bias ε is the
difference between 1

2 and the probability for the linear
expression i.e., | 1

2 − 3
4 |= 1

4 = 2−2.
For each LCASE round the minimum number of

active s-boxes for linear cryptanalysis is observed to
be 6. Therefore, the correlation probability for one-
round LCASE is 2−2∗6 = 2−12. As r (= 12/14/16)
such equal rounds are involved, the proposed scheme
justifies the resistance against linear cryptanalysis attack.

Variants of linear and differential cryptanalysis
attacks: Most often the basis of these attacks rest on
the predictability of the polynomial constructed using in-
put/output pairs. If intermediate bit in the encryption
is represented by d-degree Boolean polynomial then the
value of (d + 1)th order differential would be 0.

During a single round of LCASE, each output bit
involves minimum 66 key bits and 39 input text bits.
Therefore, degree of polynomial of every output bit
for a single round LCASE would be of 105. High
order diffusion and more number of rounds pose their
resistant towards known variants of linear and differential
cryptanalysis (High order differential, Boomerang and
rectangle attack) attacks.



International Journal of Network Security, Vol.8, No.3, PP.243-252, May 2009 250

Interpolation and algebraic attacks: Interpolation
attack [9] exploits the weaknesses underlying algebraic
properties of a cryptographic technique. Fortunately,
combination of various (selected NCA, RCA, RS1 and
RS2) operations in LCASE results in a complex expres-
sion to resist interpolation and algebraic attacks.

Related key attacks: The basic related key attacks
based on uncommon hypothesis that attacker knows the
relationship between two unknown different keys and cor-
responding ciphers. Biham [4] analyzed the security
of DES-like cryptosystems. The proposed key schedule
phase uses RCA based on CA as the basis. Because of
the random output generation capability of CA rule 45
[29], it is very difficult to predict the relations between
two sub keys from the two related keys. Additionally, the
key-mixing operation of LCASE involves RCA operations
(based on 3-neighborhood CA rule 30) that mix a single
plaintext bit with 3 subkey-bits. Consequently, obtain-
ing the actual sub-key bits (that was used before RCA),
which is used to derive the next sub-keys, become harder.

This makes hard to obtain the actual sub-key bit (that
used before RCA operation) which is used to derive the
next sub keys. This is so because, retrieving the initial
configuration from partial output, obtained by CA with
rule 30, is NP-Complete [28].

Equivalent key attacks: LCASE involves all the
bits of original user defined key in the key schedule.
The Key schedule invokes key sub block generator
function KSG(), to derive key-sub blocks which uses
RCA based operations. Because of the reversibility
property of RCA, no two different keys would result in
the same round sub-keys. Therefore, it is not possible to
find two different keys that would generate same sub keys.

Timing analysis attacks: Sometimes cryptanalyst
breaks the cipher by analyzing time or power require-
ment [12]. This form of attack is possible if the time
required for encryption depends on data. Exploiting this
property the attacker could be able to predict the key
with minimum number of chosen plaintexts. LCASE
uses only 3-neighborhood periodic boundary CA based
components. As a result, irrespective of the input and
output bits time requirements for output generation at
each individual component of LCASE rounds remain
unchanged. Therefore, our proposed scheme is guarded
against ‘timing analysis’ and ‘related attacks’.

Comments on its feature: The scheme uses a vary
structure that includes the non-linear CA-based opera-
tions and BP operations in each round. Therefore, re-
trieving key using the technique of inversion of CA [11]
or the attack proposed in [5] will not be feasible.

The key-mixing in proposed encryption algorithm is
performed through a CA-rule 30-based RCA that adds
an extra complexity to determine the key. High degree
of the non-linear Boolean operations describing in the

round transformation resists the attacks similar to that
discussed in [2].

6 Performance Analysis

LCASE can be implemented easily in both hardware
and software. Each component of this cipher uses 3-
neighborhood CA, whose inherent parallelism feature
makes the parallel implementation natural. Simplicity
and locality of the CA make it possible to build cheap
and fast devices containing a large number of cells (pro-
cessors) working in parallel. The performance of LCASE
is compared with some of the existing schemes and ana-
lyzed in this section.

6.1 Hardware Implementation

Since the CA-based components are regular, modular and
cascadeable structures the proposed scheme can be easily
realized in hardware. To compare with existing schemes,
we have synthesized the proposed scheme, using Verilog
targeted to Xilinx Virtex-2. After synthesize, we found
that LCASE needs only 454 (4-input) LUTs for its en-
cryption round and 128 LUTs for key-schedule round as
tabulated in Table 2. This requirement is lesser than
ICEBERG [24] which needs 704 LUTs. However, the
full rolling architecture of Cobra-H128 [22] DDP-based
encryption algorithm requires more resources i.e., 2364
CLBs and 399 DFFs. Each round of AES Rijndael is even
more critical as a single round there needs 2608 LUT and
its key round needs 768 LUTs [23].

Table 2: Comparison of hardware complexity
Block Cipher Hardware complexity

(in number of 4 input LUTs)
LCASE 582 LUTs

ICEBERG 704 LUTs
AES 3376 LUTs

6.2 Software Implementation

The ICEBERG scheme [24]that proposed with the objec-
tive for efficient hardware implementation, was not effi-
cient in software implementation. However, LCASE can
be implemented quite efficiently in a wide range of proces-
sors by realizing bit-permutation (BP) as wire-crossing.
To compare the execution speed of our proposal against
AES, we ran the AES optimized-code [7] and our non-
optimized code on a Pentium-IV 3.2GHZ processor, in
windows microsoft visual C++ platform. The results are
tabulated in Table 3.

Implementation speed of our scheme (non-optimized
code) was found to be faster than AES (optimized code)
[7] for all key sizes. This could be possible due to the in-
herited parallelism feature of CA. The object-code size of



International Journal of Network Security, Vol.8, No.3, PP.243-252, May 2009 251

Table 3: Comparison of execution time for a 128-bit block
encryption

Key Size Proposed Scheme AES
(Non-optimized code) (Optimized code)

128-bit 0.78 µs 1.09 µs
192-bit 0.93 µs 1.25 µs
256-bit 1.08 µs 1.4 µs

the proposed encryption scheme (including key-schedule
phase) is 7 KB, which is significantly smaller than that
for AES, i.e. 20 KB.

6.3 Suitability for Low Power Devices

LCASE is well suited to implement in the resource con-
strained devices.These devices have low processing power,
restricted memory and limited battery power. Here, we
did concentrate on 8-bit processors typical for ‘smart
cards’ and ‘sensor motes’. The RS operations in the
LCASE round use 8-bit CA skewed rule and hence can
be implemented efficiently in low power devices. The 32-
bit RCA(and NCA) operations of LCASE round can be
substituted by four 8-bit RCA(and NCA) operations in
parallel. However, the security of LCASE based on 8-bit
RS operations remains unaffected. Moreover, rate of dif-
fusion will not be degraded substantially because of the
BP operations.

The key schedule can be efficiently implemented in low
power devices as the process involves only 8-bit RCA
based operations. Implementing the key expansion in a
single shot operation is likely to occupy too much mem-
ory. The storage requirement can be minimized signifi-
cantly through Dynamic key schedule. The proposed key
schedule depends on the previous round key. Therefore,
128-bit/ 256-bit/ 512-bit storage for key would be suffi-
cient to run the encryption process. At the same time, for
decryption, the memory requirement would be 256-bit/
512-bit/ 1024-bit being attributed to the second order re-
versible property of RCA.

This scheme uses same structure for both encryption
and decryption. Also, both the procedures work with the
same performance unlike the AES-Rijndael [8], where the
later scheme degrades its performance into a greater ex-
tent in the decryption phase. LCASE is well suited for
dedicated hardware implementation that substantially re-
duces the code size. All constructions are efficient for im-
plementation, especially on low-end devices, which need
a small memory and less computation.

7 Conclusion

In this paper, we have proposed a light weight symmet-
ric key cryptosystem using CA, called LCASE. LCASE
meets the same specification as AES, that of satisfying

the base security criteria (confusion and diffusion). The
most advantageous features of LCASE include its sim-
ple realization, small code size, low memory requirement
and faster implementation. The proposed encryption al-
gorithm is resistant against most generous attacks such as
differential cryptanalysis and linear cryptanalysis attacks
while the key schedule is secure against related key and
equivalent key attacks. LCASE is robust against timing
analysis attacks too.

References

[1] K. Aoki, T. Ichikawa,M. Kanda, M. Matsui, S. Mo-
riai, J. Nakajima, and T. Tokita, “Camellia: A
128-bit block cipher suitable for multiple platforms-
design and analysis,” SAC-2000, LNCS 2012, pp. 39-
56, Springer-Verlag, 2001.

[2] F. Bao, “Cryptanalysys of a partially known cellu-
lar automata cryptosystem,” IEEE Transactions on
Computers, vol. 53, no. 11, pp. 1493-1497, 2004.

[3] E. Biham, and A. Shamir, “Differential cryptanalysis
of DES like cyptosystems,” Journal of Cryptology,
vol. 4, pp. 3-72, 1991.

[4] E. Biham, ‘New types of cryptanalytic attacks using
related keys,” Eurocrypt ’93, LNCS 765, pp. 229-248,
Springer-Verlag, 1994.

[5] S. Blackburn, S. Murphy, and K. Paterson, “Com-
ments on theory and application of cellular automata
in cryptography,” IEEE Transactions on Computers,
vol. 46, no. 5, pp. 637-638, 1997.

[6] P. P. Chaudhuri, D. R. Chowdhury, S. Nandi, and
S. Chattopadhyay, Additive Cellular Automata: The-
ory and Applications, Wiley-IEEE Computer Society
Press, Vol. 1, 1997.

[7] Christophe Devine, Free Software Implementation.
(http://www.cs.rochester.edu/ brown/Crypto/src/
AES.c)

[8] J. Daemen, and V. Rijmen, Specification for the Ad-
vanced Encryption Standard (AES), Springer-Verlag,
2002.

[9] T. Jakobson, and L. Knudsen, “The interpolation
attacks on block ciphers,” FSE-97, LNCS 1267, pp.
28-40, Springer-Verlag, 1997.

[10] J. Kelsey, B. Schneier, and B. Wagner, “Key-
schedule cryptanalysis of IDEA, G-DES, GOST,
SAFER and Triple-DES,” Crypto ’96, LNCS 1109,
pp. 237-251, Springer-Verlag, 1997.

[11] C. K. Koc, and A. M. Apohan, “Inversion of cellular
automata iteration,” IEE Proceedings of Computer
and Digital Technique, vol. 144, no. 5, pp. 279-284,
1997.

[12] P. Kocher, J. Jaffre, and B. Jun, “Differential
power analysis,” Crypto’99, LNCS 1666, pp. 398-412,
Springer-Verlag, 1999.

[13] X. Lai, and J. L. Massey, “Markov ciphers and dif-
ferential cryptanalysis,” Crypto ’91, LNCS 576, pp.
17-38, Springer-Verlag, 1992.



International Journal of Network Security, Vol.8, No.3, PP.243-252, May 2009 252

[14] M. Matsui, “Linear cryptanalysis method for DES
cipher,” Eurocrypt ’93, LNCS 765, pp.386-397,
Springer-Verlag, 1994.

[15] A. Menezes, P. V. Oorschot, and S. Vanstone, Hand-
book of Applied Cryptography, CRC Press, Oct. 1996.

[16] N. A. Moldovyan, P. A. Moldovyan, and D.H. Sum-
merville, “On software implementation of fast DDP-
based ciphers,” Internatiol Journal of Network Secu-
rity, vol. 4, no. 1, pp. 81-89, 2007.

[17] S. Nandi, B. K. Kar, and P. P. Chaudhuri, “Theory
and application of cellular automata in cryptogra-
phy,” IEEE Transaction on Computers, vol. 43, no.
12, pp. 1346-1357, 1994.

[18] S. Sen, C. Shaw, D. R. Chowdhuri, N. Ganguly, and
P. Pal Chaudhuri, “Cellular automata based cryp-
tosystem (CAC)”, ACRI-2002, LNCS 2513, pp. 303-
314, Springer-Verlag, 2002.

[19] F. Seredynski, K. Pienkosz, and P. Bouvry, “Re-
versible cellular automata based encryption,” NPC
’04, LNCS 3222, pp. 411-418, Springer-Verlag, 2004.

[20] F. Seredynski, P. Bouvry, and A. Y. Zomaya, “Cellu-
lar automata computation and secret key cryptogra-
phy,” Parallel Computing, vol. 30, pp. 753-766, 2004.

[21] C. E. Shannon, “Communication theory of secrecy
systems,” Bell System Technical Journal, vol. 28, pp.
656-715, 1949.

[22] N. Sklavos, N. A. Moldovyan, and O. Koufopavlou,
“High speed networking: Design and implementation
of two new DDP-based ciphers,” Mobile Networks
and Applications-MONET, vol. 25, no. 1-2, pp. 219-
231, Springer-Verlag, 2005.

[23] F. Standaert, G. Rouvroy, J. Quisquater and J.
Legat, “A methodology to implement block ciphers
in reconfigurable hardware and its application to fast
and compact AES rijndael,” FPGA-2003, pp. 281-
291, California, 2003.

[24] F. Standaert, G. Piret, G. Rouvroy, J. Quisquater,
and J. Legat, “ICEBERG : An involutional cipher
efficient for block encryption in reconfigurable hard-
ware,” FSE ’04, LNCS 3017, pp. 279-299, Springer-
Verlag, 2004.

[25] T. Toffoli, and N. Margolus, “Invertible cellular au-
tomat: A review,” Physica D, vol. 45, pp. 229-253,
(reprinted with correction as of Oct. 2001).

[26] S. Tripathy, and S. Nandi, “Cryptosystem for low-
power devices”, Turbocoding-2006, Munich, Ger-
many, Apr. 2006.

[27] S. Wolfram, “Cryptography with Cellular Au-
tomata,” Crypto ’85, LNCS 218, pp. 429-432,
Springer-Verlag, 1986.

[28] S. Wolfram, “Random sequence generation by cellu-
lar automata,” Advances in Applied Maths, vol. 7,
no. 2, pp. 123-169, 1986.

[29] S. Wolfram, A New kind of Science, Wolfram media
Inc. 2002.

Somanath Tripathy has received his M. Tech (C.S.T)
degree in 2000 from Andhra University and Ph D degree
in Computer Science and Engineering in 2007 from Indian
Institute of Technology Guwahati. He was a Reader in
Department of Information Technology of Northeastern
Hill University, Shillong during 2006-2008. Recently,
he has joined as Asst. Professor in Indian Institute
of Information Technology and Management, Gwalior.
His research interest includes information security and
cryptography especially for resource constrained devices.
He has published 16 International Journals/ Conferences
papers.

Sukumar Nandi received B Sc (Physics), B Tech and M
Tech from Calcutta University in 1984, 1987 and 1989 re-
spectively. He received the Ph D degree in Computer Sci-
ence and Engineering from Indian Institute of Technology
Kharagpur in 1995. In 1989-90 he was a faculty in Birla
Institute of Technology, Mesra, Ranchi, India. During
1991 to 1995, he was a scientific officer in Computer Sc &
Engg, Indian Institute of Technology Kharagpur. In 1995
he joined in Indian Institute of Technology Guwahati as
an Assistant Professor in Computer Science and Engineer-
ing. Subsequently, he became Associate Professor in 1998
and Professor in 2002. He was in School of Computer En-
gineering, Nanyang Technological University, Singapore
as Visiting Senior Fellow for one year (2002-2003). He
was General Vice-Chair of 8th International Conference
on Distributed Computing and Networking 2006. He was
General Co-Chair of the 15th International Conference
on Advance Computing and Communication 2007. He is
also involved in several international conferences as mem-
ber of advisory board/ Technical Programme Committee.
He is reviewer of several international journals and con-
ferences. He is co-author of a book titled “Theory and
Application of Cellular Automata” published by IEEE
Computer Society. He has published more than 150 Jour-
nals/Conferences papers. His research interests are Com-
puter Networks (Traffic Engineering, Wireless Networks),
Computer and Network security and Data mining. He is
Senior Member of IEEE and Fellow of the Institution of
Engineers (India).


