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Abstract

In this paper we show that Biham’s chosen key attack can
be generalized to include any block cipher and we give a
low complexity chosen key attack on any Feistel type ci-
pher. Then we show that the irregularities in the shift
pattern of DES key schedule algorithm is not sufficient
for the cryptosystem to resist against related key attacks.
We have realized our proposition by a counter example
in which the E-box of DES is slightly modified whiles
other components and among those, the shift pattern in
key schedule algorithm is kept unchanged. We have ap-
plied a new related key attack on the resulting DES-like
cryptosystem and demonstrated that the security of the
system decreases drastically.
Keywords: Chosen key attack, differential related key at-
tack, DES, feistel type cipher

1 Introduction

The major attacks on Feistel type block ciphers fall into
three groups of differential analysis [1], linear analysis [10]
and related-key attacks [2]. The related key attack intro-
duced by Biham [2] is a chosen key attack assaulting the
key schedule algorithm of the cipher. In this attack, at-
tacker obtains the encryption of certain plaintexts under
several keys having certain relationships with each other.
The goal in this type of attack is to reveal the secret key
of the cryptosystem and it can be accomplished whenever
the attacker can chose the relationship between unknown
keys. So, it is best practical on key-exchange protocols
where key-integrity is not guaranteed thus an attacker can
flip the key bits without knowing the key itself [6, 8, 9].
In differential related-key attacks [6], the relationship be-
tween the unknown keys is their difference; adversary can
choose the difference between the keys and seek for the
keys themselves. The plaintext ciphertext pairs can be
chosen or known which categorizes the related key attack
into two groups of known-related-key attacks and chosen-

related-key attacks.
In order to strengthen DES, several extensions have

been developed including Triple-DES, DES-X, Biham-
DES, DES-X and NewDES. These extensions improved
the resistance of DES against exhaustive search, linear
cryptanalysis and differential cryptanalysis; but not any
significant improvement has been gained against related-
key attacks and several related-key cryptanalysis have
been developed against these extensions [8, 9]. Even in
the case of DES-X there has been introduced some novel
key related attacks [9]. It is believed that the irregularities
in the shift pattern of DES key schedule algorithm makes
DES immune against related key attacks [2]. Recently, it
has been shown that 1-bit shift in some less number of
rounds in DES key schedule makes DES vulnerable to a
related-key attack [7].

In this paper we show that Biham’s chosen key attack
can be generalized to include any block cipher. Though
this attack is applicable to the ciphers having block length
less than key size, it leads to a low complexity chosen key
attack against any Feistel type cipher. Then we show
that the resistance of DES against differential related key
attack is not merely upon the irregularities in the shift
pattern of its key schedule algorithm which is widely be-
lieved since the time it was mentioned in [2]. We have
realized our proposition by mounting a differential related
key attack similar to that of [7] against a DES-like cipher
with the same key schedule algorithm as the original DES
to demonstrate that the security of the system decreases
drastically. Our variant of DES is different from the origi-
nal DES in one index of its E-box. This makes it nonsense
to build the immunity of DES against related key attacks
merely upon shift pattern irregularities.

In Section 2 we formalize the chosen key attack and
give a low complexity attack scenario against Feistel type
ciphers. Then in Section 3 we discuss the original DES
algorithm and its mixed transformation representation
in brief and introduce our DES-like encryption scheme.
Then in Section 4 we discuss our differential related key
attack against the proposed DES-like system.
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2 Generalized Biham Chosen Key
Attack

The chosen key attack is based on the observation that
in many block ciphers we can view the key scheduling al-
gorithm as a set of algorithms each of which extracts one
particular subkey from the subkeys of previous rounds. If
all the algorithms of extracting the subkeys of the various
rounds are the same then for a given a key we can shift
all the subkeys one round backwards and get a new set
of valid subkeys which can be derived from some other
keys [12]. These keys are called related. The same argu-
ment is true for slide attacks introduced in [3, 4]. Slide
attacks can be viewed as a particular case of related-key
attack in which the relation is between the key and itself
[1]. Extending this idea, in this section, we introduce a
generalization of chosen key attack to include any block
cipher and give low complexity attack scenarios against
Feistel type ciphers. Several related key analysis of block
ciphers can be found in [2, 6, 8, 9].

Definition 1. (Block cipher): Our abstraction of block
cipher is a triple C(n, r,K) in which n is the data block
length, r the number of rounds and K the underlying key.
We also write K → (k1, k2, . . . , kr) to denote the deriva-
tion of round keys and F (x, ki) to denote the round func-
tion of C(n, r,K). we also write pK

→c to indicate the en-
cryption process.

Definition 2. (Slid keys): The keys (K, K ′) are called
slid keys if they led to the same derivation of round keys
but one round out of phase. More formally (K, K ′) are
called slid pairs if

K → (k1, k2, . . . , kr) ⇐⇒ K ′ → (k2, k3, . . . , kr, kr+1).

If kr+1 = k1 then we call (K, K ′) strong slid keys.

Definition 3. (Slid pair): A pair of plaintext-ciphertext
pairs ((p, c), (p′, c′)) in which p and p′ are encrypted under
the keys K and K ′ respectively, is called slid pair if:

1) (K, K ′) are strong slid keys,

2) P ′ = F (P, k1).

Theorem 1. (Birthday Paradox): Let H : M → C be
a random function in which |C| = 2m and let X and Y be
two randomly chosen subsets of M with |X| = |Y | = n.
If n ≥ 2

m
2 then the probability of finding one collision

between sets X and Y exceeds 1
2 . [11]

Proposition 1: The pair ((p, c), (p′, c′)) is slid pair if and
only if it satisfies the following conditions.

1) p′ = F (p,K1),

2) c′ = F (c,K1).

Proof. If ((p, c), (p′, c′)) is a slid pair then by Definition
3 p′ = F (p, k1) and since encryption process for p′ is one
round shifted so c′ = F (c, k1). On the other hand suppose

one can found k1 satisfying both conditions above and
consider (c, c′) satisfying c′ = F (c, k1) since p′ = F (p, k1),
k1 is the first and last subkey of the keys K and K ′ re-
spectively. Reversing the encryption process one gets the
intermediate encryptions of p′ one round shifted as that
of p.

Proposition 2: By 2
n
2 random n-bit plaintext-ciphertext

pair encrypted under key K and 2
n
2 plaintext-ciphertext

pair encrypted under key K ′ one expects to find a slid
pair.

Proof. Consider plaintexts selected to encrypt under K
and K ′ as the set X and Y respectively. According to
birthday paradox the sets X and Y have a common ele-
ment (so two elements with a determined relation) with a
probability greater than 1

2 . Thus, exposing to encryption
under K and K ′ we expect to have a slid pair.

Proposition 3: By 2
n
4 random n-bit plaintext-ciphertext

pair of the form Pi = Li ‖ X encrypted under key K by a
Feistel type cipher and 2

n
4 plaintext-ciphertext pair of the

form Pj = X ‖ Rj encrypted under key K ′ one expects
to find a slid pair.

Proof. Apply the birthday paradox to the half of the data
block.

Attack model for general case:

1) Acquire 2
n
2 plaintext-ciphertext pair encrypted un-

der key K and 2
n
2 plaintext-ciphertext pair encrypted

under key K ′.

2) For each pair ((p, c), (p′, c′)) solve the simultaneous

equation:
{

F (p, k) = p′

F (c, k) = c′

According to Proposition 1 if the system has solution
k then ((p, c), (p′, c′)) is a slid pair. And according to
Proposition 2 there is at list one slid pair. Thus in worst
case performing O(2n) task, one can retrieve k1.

Attack model for special case of Feistel ciphers:
In Feistel ciphers the round function is F (L ‖ R) =

(R ‖ L⊕ f(R)). So the slid pair can be recognized more
easily.

1) Acquire 2
n
2 plaintext-ciphertext pair encrypted un-

der key K and 2
n
2 plaintext-ciphertext pair encrypted

under key K ′.

2) Sort (pi, ci) encrypted with key K according to right
halves of pi and ci and sort (p′i, c

′
i) encrypted with

key K ′ according to left halves of p′i and c′i.

Now in order to find a slid pair it suffices to compare
the right half of pi with left half of p′i and right half of
ci with left half of c′i. This requires O(2

n
2 ) task since the

lists are sorted.
One may reduce the number of plaintext-ciphertext

pairs required, by a kind of chosen plaintext attack. Note
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that both of the above attacks are known plaintext at-
tacks. A chosen plaintext attack may run as follows:

1) Select 2
n
4 plaintexts of the form pi = Li ‖ X for

some constant X to submit to encrypt under the key
K and another 2

n
4 plaintexts of the form pj = X ‖ Ri

to submit to encrypt under the key K ′. According
to Proposition 3 there is at least one slid pair.

2) Like known plaintext attack Sort (pi, ci) encrypted
with key K according to right halves of pi and ci and
sort (p′i, c

′
i) encrypted with key K ′ according to left

halves of p′i and c′i.

Again in order to find a slid pair it suffices to compare
the right half of pi with left half of p′i and right half of ci

with left half of c′i. Thus by O(2
n
4 ) plaintext-ciphertext

pair and O(2
n
4 ) offline work one can extract the underly-

ing key.

3 Mixed Transformation Repre-
sentation of DES

DES encryption algorithm was introduced in 1972 by the
researchers of IBM. It was accepted as a federal standard
the National Security Agency (NSA) in 1977. It is a 16-
rounded Feistel type block cipher which uses a 56 bit key
and operates on a block size of 64 bits. The encryption
process consists of sixteen Feistel iterations surrounded
by two permutation layers: An initial bit permutation
(IP) in the input, and its inverse, IP−1, in the output.
The functionality of each of the Feistel iterations can be
summarized as bellow:

1) A 32-bit block is expanded to 48 bits through an
expansion permutation function and xored with the
i-th subkey.

2) The output of the phase 1) is divided into eight 6-
bit blocks. Each 6-bit block is then passed through
one of the S1, S2, . . . , S8 s-boxes. Each s-box is a
non-linear function which maps a 6-bit input data to
4-bit output data.

3) The output of S1, S2, . . . , S8 is concatenated and
passed through the permutation P to obtain the final
output of each round.

Davio et al. [5] proposed several equivalent representa-
tions that can be utilized for cryptanalysis or efficient im-
plementation of DES. Here, we will use the mixed trans-
formation representation depicted in Figure 1. The initial
and the final permutation are omitted since they do not
contribute to the security of the cipher. This representa-
tion is also used in [7] to attack DES.

In order to generate sixteen 48-bit sub keys from the
56-bit key, the following process is used: First, the key
is loaded and manipulated by the permutation choice I
(PC1) and then the key block is halved. Each half is

Figure 1: DES block diagram [5]

rotated by 2 bits in every round except in the 1st, 2nd, 9th
and the last rounds. The 48 bits of the 56 bits are chosen
according to permutation choice II (PC2). Figure 2 shows
the key generation process for DES and the PC2 function.

4 Differential Related Key Analy-
sis of DES

In this section, we will analyze our attack approach
against a DES like block cipher. Our variant of DES has
the same components as the original DES except that its
expansion permutation function has been slightly mod-

Figure 2: Key generation block diagram of DES
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Figure 3: The original and modified E function

ified. The modified table as well as the original one is
shown in Figure 3.

By now let’s consider two keys K ′ and K ′′ such that:

4C1 = C ′ ⊕ C ′′

= 1111111111111111111111111111; (1)
4D1 = D′ ⊕D′′

= 0000000000000000000000000000. (2)

Where C ′1, D
′
1, C

′′
1 , and D′′

1 are the left and right halves
of the keys and respectively as shown in Figure 2.

By selecting K ′ and K ′′ such that Equations (1) and
(2) are satisfied, obviously we have

LSH1(4Ci) = 4Ci;
LSH1(4Di) = 4Di,

where, LSH1(x) indicates i-bit circular left shift of x.
Thus, for 1 ≤ i ≤ 16 we have:

4Ki = PC2(C ′i ‖ D′
i)⊕ PC2(C ′′i ‖ D′′

i )
= PC2(4Ci ‖ 4Di) = PC2(128 ‖ 028)
= 124 ‖ 024,

where x ‖ y stands for the concatenation of x and y. So,
4Ki = const.

On the other hand according to the key schedule algo-
rithm (Figure 2), we obtain:

4ki = 4ki−2 ⇒ k′i ⊕ k′′i = k′i−2 ⊕ k′′i−2 ⇒ k′i ⊕ k′i−2

= k′′i ⊕ k′′i−2. (3)

Now consider two plaintexts x′ and x′′ encrypted by the
keys K ′ and K ′′ respectively satisfying Conditions (4) and
(5) bellow:

4Lin = L′in ⊕ L′′in
= 11111111111111111111111111111111; (4)

4Rin = R′in ⊕R′′in
= 00000000000000000000000000000000, (5)

where Lin and Rin are the left and right halves of plain-
text x.

Let’s see what happens to the plaintext during itera-
tions of encryption algorithm.

Let 4L1
in, denotes the difference between left part of

plaintexts x′ and x′′ before the i-th round of encryption
by the keys k′ and k′′ respectively.

In the case of 4L1
in and 4R1

in according to Figure 1 it
is clear that:

4L1
in = (K ′

2 ⊕ E(L′in))⊕ (K ′′
2 ⊕ E(L′′in))

= (4K2)⊕ (E(L′in))⊕ (E(L′′in)); (6)
4R1

in = (K ′
1 ⊕ E(R′in))⊕ (K ′′

1 ⊕ E(R′′in))
= (4K1)⊕ (E(R′in))⊕ (E(R′′in)), (7)

where E is the expansion permutation function at the first
layer. Since E is linear we have:

E(L′in)⊕ E(L′′in) = E(L′in ⊕ L′′in) = E(4Lin);
E(R′in)⊕ E(R′′in) = E(R′in ⊕R′′in) = E(4Rin),

by applying expansion function E on the values of 4Lin

and4Rin as they are in Conditions (4) and (5) we obtain:

E(4Lin) = E(4Rin)

= 111111111111111111111111000000000000000000000000,

which is equal to 4ki as it is in Equation (3).
Thus according to Equations (6) and (7)

4L1
in = 4k2 ⊕ E(4Lin) = 4k2 ⊕4k2 = 0;

4R1
in = 4k1 ⊕ E(4Rin) = 4k1 ⊕4k1 = 0.

But in the case of 4Li
in and 4Ri

in for i > 1 there is
non linear function F . However, since the difference of
inputs to s-boxes will remain zero, this is not a problem.
For example in the case of 4L2

in and 4R2
in we will have:

4L2
in = L′2in ⊕ L′′2in

= (k′4 ⊕ k′2 ⊕ L′1in ⊕ F (R′1in))

⊕(k′′4 ⊕ k′′2 ⊕ L′′1in ⊕ F (R′′1in ))

= 4k4 ⊕4k2 ⊕4L1
in ⊕ F (R′1in)⊕ F (R′′1in ).

Now since 4L1
in = 0 and F (x) = PE(S(x)) and PE is a

linear function, we have:

4L2
in = 4k4 ⊕4k2 ⊕ PE(S(R′1in))⊕ S(R′′1in ).

But according to pairs XOR distribution table of s-
boxes, whenever the difference of input to an s-box equals
to zero, the difference of corresponding outputs will be
zero too. So, the above formula reduces to:

4L2
in = 4k4 ⊕4k2.

The same argument can be carried out for 4R2
in and

consequent data parts. By doing so, we obtain:

4Li
in = 4k2i ⊕4k2i−2;

4Ri
in = 4k2i−1 ⊕4k2i−3.

And according to Equation (3) this will leads to
4Li

in = 4Ri
in = 0 for 1 ≤ i ≤ 8.

Now, we encrypt two plaintexts x′ and x′′ satisfying
Conditions (1) and (2) by the keys K ′ and K ′′ satisfying
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Table 1: The complexity of our attacks with respect to
block size -n

Cipher and Attack Plaintext-Ciphertext Offline
Type Pairs Required Work

General block
cipher Known O(2

n
2 ) O(2n)

Plaintext Attack
Feistel Type

Known Plaintext O(2
n
2 ) O(2

n
2 )

Attack
Feistel Type

Chosen Plaintext O(2
n
4 ) O(2

n
4 )

Attack

Conditions (4) and (5) respectively in order to get the
corresponding ciphertexts y′ and y′′.

According to Figure 1 we have,

R′8in = E(R′out)⊕ k′15 ⊕ F (E(L′out)⊕ k′16); (8)
R′′8in = E(R′′out)⊕ k′′15 ⊕ F (E(L′′out)⊕ k′′16). (9)

Thus, we can search for subkeys k′16 satisfying the Con-
ditions (8) and (9).

This requires 8 × 26 search operation; for we don’t
need to search among all possible subkeys k′15. Instead
we group carefully the subkeys into 6-bit groups that bits
in one group affect just one s-box. By knowing the subkey
k′16 we can easily evaluate the key K.

5 Conclusions

We showed that Biham’s chosen key attack can be gener-
alized to include any block cipher regarding it as a random
substitution permutation network. We also proposed a
general attack scenario with low plaintext-ciphertext and
offline complexity against any Feistel type cipher. The
complexity of these attacks is summarized in Table 1.
Then we introduced a differential related key attack to
a variant of DES which has the same shift pattern as the
original one. This violates the previous belief that the
strength of DES against related key attacks, is due to the
irregularities in the shift pattern of its key schedule. We
realized this, by applying our attack on a variant of DES
with a slightly modified E-box -as indicated in Figure 3-
to demonstrate that the security of the system decreases
drastically.
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