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Abstract

This paper proposes an identity-based threshold key es-
crow scheme. The scheme is secure against identity-based
threshold chosen-plaintext attack. It tolerates the pas-
sive adversary to access data of corrupted key escrow
agency servers and the active adversary that can mod-
ify corrupted servers’ keys. The formal proof of security
is presented in the random oracle model, assuming the Bi-
linear Diffie-Hellman problem is computationally hard.
Keywords: Chosen-plaintext attack, identity-based cryp-
tography, pairing based cryptology, threshold key escrow

1 Introduction

During the last decade there has been a large growth in
communication over the Internet. There has also been
an increased focus on privacy and sending messages en-
crypted. This however poses a problem for law enforce-
ment agencies that have relied on their ability to make
wiretaps and get warrants to solve crime. This has lead
to the concept of key escrow [8].

In 2001, D. Boneh and M. Franklin proposed the first
practical identity-based encryption (IBE [5]) system from
the weil pairing. It provides a public key encryption mech-
anism where an arbitrary string can be served as the pub-
lic key. The direct derivation of public keys in identity-
based public key cryptography (IB-PKC) eliminates the
need for certificates. On the other hand, IB-PKC has
an inherent problem of key escrow since a trusted third
party named the Private Key Generator (PKG), who uses
the master key to generate private keys for every entity.
To solve this problem, S.S.Al-Riyami and K.G.Paterson
introduced the concept of certificateless public key cryp-
tography (CL-PKC [13]). In [15], a more efficient certifi-
cateless public key encryption scheme was proposed. In
CL-PKC, the private key of every entity is created by the
PKG and each entity unitedly. However, the law enforce-
ment agency is unable to monitor communications in such
a scheme.

A way to solve the contradiction is to share the power
of monitoring among a set of key escrow agencies (KEAs).
Although the PKG generates private keys for all users in
the system, it will not be given access to any ciphertexts.
To monitor the communications of some entity needs at
least a threshold value KEAs’ co-operation. We propose
such a scheme based on the difficulty of the Bilinear Diffie-
Hellman problem, named ID-based threshold key escrow
(IB-ThKE) scheme. This scheme is provably secure in the
ID-based threshold chosen-plaintext attack model.

A related concept of ID-based threshold key escrow
is threshold decryption. To our knowledge, other pa-
pers that have treated this concept in the context of ID-
base cryptography are [1, 7, 11]. However the formal se-
curity proof of [7] is based on a weaker model named
selective identity (ID) threshold chosen-plaintext attack
model. Furthermore, all of these schemes can not resist
against active attackers.

2 Preliminaries

2.1 Admissible Bilinear Pairings

Let G1 be a cyclic additive group and G2 be a cyclic
multiplicative group of the same prime order q. Assume
that the discrete logarithm problem in both G1 and G2

are hard. An admissible bilinear pairing is a map ê :
G1 ×G1 → G2 which satisfies the following properties:

• Bilinear: for any P,Q ∈ G1 and a, b ∈ Z∗q , ê(aP ,
bQ) = ê(P , Q)ab.

• Non-degenerate: there exists P ∈ G1 and Q ∈ G1

such that ê(P, Q) 6= 1.

• Computable: given P,Q ∈ G1, there is an efficient
algorithm to compute ê(P, Q) ∈ G2.
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2.2 Bilinear Diffie-Hellman Problem

Let ê : G1×G1 → G2 be an admissible bilinear map. Let
P be a generator of G1, whose order is a large prime q.
Let a, b, c be elements of Z∗q .

Definition 1. Given (P, aP, bP, cP ), compute ê(P, P )abc.
An algorithm A has an advantage ε in solving the Bilin-
ear Diffie-Hellman Problem (BDHP) in < G1,G2, ê > if
Pr[A(P, aP, bP, cP ) = ê(P, P )abc] > ε.

In general, BDHP is believed to be hard in < G1, G2,
ê >. That means there is no probabilistic algorithm can
solve BDHP with a non-negligible advantage ε in polyno-
mial time.

2.3 Threshold Security

The idea of (t, n) threshold cryptosystem was proposed in
[14]. The formal security model of threshold cryptosys-
tems has been discussed in [9, 16]. In a threshold setting,
the latent threat of decryption shares’ leaking leads it’s
very difficult to design a threshold chosen-ciphertext se-
cure scheme.

As [9] pointed out, the adversary of threshold cryp-
tosystems can act passively or actively. The passive ad-
versary accesses only to internal data of some corrupted
severs (e.g. getting the private keys of decryption servers
in a threshold decryption cryptosystem). And the active
adversary can modify behaviors of them (e.g. replacing
the keys of decryption servers in a threshold decryption
cryptosystem).

3 ID-based (t, n) Threshold Key
Escrow Scheme

In this paper, we propose an ID-based (t, n) threshold
key escrow scheme (IB-ThKE). The system consists of
a trusted authority called the Private Key Generator
(PKG), n key escrow agency servers (KEAs) and many
communication users. The secret key of each user is is-
sued through secret channels by the PKG, and the public
key is the unambiguous identity of the user. It means
the ciphertexts in the communication phase are outputs
of an identity-based encryption algorithm. The plaintext
M that is encrypted under an identity is recoverable from
at least t of n KEAs. We assume that the PKG has no
access to any ciphertext, since the PKG knows the private
key of each user.

3.1 Defining IB-ThKE

First, we sketch the characteristics of IB-ThKE.
In every user’s view, IB-ThKE is similar to traditional

identity-based public key cryptosystems. The public key
is an arbitrary sting such as an email address or a tele-
phone number, so there is no need of certificates.

Each KEA has a private key chosen by himself and
the corresponding public key is given to the PKG. When
at least t KEAs want to monitor an user Alice’s received
ciphertext, the PKG returns partial secret keys and public
verification keys of Alice to them. Then each KEA can
generate a decryption share of this ciphertext with the
partial secret key and his private key, after checking the
validity of the partial secret key. These shares are sent to
a special server called the combiner, who starts checking
the validity of every share. If more than t shares are valid,
the combiner combines them to obtain the plaintext.

3.2 Description of this Scheme

In [5], D. Boneh and M. Franklin constructed a chosen-
plaintext secure ID-based encryption scheme named
BasicIdent. The same idea is used in the communi-
cations among users in our scheme. The threshold key
escrow based on BasicIdent is described as follows:

Setup: Run by the PKG and n KEAs Γi(i = 1, 2, · · · , n).

• Given a security parameter k0, the PKG outputs two
groups G1 and G2 of the same prime order q(≥ 2k0),
an admissible bilinear map ê : G1 × G1 → G2, a
generator P ∈ G1, a master key s ∈ Z∗q . Com-
pute Ppub = sP and choose three hash functions
H1 : {0, 1}∗ → G∗1, H2 : G2 → {0, 1}l and H3 :
G2 × G2 × G2 × G2 → Z∗q . Note that H1,H2 are
viewed as random oracles[2] in the security analysis.

• Key escrow agency server Γi(i = 1, 2, · · · , n) ran-
domly selects si ∈ Z∗q and computes Pi = siP .

The system public parameters are:

cp = {q, l,G1,G2, P, ê,H1,H2,H3, Ppub, {P1, P2, · · · , Pn}}.

KeyGen1: Given an user’s identity ID, the PKG
returns dID = sH1(ID) to this user secretly as his
private decryption key.

KeyGen2: Given an user’s identity ID and a request for
monitoring this user’s communication, the PKG chooses
a polynomial of degree t− 1 in Zq:

f(x) = s + a1x + . . . + at−1x
t−1,

where a1, . . . , at−2 ∈R Zq and at−1 ∈R Z∗q . For

1 ≤ i ≤ n, it computes P
(i)
ID = f(i)QID + sPi ∈ G1

and V
(i)
ID = ê(f(i)QID, P ). P

(i)
ID are returned to n KEAs

secretly and V
(i)
ID are published.

Encryption: To encrypt a message M ∈ {0, 1}l

under the receiver’s identity ID, the sender com-
putes QID = H1(ID) and randomly chooses
r ∈ Z∗q . Then set the ciphertext to be < U, V >=<
rP, M ⊕H2(ê(Ppub, QID)r) >.
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User’s Decryption: Let C =< U, V > be a ciphertext
with the public key ID. To decrypt C with the the cor-
responding private key dID, the receiver computes:

V ⊕H2(ê(dID, U)) = M.

KEA’s Sub-Decryption: Given a ciphertext C =< U ,
V > and n partial key pairs (P (i)

ID, V
(i)
ID )(i = 1, 2, · · · , n),

KEA Γi checks the validity of (P (i)
ID, V

(i)
ID ) and computes

his decryption share as follows:

• Each KEA can check the validity of (P (i)
ID, V

(i)
ID ) by

ê(P (i)
ID, P ) = V

(i)
ID · ê(Pi, Ppub). And everybody can

check
∏

i∈T (V (i)
ID )LT

i = ê(QID, Ppub) for any subsets
T ⊂ {1, 2, · · · , n} such that |T | = t, where LT

i de-
notes the appropriate Lagrange coefficient with re-
spect to the set T .

• If (P (i)
ID, V

(i)
ID )(i = 1, 2, · · · , n) can pass above test, Γi

computes ki
ID = ê(P (i)

ID−si(Ppub), U), Ri = ê(Ti, P ),
R̃i = ê(Ti, U), hi = H3(V

(i)
ID , ki

ID, Ri, R̃i), λi = Ti +
hi(P

(i)
ID−si(Ppub)) for random Ti ∈ G∗1. Then output

the decryption share δi
ID,C = {i, ki

ID, Ri, R̃i, λi}.
• Otherwise, Γi returns δi

ID,C = {i, ID, invalid}.
Combination: Given a ciphertext C =< U, V > and a
set of decryption shares {δi

ID,C}i∈T where |T | = t, the
combiner runs as follows:

• For i ∈ T , compute hi = H3(V
(i)
ID , ki

ID, Ri, R̃i).
Check if ê(λi, P ) = Ri · (V (i)

ID )hi and ê(λi, U) =
R̃i · (ki

ID)hi .

• If the above test holds, the combiner computes K =∏
i∈T (ki

ID)LT
i and M = V ⊕ H2(K). Then the ci-

phertext is decrypted by key escrow agency servers.

KEA’s public key updating: In this scheme,we allow
KEA Γi(i ∈ {1, 2, · · · , n}) to renew his private key si as
follows:

• Γi chooses s′i ∈ Z∗q . Compute P ′i = s′iP and ∆i =
s′iPpub. Then pass < i, P ′i , ∆i > to the PKG secretly.

• The PKG checks the validity of P ′i by ê(P ′i , Ppub) =
ê(∆i, P ). If it holds, the PKG changes Pi to be P ′i
publicly and renews P

(i)
ID in KeyGen2 accordingly.

Else the PKG refuses Γi’s request.

Note that we use a non-interactive zero knowledge
proof (NIZK[1, 4]) to check the validity of decryption
shares from every KEA Γi. Please refer to appendix A
for more details.

4 Security Analysis

4.1 Adversary Types

To give the formal definition of the IB-ThKE scheme, we
need to define adversaries for it. Since the communication

users and KEAs have different views in this scheme, we
will distinguish between two adversary types:

1) IB-ThKE Type 1 Adversary. Such an adver-
sary A1 is against the underlying identity-based pub-
lic key cryptosystem. Since BasicIdent is used in
IB-ThKE, A1 is defined the same as in [5].

2) IB-ThKE Type 2 Adversary. Such an adversary
A2 is to attack KEAs. Since we use a (t, n) thresh-
old scheme, it’s reasonable to assume that at most
t − 1 out of n KEAs will be corrupted by A2. Let
{Γi}i∈S,|S|=t−1 be the set of corrupted KEAs, the
A2’s actions against IB-ThKE are listed below:

• KEAs’ private key extraction queries: A2 is al-
lowed to make requests for Γi(i ∈ S)’s private
keys si.

• Complete private key extraction queries: A2 is
allowed to query on an identity ID’s private de-
cryption key. However, it’s unreasonable for A2

to extract the complete private key of the se-
lected challenge identity IDch.

• Partial key queries: Given a ciphertext and
an identity ID, A2 can ask for partial keys
P

(i)
ID, V

(k)
ID , for i ∈ S and k ∈ {1, 2, · · · , n}.

• Replace KEAs’ public keys: Since Γi’s public
key Pi = siP (i = 1, 2, · · · , n) is not associated
with Γi’s identity, A2 can choose any s′i ∈ Z∗q
and try to replace Pi by P ′i = s′iP for corrupted
KEAs.

4.2 Security Model for IB-ThKE

In this section, we give the formal security definition and
proof of IB-ThKE scheme. The full security model is con-
structed of two distinct parts. One is the interactions
between the challenger and A1. It is selfsame as [5], and
the BasicIdent scheme has been proved to be chosen-
plaintext secure. So we only discuss the other part, which
are the interactions between the challenger and A2.

Definition 2. (IND-IDTH-CPA). The ID-based
(t, n) threshold key escrow scheme is secure against
chosen-plaintext attack (denoted by IND-IDTH-CPA)
if no polynomially bounded adversary has a non-negligible
advantage in the following game:

Init: The adversary A2 chooses a set S of t − 1 players
it wants to corrupt.

Setup: The challenger runs Setup algorithm and gives
the resulting common parameters to A2, including the
public key Pi of Γi(i = 1, 2, · · · , n).

KEA’s private key extraction queries: Given S, the
challenger generates t − 1 KEAs’ private keys si(i ∈ S).
Send (i, si) to A2.
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Phase1: A2 chooses {ID1, ID2, · · · , IDm}. On an iden-
tity ID ∈ {ID1, ID2, · · · , IDm}, A2 performs a number
of queries adaptively:

• Complete private key extraction queries: the chal-
lenger generates complete decryption key dID. Send
it to A2.

• Partial key queries: the challenger returns P
(i)
ID for

i ∈ S and V
(j)
ID for 1 ≤ j ≤ n.

• Replace KEA’s public keys: For i ∈ S, suppose
the request is to replace the public key of Γi with
< P ′i = s′iP, ∆i = s′iPpub >. The challenger accepts
A2’s request. When receiving ID, the challenger re-
turns P

(i)
ID

′
associated with P ′i and ID. V

(i)
ID keeps

unmodified.

Challenge: A2 chooses two equal length plaintexts
M0,M1 and an identity IDch which it wishes to be
challenged on. It’s not allowed to choose an identity
on which A2 made a complete private key extraction
query during the Phase1. The challenger picks a bit
b′ ∈ {0, 1} uniformly and responds a IB-ThKE ciphertext
C∗ =< U, V >, such that C∗ is the encryption of Mb′ . It
sends C∗ to A2.

Phase2: A2 chooses {IDm+1, IDm+2, · · · , IDk} and
performs a number of queries as in Phase1, except the
complete private key of IDch.

Guess: A2 outputs a guess b′′ ∈ {0, 1}. A2 wins if b′′ =
b′.

The adversary A2’s advantage is defined to be:

Adv(A2) = |2Pr[b′′ = b′]− 1|.

Theorem 1. Suppose the hash functions H1,H2 are ran-
dom oracles. Then IB-ThKE is an IND-IDTH-CPA se-
cure scheme assuming the BDH problem is hard in groups
generated by Setup. Concretely, suppose there is a type2
IND-IDTH-CPA adversary A2 that has advantage ε
against the IB-ThKE. Suppose A2 makes at most qE com-
plete private key queries, qH1 hash queries to H1 and qH2

hash queries to H2. Then there is an algorithm C that
solves the BDH problem in groups generated by Setup with
an advantage at least ε′′ = ε(qH1 − qE)/(qH1)

2qH2 .

Proof. To prove this theorem we first define a re-
lated public key threshold decryption scheme called
BasicThIBE. It is described as follows:

KeyGen : Given a security parameter k0, the PKG
chooses two groups G1 and G2 of the same prime order
q ≥ 2k0 , an admissible bilinear map ê : G1 × G1 → G2,
a generator P ∈ G1, a secret key s ∈R Z∗q , Ppub = sP .
Then the PKG chooses a polynomial of degree t− 1 over
Z∗q :

f(x) = s + a1x + . . . + at−1x
t−1.

For i = 1, 2, · · · , n, it computes P
(i)
pub = f(i)P ∈ G1

and chooses one cryptographic hash function H2 : G2 →
{0, 1}l. Pick a random Q ∈ G∗1. The public parameters
are:

cp = {q, l,G1,G2, ê, H2, P, Ppub, Q, {P (1)
pub, P

(2)
pub, . . . , P

(n)
pub}}.

For i = 1, 2, · · · , n, the PKG delivers di = f(i)Q ∈ G1

to decryption server i secretly. When receiving di, server
i can check its validity by ê(P (i)

pub, Q) = ê(di, P ) and∑
i∈T LT

i (P (i)
pub) = Ppub. Where T ⊂ {1, 2, · · · , n}, |T | = t

and LT
i is the Lagrange coefficient with respect to the

set T . If the verification fails, he complains to the PKG
that issues a new share.

Encrypt : To encrypt a message m ∈ {0, 1}l, the sender
chooses a random r ∈R Z∗q . The ciphertext is given by
< U, V >=< rP, m⊕H2(ê(Ppub, Q)r) >.

Decrypt : When receiving < U, V >, decryption server i
computes his decryption share δi = ê(U, di) and gives it
to the combiner.

Combination : The combiner selects a set T ⊂
{1, 2, · · · , n} of t acceptable decryption shares δi and com-

putes g =
∏
i∈T

δ
LT

i
i . Then the plaintext can be recovered

by m = V ⊕H2(g). The correctness of this scheme is easy
to verify.

The BasicThIBE scheme is not an identity-based(non-
ID-based) scheme but a traditional public key cryptosys-
tem. The key pair is < sQ, Q >.

Definition 3. (IND-TH-CPA). A non-ID-based
threshold decryption scheme is secure against chosen-
plaintext attacks (denoted by IND-TH-CPA) if no
polynomially bounded adversary B has a non-negligible
advantage in the following game:

Init: B corrupts a fixed subset of t− 1 servers.

KeyGen: B’s challenger runs KeyGen:

• The challenger gives the resulting common parame-
ters cp to B.

• The challenger gives B the private key shares of the
corrupted decryption servers. However, the private
key shares of uncorrupted decryption servers are kept
secret from B.

Challenge: B chooses two equal length plaintexts
M0,M1 and gives them to the challenger. The challenger
responds with C∗ =< U, V >= Encrypt(cp,Mb′) for a
random b′ ∈ {0, 1}.

Guess: B outputs a guess b′′ ∈ {0, 1}. B wins if b′′ = b′.

The adversary B’s advantage is defined to be:

Adv(B) = |2Pr[b′′ = b′]− 1|.
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Lemma 1. If H1 is a random oracle from {0, 1}∗ to G∗1.
A2 is an IND-IDTH-CPA adversary that has advan-
tage ε against IB-ThKE. Suppose A2 makes qE complete
private key extraction queries and at most qH1(qH1 > qE)
hash queries to H1. Then there is an IND-TH-CPA
adversary B that has advantage at least ε′ = ε(qH1 −
qE)/(qH1)

2 against BasicThIBE.

Proof. B works by interacting with A2 in an IND-IDTH-
CPA game as follows:

Init: A2 chooses a fixed set S of t− 1 KEAs it wants to
corrupt. Without loss of generality, assume A2 chooses
S = {1, 2, · · · , t− 1}.

Setup: Algorithms B starts by receiving BasicThIBE’s
public parameters cp = {q, l, G1, G2, ê, H2, P , Ppub,
Q, {P (1)

pub, P
(2)
pub, . . . , P

(n)
pub}} from his challenger, and gives

A2 the IB-ThKE system parameters {q, l,G1,G2, ê, P,H1,
H2, H3, Ppub, {P1, P2, · · · , Pn}}, where

• q, l,G1,G2, ê, P, Ppub are taken from cp.

• H1 is a random oracle controlled by B. H2 is de-
scribed as below. H3 is a one-way hash function but
not need to be a random oracle.

• Pi(i = 1, 2, · · · , n): B randomly picks r1, r2, · · · , rn ∈
Z∗q . Keep ri in secret, and return Pi = riP to A2.

Then B issues private key share queries to his chal-
lenger. B’s challenger returns {di}i∈S to B.

H1-queries: A2 can query the random oracle H1 at any
time. Assume A2 issues at most qH1 distinct hash queries
to H1, B begins by choosing an index u uniformly at
random with 1 ≤ u ≤ qH1 . Let IDi be the i-th dis-
tinct identity asked by A2, B maintains a list L1 of tuples
< IDi, bi, QIDi >, where:

• If i 6= u, then B picks bi at random from Z∗q ,
outputs QIDi = H1(IDi) = biP . Add the entry
< IDi, bi, QIDi > to L1.

• If i = u, then B picks bu at random from Z∗q , out-
puts QIDu = H1(IDu) = buQ. Add the entry
< IDu, bu, QIDu > to L1.

H2-queries: A2 can issues H2 queries at any time. B
forwards them to B’s challenger and returns the answers
to A2.

KEA’s private key extraction queries: To answer
A2’s private key extraction queries upon t − 1 corrupted
KEAs, B returns ri(i ∈ S) to A2.

Phase1: A issues a number of key extraction queries on
IDi adaptively.

• Complete private key extraction queries: It’s rea-
sonable to assume that A2 asked for H1(IDi) be-
fore issuing complete private key extraction queries

on an identity IDi. In order to provide complete
decryption key of IDi, B obtains the corresponding
< IDi, bi, QIDi

, > from L1. If i 6= u then B returns
dIDi = biPpub as the decryption key of IDi. Else if
i = u, then B terminates and outputs “Abort”.

• Partial key queries: When A2 queries on the partial
keys of IDi, B runs like this:

– If i 6= u, B randomly chooses a polynomial
of degree t − 1 over Z∗q : fIDi

(x) = bi +∑t−1
l=1 clx

l, cl ∈R Z∗q , and defines FIDi(j) =
fIDi(j)Ppub for 1 ≤ j ≤ n. Then B returns
P

(j)
IDi

= FIDi
(j) + rjPpub(j ∈ S) and V

(k)
IDi

=
ê(FIDi

(k), P )(1 ≤ k ≤ n) to A2.

– Else if i = u. For j ∈ S, B returns P
(j)
IDu

=

budj + rjPpub and V
(j)
IDu

= ê(budj , P ) . For

k ∈ {1, 2, · · · , n} − S, B returns V
(k)
IDu

=

ê(buQ, P
(k)
pub).

It’s easy to prove that P
(j)
IDi

, V
(k)
IDi

(i ≤ qH1 , j ∈ S
and k ∈ {1, 2, · · · , n}) can pass the validity test of
A2. When i = u, we make use of that {P (j)

pub}1≤j≤n,
{dk}k∈S can pass the validity test of B (see appendix
B for more details).

• Replace KEA’s public keys: Suppose the request is
to replace the public key for Γj(j ∈ S) with P ′j = r′jP
after passing < P ′j ,∆j > to B (It should be a valid
pair: ê(P ′j , Ppub) = ê(∆j , P )). B accepts A2’s request
and computes partial keys upon IDi as:

– If i 6= u, P
(j)
IDi

= FIDi(j)+∆j . FIDi(j) is defined
above.

– If i = u, P
(j)
IDu

= budj + ∆j .

Challenge: Adversary A2 outputs two equal length
plaintexts M0, M1 and an identity IDch which it decided
to be challenged on. B responds as follows:

• If IDch 6= IDu then B terminates the game and re-
ports “Abort”.

• If IDch = IDu then B forwards M0,M1 to its chal-
lenger. When it receives the ciphertext C ′ =<
U∗, V ∗ >, B returns A2 with the challenge C∗ =<
b−1
u U∗, V ∗ >. Where C ′ is the BasicThIBE encryp-

tion of Mb′ for a random b′ ∈ {0, 1} under the public
key Q, and b−1

u is the inverse of bu mod q.

Phase2: Adversary A2 makes more queries. B responds
in the same way as in phase1. Except the complete
private key query on IDu.

Guess: Eventually A2 outputs a guess b′′ ∈ {0, 1}. B
outputs b′′ as its guess for b′.

Analysis.
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If B does not abort during the game(denoted this
event as H), then A2’s view is identical to its view
in the real attack. Because B’s responses to all hash
queries are uniformly and independently distributed as
in the real attack, and all responses to A2’s request can
pass validity test unless ¬H. Furthermore, ê(dQ, U∗) =
ê(dIDu

, b−1
u U∗). Thus, by the definition of A2 we have

|2Pr(b′′ = b′) − 1| = Adv(A2) = ε when B never aborts.
The advantage of B is ε′ ≥ ε · Pr[H]. We name the event
that A2 made a complete private key extraction query
on IDu at some point as E1 and the event that A2 chose
IDch 6= IDu as E2. Then Pr[H] = Pr[¬E1

∧¬E2] =
Pr[¬E1]Pr[¬E2|¬E1] = 1

qH1
Pr[¬E1] ≥ 1

qH1
· qH1−qE

qH1
. So

ε′ ≥ ε(qH1−qE)

(qH1 )2 . This finishes the proof.

Lemma 2. Let H2 be a random oracle from G2 to {0, 1}l,
and let B be an IND-TH-CPA adversary that has ad-
vantage ε′ against BasicThIBE. Suppose B makes qH2 dis-
tinct hash queries to H2. Then there is an algorithm
C that solves the BDH problem with advantage at least
ε′′ = ε′/qH2 .

Proof. Algorithm C is given a random instance
< P, aP, bP, cP > of the BDH problem where a, b, c
are random in Z∗q . To compute D = ê(P, P )abc, C runs B
as follows:

Init: The adversary B chooses a set S of t−1 decryption
servers it wants to corrupt. Without loss of generality,
assume B chooses S = {1, 2, · · · , t− 1}.

KeyGen: Algorithm C starts by giving B the
BasicThIBE system parameters {q, l, G1, G2, ê, P , PPub,
Q,H2, {P (1)

pub, P
(2)
pub · · · , P

(n)
pub}}. Here

• q, l,G1,G2, ê, P are taken from BasicThIBE’s public
parameters.

• Ppub = cP , Q = bP .

• P
(i)
pub(i = 1, 2, · · · , n): pick randomly values c1, c2,
· · · , ct−1 ∈ Z∗q , find the appropriate λS′

ij coefficients.

Then C computes P
(i)
pub = λS′

i0 Ppub +
t−1∑
j=1

λS′
ij cjP (i =

t, t + 1, · · · , n), and P
(j)
pub = cjP (j = 1, 2, · · · , t− 1).

Where S′ = {0} ∪ S and λS′
ij denotes a Lagrange

coefficient with respect to the set S′.

• H2 is a random oracle controlled by C.
Private key shares extraction queries: B issues
private key shares extraction query on Q. In order to
provide t − 1 valid secret key shares upon Q, C returns
dj = cjQ for j ∈ S.

H2-queries: B may issues queries to the random oracle
H2 at any time. In order to simulate H2, C maintains an
initially empty list L2 of tuples < xi, Ri > as below:

• If the query xi already exists on the L2 in a tuple
< xi, Ri > then C responds with H2(xi) = Ri.

• Otherwise, C picks a random string Ri ∈ {0, 1}l and
adds the tuple < xi, Ri > to L2. Respond to B with
H2(xi) = Ri.

Challenge: B outputs two equal length plaintexts
M0,M1. C chooses a random string R ∈ {0, 1}l and
returns C∗ =< U, V >=< aP,R > as the challenge
ciphertext.

Guess: B outputs a guess b′′ ∈ {0, 1}. C ignores b′′ and
picks a tuple < xi, Ri > from L2 list randomly. Then
output xi as the solution to the given instance of the
BDH problem.

Analysis.
Let E be the event that B issues a query for

H2(ê(P, P )abc) during the simulation above, and F be
the event that C’s outputs is equal to ê(P, P )abc. As ex-
plained in [5], if B never issues a query for H2(ê(P, P )abc),
then the decryption of C∗ is uniform in B’s view. That
means Pr[b′′ = b′|¬E ] = 1/2 in the real attack. We
have Pr[b′′ = b′] = Pr[b′′ = b′|¬E ]Pr[¬E ] + Pr[b′′ =
b′|E ]Pr[E ] ≤ Pr[b′′ = b′|¬E ]Pr[¬E ]+Pr[E ] = 1

2 + 1
2Pr[E ],

and Pr[b′′ = b′] ≥ Pr[b′′ = b′|¬E ]Pr[¬E ] = 1
2 − 1

2Pr[E ].
It follows that in the real attack ε′ = |2Pr[b′′ = b′]− 1| ≤
Pr[E ], where ε′ is B’s advantage. Then Pr[F|E ] =
1/qH2 , and Pr[F|¬E ] = 1/q which is negligible when
q is large enough. From Pr[F ] = Pr[F|E ]Pr[E ] +
Pr[F|¬E ]Pr[¬E ] ≥ Pr[F|E ]Pr[E ], C’s probability to solve
the instance of BDH problem is at least ε′/qH2 .

Thus, putting all the bounds that have been obtained
above, it shows that a type2 IND-IDTH-CPA attacker
on IB-ThKE scheme with advantage ε can be used as
a subroutine to construct a BDH-attacker for a given
instance of BDH problem with the advantage at least
ε′′ = ε(qH1 − qE)/(qH1)

2qH2 . This finishes the proof of
Theorem 1.

5 Further Discussion

5.1 Security Improvements

A stronger attack against IB-ThKE is so called chosen-
ciphertext attacks (CCA2 [3]), in which A2 is given a
full access to the decryption oracle that runs the KEA’s
Sub-Decryption algorithm to generate decryption shares
of the uncorrupted KEAs. However, it’s very difficult
to design an efficient CCA2 secure ID-based threshold
cryptosystem [7, 16].

One possible solution is to introduce publicly check-
able encryption [12]. Then every KEA can check the va-
lidity of the ciphertext before generating the decryption
shares of it. A potential way is adding one additional
redundant element to the ciphertext. Like in the con-
struction from [1], using a “validity check” hash function
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H4 : G1 × {0, 1}l → G∗1 to convert the ciphertext into
< U, V, W >, where U, V has the same definitions as in
section 3.2 and W = rH4(U, V ). Then the check could be
carried out using bilinear pairings. However, since each
KEA should check the ciphertext’s validity, the additional
pairing operations cast a heave burden to each KEA.

An alternative approach is applying the techniques pro-
posed in [16]. That is using non-interactive zero knowl-
edge proof to make the ciphertext publicly checkable with-
out pairing operation. The drawback is the length of the
ciphertext will be increased. Another way to solve the
problem is to encode the the information necessary for
the validity-check into the original chosen-plaintext se-
cure ciphertext, or encode the consistency information in
ciphertext element containing the receiver’s identity. Till
now, this approach is only applied in key encapsulation
mechanism but not in any fully-fledged identity-based en-
cryption schemes [10]. How to design an efficient and
provably secure publicly checkable encryption scheme will
be our future work.

5.2 Practical Extensions

The IB-ThKE can readily be changed to a chosen-plaintext
secure identity-based threshold decryption scheme. There
are only type2 adversaries against such a scheme, and its
security reduction is similar to IB-ThKE.

Another application of IB-ThKE is the ID-based medi-
ated cryptosystem secure against outside attacks [6, 11],
by setting (t, n) = (2, 2).

6 Conclusions

In this paper, we propose an identity-based threshold key
escrow scheme IB-ThKE to efficiently solve the conflicting
between the authorized key escrow and the user’s privacy
in the identity-based cryptosystem. IB-ThKE is proved to
be chosen-plaintext secure in the appropriate model, as-
suming the Bilinear Diffie-Hellman problem is hard. Ad-
ditionally, we discuss the difficulty in constructing a fully
secure scheme, and propose the potential applications of
IB-ThKE.
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