
International Journal of Network Security, Vol.8, No.3, PP.211–220, May 2009 211

On a Family of Minimal Candidate One-way
Functions and One-way Permutations

D. Gligoroski
Department of Telematics, Faculty of Information Technology, Mathematics and Electrical Engineering
Norwegian University of Science and Technology, O.S. Bragstads plass 2E, N-7491 Trondheim, Norway

(Email: danilo.gligoroski@gmail.com)

(Received Mar. 6, 2006; revised and accepted May 7, 2006)

Abstract

In order to achieve computational workload equivalent to
the exhaustive key search of an n-bit key for inversion of
RSA or Diffie-Hellman one-way candidate functions the
length of their arguments have to have from 10n to 60n
bits. One-way functions based on Elliptic Curves in this
moment are holding the record, demanding only 2n bits
for their arguments. In this paper we propose a definition
and construction of a new family of one-way candidate
functions RN : QN → QN , where Q = {0, 1, . . . , s− 1} is
an alphabet with s elements. Special instances of these
functions can be permutations (i.e. one-way permuta-
tions). These one-way functions have the property that
for achieving the security level equivalent of exhaustive
key search of n-bit key, only n bits of input are needed.
Keywords: One-way functions, one-way permutations,
quasigroup string transformations

1 Introduction

The concept of one-way function is the fundamental con-
cept in the modern cryptography and was first intro-
duced by Diffie and Hellman in their seminal paper [2].
Since then, many designed cryptographic primitives that
claim that are cryptographically strong, actually suppose
that they have implemented the concept of one-wayness
in some proper manner. Although the current level of
our mathematical knowledge does not offer an answer
whether the one-way functions exist or not, their existence
is conjectured and we have several well defined families of
one-way candidate functions. The other way around is
also true. Namely, one-way candidate functions are ap-
plied in the design of various cryptographic primitives or
protocols such as: cryptographic hash functions, crypto-
graphic random number generators, stream ciphers, sig-
nature schemas, authentication problems or key exchange
protocols.

Almost all known and well established one-way func-
tions and one-way permutations in contemporary cryp-
tology are based on intractable problems from number

theory or closely related mathematical fields such as the-
ory of finite fields, sphere packing or coding theory. For
example, the discrete logarithm problem modulo a large
randomly generated prime number is the Diffie-Hellman
proposal (DH) in [2] for one-way permutations, quadratic
residuosity is Goldwasser and Micali proposal in [10] and
RSA is an one-way permutation candidate based on the
difficulty of factoring a number that is a product of two
large prime numbers proposed by RSA [26]. Another pop-
ular one-way candidate function is based on the difficulty
of finding discrete-logarithm on elliptic curves (ECC) pro-
posed by Koblitz [14] and Miller [20].

There are also some one-way functions candidates
based on sphere-packing problems and coding theory such
as the proposals from Goldreich, Krawczyk and Luby in
[5]. Constructing one-way functions based on the sub-
set sum problem have been proposed by Impagliazzo and
Naor in [11]. As far as we know, the only attempt to
construct a one-way function that is completely defined
by combinatorial elements is the proposal of Goldreich in
[6]. The proposal is based on the combinatorial field of
Expander Graphs.

In this paper we construct a new family of one-way
functions and one-way permutations defined on a finite set
Q = {0, 1, . . . , s − 1} with s elements. The construction
is based on the theory of quasigroups, and quasigroup
string transformations. Our approach in opposite to other
approaches, with an exception of [6] is completely based
on a mathematical field not closely related to the field of
number theory. By some of their properties, such as speed
of computation and security level of inversion, quasigroup
one-way functions outperform all currently known one-
way candidate functions.

2 Preliminaries

Here we give only a brief overview of quasigroups and
quasigroup string transformations and more detailed ex-
planation the reader can find in [1] and [15].

Definition 1. A quasigroup (Q, ∗) is a groupoid, i.e. a

International Journal of Network Security, Vol.8, No.3, PP.211–220, May 2009 212

a0 a1 . . . aN−2 aN−1

l b0 b1 . . . bN−2 bN−1
¡

¡¡µ
¡

¡¡µ
¡

¡¡µ
¡

¡¡µ
¡

¡¡µ? ? ? ?

Figure 1: Graphical representation of the e–transformation of a string A = (a0, a1, . . . , aN−1)

Table 1: Quasigroup (Q, ∗)

∗ 0 1 2 3
0 2 1 0 3
1 3 0 1 2
2 1 2 3 0
3 0 3 2 1

set Q with a binary operation ∗ : Q × Q → Q, satisfying
the law

(∀u, v ∈ Q)(∃! x, y ∈ Q) u ∗ x = v & y ∗ u = v.

If Q is a finite set then the main body of the multipli-
cation table of the quasigroup is a Latin Square over the
set Q. A Latin Square over Q is a |Q| × |Q|-matrix such
that each row and column is a permutation of Q (see for
example [1]).

Next we define the basic quasigroup string transforma-
tion called e–transformation.

Definition 2. A quasigroup e–transformation of a string
A = (a0, a1, . . . , aN−1) ∈ QN with a leader l ∈ Q is the
function el : Q × QN → QN defined as B = el(A) where
A = (a0, a1, . . . , aN−1), B = (b0, b1, . . . , bN−1), l ∈ Q and

bi :=
{

l ∗ a0, i = 0
bi−1 ∗ ai, 1 ≤ i ≤ N − 1.

For better understanding the graphical representation
of the e–transformation is shown on Figure 1.

Example 1. Let Q = {0, 1, 2, 3} and let the quasigroup
(Q, ∗) be given by the multiplication scheme in Table 1.

Consider the string A = 1021000 0000001 1210220
1010300 and let us choose the leader l = 0. Then by
the e–transformation e0(A) we will obtain the following
transformed string:

e0(A) = 1322130 2130210 1121113 3013130.

The four consecutive applications of the e-transformation
e0 on A are represented in Table 2.

If we have a string of leaders, we can apply consecutive
e–transformations on a given string, as a composition of
e–transformations. That is defined by the following defi-
nition:

Definition 3. A quasigroup E–transformation of a string
A = (a0, a1, . . . , aN−1) ∈ QN with a string of K lead-
ers L = (l0, l1, . . . , lK−1) ∈ QK is the function EL,K :
QK × QN → QN defined as B = EL,K(A) where A =
(a0, a1, . . . , aN−1), B = (b0, b1, . . . , bN−1) and

B = elK−1(elK−2(. . . el1(el0(A)) . . .)).

Definition 4. Quasigroup single reverse string transfor-
mation is the function R1 : QN → QN defined as

B = R1(A) = EA,N (A) = eaN−1(. . . (ea1(ea0(A))))

where A = (a0, a1, . . . , aN−1) and B = (b0, b1, . . . , bN−1).

Definition 5. Quasigroup double reverse transformation
is the function R2 : QN → QN defined as

B = R2(A) = EAA,2N (A)
= eaN−1(. . . (ea1(ea0(eaN−1(. . . (ea1(ea0(A)))),

where A = (a0, a1, . . . , aN−1) and B = (b0, b1, . . . , bN−1).

Example 2. Let quasigroup (Q, ∗) be given by the mul-
tiplication scheme in Table 1. Consider the string A =
0 1 2 3 0. Then by the transformation R1(A) = EA,5(A)
we will obtain the following transformed string: R1(A) =
0 0 1 0 3 and by the transformation R2(A) = EAA,10(A)
we will obtain the following transformed string: R2(A) =
0 3 2 0 2. The calculation’s steps are given in Table 3.

3 Security Analysis and One-
wayness from the Lookup Table
Point of View

Both R1 and R2 are serious candidates for one-way func-
tions, with the difference that the conjectured number of
computations to invert R1 is O(sbN

3 c) and to invert R2

it is O(sN). In what follows we will support these claims
from two perspectives: 1) From the (non)linearity of the
expression by which the quasigroup (Q, ∗) is defined, and
2) From the lookup table (Latin Square) that defines the
used quasigroup (Q, ∗). We will discuss later in this sec-
tion the reasons for this approach.

First we will prove a Lemma that treats the case when
the quasigroup (Q, ∗) of order s is defined by a linear
expression in the ring Zs(+, ·). In the following two lemas
we will abuse the notation for the quasigroup (Q, ∗) and
for the set Q = {0, 1, . . . , s− 1} and instead of operation
x ∗ y we will use the notation Q(x, y).

International Journal of Network Security, Vol.8, No.3, PP.211–220, May 2009 213

Table 2: Four consecutive e-transformations of A with leader 0

1 0 2 1 0 0 0 0 0 0 0 0 0 1 1 2 1 0 2 2 0 1 0 1 0 3 0 0 = A
0 1 3 2 2 1 3 0 2 1 3 0 2 1 0 1 1 2 1 1 1 3 3 0 1 3 1 3 0 = e0(A)
0 1 2 3 2 2 0 2 3 3 1 3 2 2 1 0 1 1 2 2 2 0 3 0 1 2 2 0 2 = e0(e0(A))
0 1 1 2 3 2 1 1 2 0 1 2 3 2 2 1 0 1 1 1 1 3 1 3 3 2 3 0 0 = e0(e0(e0(A)))
0 1 0 0 3 2 2 2 3 0 1 1 2 3 2 2 1 0 1 0 1 2 2 0 3 2 0 2 1 = e0(e0(e0(e0(A))))

Table 3: R1(A) and R2(A) transformation of the string A = 0 1 2 3 0

0 1 2 3 0 = A
0 2 2 3 1 3
3 2 3 1 0 3
2 3 1 0 2 0
1 2 2 1 1 3
0 0 0 1 0 3 = R1(A)

0 1 2 3 0 = A
0 2 2 3 1 3
3 2 3 1 0 3
2 3 1 0 2 0
1 2 2 1 1 3
0 0 0 1 0 3
0 2 1 0 2 0
3 2 2 1 1 3
2 3 2 2 2 0
1 2 3 2 3 0
0 0 3 2 0 2 = R2(A)

Lemma 1. If the quasigroup (Q, ∗) of order s is de-
fined by a linear expression in the ring Zs(+, ·) i.e. if
the operation ∗ can be expressed as x ∗ y ≡ Q(x, y) =
αx + βy + γ mod s, (α, β, γ ∈ Q), then the problem of in-
verting R1,R2 : QN → QN is equivalent to a problem of
solving a system of N linear equations with N unknown
variables in the ring Zs(+, ·).
Proof. The main observation that leads to the proof
of this lemma is the fact that any regular expression
Ex(a1, a2, . . . , aN) with N variables a1, a2, . . . , aN and
the operation ∗, gives a linear expression of the form:
P1(α, β, γ)a1 + P2(α, β, γ)a2 + · · · + PN (α, β, γ)aN +
PN+1(α, β, γ) in the ring Zs(+, ·) where Pi(α, β, γ) are
polynomial expressions on α, β and γ, but since α, β and γ
are predefined constants from the set Q = {0, 1, . . . , s−1},
and the operations are performed in the ring Zs(+, ·),
the values of Pi(α, β, γ) are some constants from the set
Q = {0, 1, . . . , s − 1}. Actually, this part can be eas-
ily proved by mathematical induction on the number N
of different variables involved in the regular expression
Ex(a1, a2, . . . , aN), and we will omit it in this proof.

Now, the proof of the lemma follows directly from the
definitions 5 and 6 if we interpret the definitions ofR1,R2

as regular expressions with N variables a1, a2, . . . , aN .

The situation becomes much different if the quasigroup
(Q, ∗) is defined by some nonlinear expression in the ring
Zs(+, ·). Namely, in that situation the following is true:

Lemma 2. If the quasigroup (Q, ∗) of order s is de-
fined by a nonlinear expression in the ring Zs(+, ·) i.e.
if the operation ∗ can be expressed as x ∗ y ≡ Q(x, y) =

P (x, y) mod s, where the degree of the polynomial P (x, y)
is at least 2, then the problem of inverting R1,R2 : QN →
QN reduces to a problem of solving a system of N mul-
tivariate polynomial equations with N unknown variables
in the ring Zs(+, ·).

We will omit the proof of the last lemma since the proof
technique is similar as the proof of the previous lemma
with the difference that the obtained expressions will be
multivariate polynomials in Zs[a1, a2, . . . , aN].

Solving a system of N multivariate polynomials with
N unknown variables is NP-complete problem (see for
example [25]). From that perspective we can say that if
the quasigroup is defined by a nonlinear expression in the
ring Zs(+, ·) then by Lemma 2 we have certain security
guarantees that inverting the functions R1 and R2 would
be similar as solving an NP-complete problem.

On the other hand, if the quasigroup is just given by its
corresponding lookup table (Latin Square) and it is not
possible to represent it by some linear expression, then in
the next two theorems we will show that inversion of the
functions R1 and R2 would require exponential number
of addressing to that lookup table.

Theorem 1. If the quasigroup (Q, ∗) of order s is non-
associative, non-commutative, and if it can not be repre-
sented by a linear expression in the ring Zs, then the num-
ber of computations based only on the lookup table that de-
fines the quasigroup (Q, ∗) in order to find the preimage
for the function R1 : QN → QN is O(sbN

3 c).
Proof. Let B = (b0, b1, . . . , bN−1) be given. The goal
is to find a string A = (a0, a1, . . . , aN−1) that satisfies

International Journal of Network Security, Vol.8, No.3, PP.211–220, May 2009 214

the equality B = EA,N (A) = E(aN−1, aN−2,..., a1, a0),N (A).
Further, because the final values of the string B are
obtained after N consecutive operations eaj

we will
use the following notation: B(i) = eaN−i

(B(i−1)) =
(b(i)

0 , b
(i)
1 , . . . , b

(i)
N−2, b

(i)
N−1) for i = {1, . . . , N − 1}, and

B(0) = A, B(N) ≡ B.

Table 4: Initial table obtained from the values of B =
(b0, b1, . . . , bN−1) before making any guess for the values
of A = (a0, a1, . . . , aN−1)

? ? ?

? ? ? b
(1)
N−1

? ? ? b
(2)
N−1

...
...

...
. . . .

...

? ? ? b
(N−2)
2 . . . b

(N−2)
N−1

? ? b
(N−1)
1 b

(N−1)
N−1

? b
(N)
0 b

(N)
1 b

(N)
N−1

Since the quasigroup (Q, ∗) is non-associative and non-
commutative, the composition of e–transformations is
fixed and it can not be changed, which is not the case
if the quasigroup is commutative or associative. To solve
the inverse task only by using the lookup table of the given
quasigroup, is in fact a task to fill in the scheme in the
Table 4, from bottom up using the properties of the quasi-
group operation ∗. As a matter of fact due to the prop-
erties of quasigroup operation ∗ this scheme can be par-
tially completed without guessing any value of A. Namely,
from the N -th row we have the equations b

(N)
i ∗x = b

(N)
i+1 ,

and since they are equations in a quasigroup, they have
unique solutions x = b

(N−1)
i+1 for all 0 ≤ i ≤ N − 1. Then,

similarly from the N − 1-th row we have the equations
b
(N−1)
i ∗y = b

(N−1)
i+1 that have unique solutions y = b

(N−2)
i+1

for all 1 ≤ i ≤ N − 1, and so on up to the first row of the
table, where we can calculate the value of b

(1)
N−1.

Now, by knowing or by guessing the value of a0 (that
have range among s possible values) we can find value
b
(N−1)
0 , from which we can find the other values in the

scheme of Table 5a, together with the value of aN−1.
If we continue with choosing a1 from all possible s val-

ues we will obtain a new value for aN−2. Next, with every
choice of ai, 2 ≤ i ≤ N

2 we will obtain also the values for
aN−i−1, and by knowing that, we will be in a position
to complete the upper left corner of the scheme (see Ta-
ble 5b). The intersection of the lower completed and the
upper completed part is for

⌊
N
3

⌋
. So by choosing

⌊
N
3

⌋
values we will obtain other values of the string A. Now,
we can check whether we have made the right choice for

a0, a1, . . . , abN
3 c or not. Therefore, the complexity of in-

version of R1 only by using the lookup definition of the
quasigroup (Q, ∗) is O(sbN

3 c).
Theorem 2. If the quasigroup (Q, ∗) of order s is non-
associative, non-commutative, and if it can not be repre-
sented by a linear expression in the ring Zs, then the num-
ber of computations based only on the lookup table that de-
fines the quasigroup (Q, ∗) in order to find the preimage
for the function R2 : QN → QN is O(sN).

Proof. The proof is similar to the proof for the function
R1 except that now there is no intersection in the process
of completing the scheme until the last guess for aN−1 is
made. Therefore we have to make a guess for all N values
a0, a1, . . . , aN−1 and thus the complexity of inverting the
function R2 only by using the lookup definition of the
quasigroup (Q, ∗) is O(sN).

As a consequence of Theorem 2 if the size of the al-
phabet Q is a power of 2 i.e. if s = 2k, then we have the
following Corollary.

Corollary 1. Let the size of the alphabet Q be a power
of 2 i.e. let s = 2k. For any natural number N let define
n = N × k. If the quasigroup (Q, ∗) is non-associative,
non-commutative, and if it can not be represented by a
linear expression in the ring Zs, then the number of com-
putations based only on the lookup table that defines the
quasigroup (Q, ∗) in order to find the preimage for the
function R2 : QN → QN i.e. R2 : {0, 1}n → {0, 1}n is
O(2n).

Based on claims in Lemma 2, Theorem 1, and Theorem
2, we can make the following conjectures.

Conjecture 1. If the quasigroup (Q, ∗) is non-
associative, non-commutative, and if it can not be repre-
sented by a linear expression in the ring Zs, then functions
R1 and R2 are one-way functions.

To support Conjecture 1 we would like to stress that
a random quasigroup (Q, ∗) of order s, in general will
not have any algebraic property such as commutativity,
associativity, neutral elements etc, and either it will be
represented by some polynomial of high degree or even it
will be not possible to represent it by any polynomial (for
such types of quasigroups see the recent work of Grosek at
al. in [7]). Thus, one possible way to deal with the prob-
lem of inversion of the functions R1 and R2 is to look at
the lookup table (or Latin Square) that defines the quasi-
group (Q, ∗). In fact if there is no other representation of
the quasigroup except by its lookup table, then it will be
the only way. In such a case the inversion problem will
have to solve a complex system of quasigroup equations.
In this moment there is not enough mathematical knowl-
edge for solving the systems of quasigroup equations in
order to prove or disprove the above conjecture. How-
ever, there are several remarkable scientific works that
support our conjecture. First, we would like to mention

International Journal of Network Security, Vol.8, No.3, PP.211–220, May 2009 215

Table 5: Step by step process of completing the multiplication table

a0 ? . . . ? aN−1

aN−1 b
(1)
0 ? . . . b

(1)
N−2 b

(1)
N−1

? ? ? . . . b
(2)
N−2 b

(2)
N−1

...
...

... . .
...

? ? b
(N−2)
1 b

(N−2)
2 . . . b

(N−2)
N−1

? b
(N−1)
0 b

(N−1)
1 b

(N−1)
N−1

a0 b
(N)
0 b

(N)
1 b

(N)
N−1

a0 a1 . . . aN−2 aN−1

aN−1 b
(1)
0 b

(1)
1 . . . b

(1)
N−2 b

(1)
N−1

aN−2 b
(2)
0 b

(2)
1 . . . b

(2)
N−2 b

(2)
N−1

...
...

... . .
...

? ? b
(N−3)
1 b

(N−3)
2 . . . b

(N−3)
N−1

? b
(N−2)
0 b

(N−2)
1 b

(N−2)
2 . . . b

(N−2)
N−1

a1 b
(N−1)
0 b

(N−1)
1 b

(N−1)
N−1

a0 b
(N)
0 b

(N)
1 b

(N)
N−1

a. Completing the table when
the value of a0 is guessed.

b. Completing the table when
the values of a0 and a1 are guessed.

the works of Moore at al. [21, 23] in period from 1997
to 2001 where predictability of cellular automata was in-
vestigated, but in cases when the obtained quasigroups
have some structural properties (commutativity, associa-
tivity, ...). We want to stress that our quasigroup string
transformations can be seen as a special type of cellular
automata operations. Then, in 1999 Goldmann and Rus-
sell [4] have shown that solving system of equations in
non-abelian groups is NP-complete. Moore, Tesson and
Thérien in 2001 [22] have shown NP-completeness for even
more general algebraic structures i.e. structures that are
monoids that are not product of Abelian group and com-
mutative idempotent monoid.

Table 6: Schematic representation of the process of com-
putation of the function RN

RN (A) a0 a1 . . . aN−2 aN−1

L





l0
l1
...

lP (N)

.

.

...

.

.

.

...

.

. . .

.

.

...

.

.

.

...

.

A





aN−1

aN−2

...
a0

.

.

...

.

.

.

...

.

. . .

.

.

...

.

.

.

...

.

A





aN−1

aN−2

...
a0

.

.

...
b0

.

.

...
b1

. . .

. . .
...

. . .

.

.

...
bN−2

.

.

...
bN−1

Next we will use the function R2 as a core for defin-
ing a family of one-way function candidates. The idea
is that before applying the function R2 on some string
A of length N , we would like to apply a certain number
(polynomial on N) of e–transformations with leaders that
are some constants from Q or they are fixed indexes that
address certain letters of the string A. For that purpose
we will need the following definition.

Definition 6. Preprocessing string of leaders L =
LQ,IN ,P (N) = (l0, l1, . . . , lP (N)) is a string of length that is
polynomial of N and where li ∈ Q∪IN , Q = {0, 1, . . . , s−
1} and IN = {i0, i1, . . . , iN−1} is an index set. By con-
vention, L can be also an empty string.

Definition 7. The family QN of quasigroup one-way
functions of strings of length N consists of functions
RN : QN → QN such that

B = RN (A) = ELAA,P (N)+2N (A)

where L is defined in Definition 6, and A,B ∈ QN . By
convention, when applying the e–transformations with in-
dex leader i.e. lj ∈ IN , then e–transformation have to be
applied with the leader alj .

For better understanding, a schematic representation
of the process of computation of the function RN is given
in Table 6.

Conjecture 2. The family QN is a family of one-way
functions.

Example 3. Let chose N = 2 and (Q, ∗) be as in Table 1.
If we interpret the elements of Q = {0, 1, 2, 3} as two-bit
letters {00, 01, 10, 11} then by having N = 2 we will define

International Journal of Network Security, Vol.8, No.3, PP.211–220, May 2009 216

0
11

12

2

7

3

10

4
3

5

14

6
5

7
88

6

9

11
10

0

11

13
12

4

13

9

14

2

15 15

a. (3, 3, i1, i0)

0
11

4

2

14

3

11

4

11

5

14

6

4

7

1

8

15

9
1010

0

11

5

12

5

13

0

14

10

15 15

2
3

6
7
8
9

12
13

b. (3, 3, i0, i1)

Figure 2: Functions obtained by L being a. (3, 3, i1, i0) and b. (3, 3, i0, i1)

function ELAA,P (N)+2N (A) from {0, 1, . . . , 15} into itself.
If we chose L = (3, 3, i1, i0), then E(3,3,i1,i0)AA,8(A) is
represented in Figure 2a. Notice that the function is per-
mutation. On the other hand if we choose L = (3, 3, i0, i1)
then we will get a function that is not a permutation. That
is represented in Figure 2b. Particular computations for
the string 01 ≡ 1 in both cases are shown in Table 7.

4 One-way Functions v.s. One-
way Permutations – Non-fractal
v.s. Fractal Quasigroups

Having defined families of one-way candidate functions,
in this section we will examine in which case functions
ELAA,P (N)+2N (A) are permutations, and when they are
not. Actually, we will describe our experimental findings
that give some directions for possible mathematical an-
swers to these questions.

There are a lot of classifications of quasigroups of a spe-
cific order. Two main classifications are obtained by us-
ing the algebraic properties of the quasigroups: (1) classes
of isotopic quasigroups, which are known only for quasi-
groups of orders up to 10 [19] and (2) classes of isomorphic
quasigroups [1]. The importance of quasigroup classifica-
tion is noted in many papers that deal with these algebraic
structures (for example see [18], [16]).

From the point of view of this paper, classification of
quasigroups can be done according to the nature of the
one-way functions obtained by each quasigroup.

Since the number of quasigroups increases exponen-
tially by the order of the quasigroup, we have made our
experiments mainly for order 4 and some of our conjec-
tures we have tested also on quasigroups of order 5. The
total number of quasigroups of order 4 is 576. Our ex-
periments have shown that the set of all 576 quasigroups
of order 4 can be divided into two classes. One class F

contains 192 quasigroups and the other classNF contains
384 quasigroups. If we order all quasigroups lexicographi-
cally from 1 to 576, then the class F contains the following
quasigroups: F ={ 1, 2, 3, 4, 5, 7, 9, 11, 14, 18, 21, 24, 25,
26, 27, 28, 37, 40, 43, 46, 49, 51, 54, 57, 60, 63, 70, 71, 77,
80, 82, 83, 92, 93, 100, 101, 110, 111, 113, 116, 121, 126,
127, 132, 133, 138, 139, 144, 145, 146, 147, 148, 157, 160,
163, 166, 169, 170, 171, 172, 174, 176, 178, 179, 182, 185,
189, 192, 196, 197, 203, 206, 212, 213, 218, 222, 223, 228,
229, 232, 234, 235, 242, 243, 246, 252, 253, 259, 262, 263,
269, 272, 274, 275, 284, 285, 292, 293, 302, 303, 305, 308,
314, 315, 318, 324, 325, 331, 334, 335, 342, 343, 345, 348,
349, 354, 355, 359, 364, 365, 371, 374, 380, 381, 385, 388,
392, 395, 398, 399, 401, 403, 405, 406, 407, 408, 411, 414,
417, 420, 429, 430, 431, 432, 433, 438, 439, 444, 445, 450,
451, 456, 461, 464, 466, 467, 476, 477, 484, 485, 494, 495,
497, 500, 506, 507, 514, 517, 520, 523, 526, 528, 531, 534,
537, 540, 549, 550, 551, 552, 553, 556, 559, 563, 566, 568,
570, 572, 573, 574, 575, 576}. (By the way, the quasigroup
defined in Table 1 by which we have performed examples
in this paper has the lexicographic number 355.)

From numerous experiments that we have performed,
we can post the following conjectures.

Conjecture 3. For any quasigroup (Q, ∗) ∈ F and for
every natural number N there exists at least one string L
such that the function ELAA,P (N)+2N (A) is a permutation
in the set {0, 1, . . . , 22N − 1}.
Conjecture 4. For any quasigroup (Q, ∗) ∈ NF and for
every natural number N there is no string L such that
the function ELAA,P (N)+2N (A) is a permutation in the
set {0, 1, . . . , 22N − 1}.

The classes F and NF have another interesting
“graphical” property. Namely, if we take the periodic
string 01230123 . . ., and treat every letter as a pixel with
the corresponding color, then by consecutive application
of e–transformations with any constant leader l the set of

International Journal of Network Security, Vol.8, No.3, PP.211–220, May 2009 217

Table 7: Transformation of the string A = 0 1 when L = (3, 3, i1, i0) (on the left) and L = (3, 3, i0, i1) (on the right)

0 1 ≡ 0001 ≡ 1
3 0 1
3 0 1
1 3 3
0 3 1
1 2 2
0 0 0
1 3 0
0 3 0 ≡ 1100 ≡ 12

0 1 ≡ 0001 ≡ 1
3 0 1
3 0 1
0 2 2
1 1 1
1 0 1
0 2 2
1 1 1
0 1 0 ≡ 0100 ≡ 4

576 quasigroups can be divided into two classes: A class
of quasigroups that give self-similar i.e. fractal images,
and the class of quasigroups that give non self-similar im-
ages. As an example on Figure 3a we show the image
obtained by the quasigroup number 46, and on Figure 3b
the image obtained by the quasigroup number 47.

In [17] one can find the same classification, but instead
of terms “fractal” and “non-fractal” the classes are named
by an other property of them - a class of linear and a class
of exponential quasigroups. In the same paper it is men-
tioned that when the order of quasigroup increases, the
number of fractal (linear) quasigroups decreases exponen-
tially compared to the number of non-fractal quasigroups.
An additional classification that is close to the fractal –
non-fractal classification can be found in [16].

It is really amazing how our experimental findings
about the fractal – non-fractal classification of quasi-
groups comply with the classification of quasigroups that
give one-way permutations and one-way functions. An
open problem is to investigate the relation between these
two classifications. Here even without precise definition
of what “fractal” quasigroup would mean, we just give
the following conjecture.

Conjecture 5. The classes of fractal quasigroups
and quasigroups for which there is a permutation
ELAA,P (N)+2N (A) coincide.

5 Some Properties of the Quasi-
group One-way Functions

In this section we would like to set the following conven-
tion: For a random oracle in the sense of Rudich and
Impagliazzo works on one-way functions ([27], [12]), we
will take any quasigroup (Q, ∗) of order s together with
the family QN of one-way functions that can be defined
by that quasigroup.

Rudich in his PhD thesis [27], based on a combinato-
rial conjecture (which was proved in 2000 by Kahn, Saks
and Smith in [13]) concluded that there exist oracles for
which there exist one-way functions, but there are no one-
way permutations. That is in perfect compliance with
our case of quasigroup one-way functions. If the oracle

(quasigroup) is non-fractal, our Conjecture 4 says that
there are no strings LQ,IN ,P (N) such that the function
ELAA,P (N)+2N (A) is a permutation.

Impaliazzo and Rudich in [12] showed that “There exist
an oracle relative to which a strongly one-way permuta-
tion exists, but secure secret-key agreement is impossi-
ble.” That is again in compliance with quasigroup one-
way functions. Namely, since quasigroup one-way func-
tions rely on combinatorial characteristics of the quasi-
groups, in general there are no evident “shortcuts” and
properties that will define a trapdoor function, that will
enable secure secret-key agreement.

Quasigroup one-way functions are strong one-way func-
tions i.e. there is only a small set of values on which they
can be inverted in polynomial time. Thus, security am-
plification of a weak one-way function by an iterative pro-
cess, that was established as a very useful technique in the
work of Yao in 1982 [28] is not necessary for quasigroup
one-way functions. This means that the speed of compu-
tation of quasigroup one-way functions can be very high.
Some initial applications of quasigroup one-way functions
and their properties to be easily parallelized are already
done in definition of the stream cipher Edon80 [3]. In that
stream cipher the IVSetup procedure is in fact a sort of
quasigroup one-way function.

Speaking about the computational complexity of the
quasigroup one-way functions, we can say that directly
from the definition of R1 and R2 it is straightforward to
prove the following Corollary.

Corollary 2. The complexity of computing R1 is N2

quasigroup operations, and the complexity of computing
R2 is 2N2 quasigroup operations.

However, in a similar manner as it was done in the de-
sign of the stream cipher Edon80 [3] there is a possibility
to perform the quasigroup operations in parallel. In such
a case, with a pipeline of N elements the function R1

can be computed in 2N cycles, and with a pipeline of 2N
elements the function R2 can be computed in 4N cycles.

Moreover, instead of speaking in terms of N if we re-
peat the computational complexity analysis for R1 and
R2 in terms of the bit length n of the strings that are
mapped by those functions, then the complexity of the
computations depends also on the order of the quasigroup

International Journal of Network Security, Vol.8, No.3, PP.211–220, May 2009 218

a. b.

Figure 3: The images obtained by consecutive e–transformations with the quasigroups of order 4 with lexicographic
numbers 46 and 47. The transformations are done on a periodic string 01230123 . . . 0123 with the length 600 and
with the leader 0.

that is used. If the order of the quasigroup is 2k, k ≥ 2
(as it was considered in Corollary 1) then the number
of quasigroup operations for computing R1 is (n

k)2 and
the number of quasigroup operations for computing R2 is
2(n

k)2. For implementing the parallel pipelined computa-
tion of R1 the number of computing elements have to be
n
k and then the computation of R1 can finish in 2n

k time
units, while for R2 the number of computing elements
have to be 2n

k and then the computation will finish in 4n
k

time units.
Very similar analysis holds for the computing complex-

ity of the family QN . Namely, the number of quasigroup
operations for computing any RN is P (n

k)n
k + 2(n

k)2 and
its parallel pipelined implementation can do the compu-
tation in 2P (n

k)+4n
k time units by using P (n

k)+2n
k com-

puting elements.
From the above analysis it is clear that significant

speedup in computing R1, R2 or RN can be done if
the order of the quasigroup is bigger. However, if the
whole quasigroup is kept as a lookup table in the mem-
ory, then the price for that speedup is payed (or heavily
overpaid) in the increased amount of memory needed for
that lookup table. As an illustration in Table 8 we give
the amount of memory needed to store some quasigroups
of order 2k, k ≥ 2.

Thus, in order to further speedup the computation of
one-way quasigroup functions R1, R2 or RN it would
be a challenging research task to find ways to define
quasigroups of huge order (order 2k) that will be non-
associative, non-commutative and nonlinear on the ring
Z2k , but without the need to keep their whole lookup ta-
ble in memory.

From Corollary 1 we have that quasigroup one-way
functions can achieve the security level of 2n computa-
tions for their inversion with the length of their input be-
ing n bits. That is the most efficient construction as far as
we know compared to other candidate one-way functions
that require from 2n to 60n input bits to reach the security
level of 2n. In the Table 9 we show the values that NIST

Table 8: Memory requirements for storage of quasigroups
of different order

Order of Memory Order of Memory
quasigroup quasigroup

22 4 Bytes 212 24 MB
23 24 Bytes 213 104 MB
24 128 Bytes 214 448 MB
25 640 Bytes 215 1.875 GB
26 3 KB 216 8 GB
27 14 KB 220 2.2 TB
28 64 KB 224 768 TB
29 288 KB 228 217.8 TB
210 1.25 MB 232 226 TB
211 5.5 MB 248 258.585 TB

considers as equivalence table [24], with one additional
raw for the Quasigroup one-way candidate function.

The last property of quasigroup one-way functions that
we want to mention, and that is similar to the proper-
ties that have been already found in other one-way func-
tions is the property of regularity i.e. the property of
having equal number of inversions on every point of their
codomain. Namely, in [8] and [9] techniques for obtaining
1–1 one-way functions are proposed if the one-way func-
tion is regular. In our numerous experiments, every time
when we have used fractal quasigroup, the obtained one-
way functions were either permutations or regular ones.
The example that we show on Figure 2b. is an example of
a regular function, where every point of its codomain has
exactly two inversions. It would be a challenging task to
apply the same techniques to quasigroup one-way func-
tions.

International Journal of Network Security, Vol.8, No.3, PP.211–220, May 2009 219

Table 9: Comparison for the equivalent length of the key for inverting one-way candidate functions

Equivalent symmetric key size 80 112 128 192 256
RSA/DH 1024 2048 3072 7680 15360
ECC 160 224 256 384 512
Quasigroup one-way 80 112 128 192 256

6 Conclusions and Further Direc-
tions

In this paper we have given a formal definition and con-
struction of a new family of one-way functions and one-
way permutations. They are based on quasigroup string
transformations, and have numerous interesting proper-
ties. By some of those properties (such as speed of com-
putation, security level of inversion) they outperform all
currently known candidate one-way functions.

Some of our results concerning these functions are ex-
perimentally obtained, and we have set up several con-
jectures about them as well as we suggested several re-
search directions. First research direction is the need to
achieve much deeper theoretical understanding of these
one-way functions. Another important research direc-
tion closely connected with findings and claims in this
paper is to develop a fast heuristic or deterministic al-
gorithm that will generate quasigroup one-way permuta-
tions. Then, it would be very important to find ways to
define quasigroups of huge order (order 2k) that will be
non-associative, non-commutative and nonlinear on the
ring Z2k , but without the need to keep their whole lookup
table in memory.

From the applicability point of view, we see a broad
field of application of quasigroup one-way functions in the
design of new cryptographic hash functions.

References

[1] J. Dénes and A.D. Keedwell, Latin Squares and Their
Applications, English Univer, Press Ltd., 1974.

[2] W. Diffie and M. Hellman, “New directions in cryp-
tography,” IEEE Transactions Information Theory,
vol. 22, pp. 644-654, 1976.

[3] D. Gligoroski, S. Markovski, L. Kocarev, and M.
Gušev, “Edon80 - Hardware synchoronous stream
cipher,” in Proceedings Symmetric Key Encryption
Workshop, Århus, Denmark, May 2005.

[4] M. Goldmann and A. Russell, “The complexity of
solving equations over finite groups,” in Proceedings
of the 14th Annual IEEE Conference on Computa-
tional Complexity (CCC’99), pp. 80-86, 1999.

[5] O. Goldreich, H. Krawczyk, and M. Luby, “On the
existance of pseudorandom generators,” SIAM Jour-
nal on Computing, vol. 22, no. 6, pp. 1163-1175, 1993.

[6] O. Goldreich, “Candidate one-way functions
based on expander graphs,” Manuscript, 2000.

(http://www.wisdom.weizmann.ac.il/∼oded/ow-can
did.html)

[7] O. Grosek, P. Horák, T. van Trung, “On non-
polynomial Latin squares,” Designs, Codes, and
Cryptography, vol. 32, no. 1-3, pp. 217-226, 2004.

[8] O. Goldreich, R. Impagliazzo, L. Levin, R. Venkate-
san, and D. Zuckerman, “Security preserving amplifi-
cation of hardness,” in Proceedings 31st Annual Sym-
posium on Foundations of Computer Science, pp.
318- 326. IEEE, 1990.

[9] O. Goldreich, L. A. Levin, and N. Nisan, “On con-
structing 1-1 one-way functions”, Electronic Collo-
quium on Computational Complexity (ECCC), vol.
2, no. 029, pp. 1-10, 1995.

[10] S. Goldwasser and S. Micali, “Probabilistic encryp-
tion”, Journal of Computer and System Sciences,
vol. 28, no. 2, pp. 270-299, 1984.

[11] R. Impagliazzo and M. Naor, “Efficient crypto-
graphic schemes provably as secure as subset sum,”
in Proceedings 30th Annual Symposium on Foun-
dations of Computer Science (FOCS), pp. 236-241,
1989.

[12] R. Impagliazzo and S. Rudich, “Limits on the prov-
able consequences of one-way permutations,” in Pro-
ceedings of the 21st ACM Symposium on Theory of
Computing, pp. 44-61, 1989.

[13] J. Kahn, M. Saks and C. Smyth, “A dual version of
Reimer’s inequality adn a proof of Rudich’s conjec-
ture” in Proceedings of the 15th IEEE Conference on
Computational Complexity, pp. 98-103, 2000.

[14] N. Koblitz, “Elliptic curve cryptosystems,” Mathe-
matics of Computation, vol. 48, pp. 203-209, 1987.

[15] S. Markovski, D. Gligoroski, and V. Bakeva, “Quasi-
group string processing: Part 1,” Contributions, Sec.
Math. Tech. Sci., MANU, vol. XX 1-2, pp. 13-28,
1999.

[16] S. Markovski, D. Gligoroski, and J. Markovski,
“Classification of quasigroups by random walk on
torus,” Journal of Applied Mathematics & Comput-
ing, vol. 19, no. 1-2, pp. 57-75, 2005.

[17] S. Markovski, D. Gligoroski, and L. Kocarev, “Unbi-
ased random sequences from quasigroup string trans-
formations,” in Proceedings of 12th International
Workshop on Fast Software Encryption (FSE’05),
LNCS 3557, pp. 163, 2005.

[18] R. L. McCasland and V. Sorge, “Automating alge-
bra’s tedious tasks: Computerised classification,” in
Proceedings First Workshop on Challenges and Novel
Applications for Automated Reasoning, pp. 37-40,
2003.

International Journal of Network Security, Vol.8, No.3, PP.211–220, May 2009 220

[19] B. D. McKay and E. Rogoyski, “Latin
squares of order 10,” Electronic Journal
of Combinatorics vol. 2, pp. 1-4, 1995.
(http://ejc.math.gatech.edu:8080/Journal/jour
nalhome.html)

[20] V. Miller, “Use of Elliptic curves in cryptography,”
Lecture Notes in Computer Sciences, vol. 218, Ad-
vances in cryptology – CRYPTO 85, pp. 417-426,
1985.

[21] C. Moore, “Predicting non-linear cellular automata
quickly by decomposing them into linear ones,” Phys-
ica (D), vol. 111, pp. 27–41, 1997.

[22] C. Moore, P. Tesson, and D. Therien, “Satisfiabil-
ity of systems of equations over finite monoids,” in
Proceedings Mathematical Foundations of Computer
Science (MFCS’01), Lecture Notes in Computer Sci-
ence, vol. 2136, pp. 537-550, 2001.

[23] C. Moore, D. Therien, F. Lemieux, J. Berman, and
A Drisko, “Circuits and expressions with nonasso-
ciative gates,” Journal of Computer and System Sci-
ences, vol. 60, no. 2, pp. 368-394, 2000.

[24] NIST, Key Management Guideline -
Workshop Document, Draft, Oct. 2001.
(csrc.nist.gov/encryption/kms/key-management-
guideline-(workshop).pdf)

[25] J. Patarin and L. Goubin, “Trapdoor one-way per-
mutations and multivariate polynomials,” in Pro-
ceedings 1st International Information and Commu-
nications Security Conference, pp. 356-368, 1997.

[26] R. Rivest, A. Shamir, and L. Adleman, “A method
for obtaining digital signatures and public-key cryp-
tosystems,” Communications of the ACM, vol. 21,
pp. 120-126, 1978.

[27] S. Rudich, Limits on the provable conse-
quences of one-way functions, Ph. D The-
sis, University of California at Berkeley, 1988.
(ttp://www.cs.cmu.edu/∼rudich/)

[28] A. C. Yao, “Theory and application of trapdoor func-
tions,” in Proceedings of 23th IEEE Symposium on
Foundations of Computer Science, pp. 80-91, 1982.

Danilo Gligorski received his PhD at “Ss Ciryl and
Methodius” University of Skopje - Macedonia in 1997 in
the field of Computer Science. His research interest are
Cryptography, Computer Security, Discrete algorithms,
Information Theory and Coding Theory. Now, he is a
professor of Information Security, at the Department of
Telematics, Faculty of Information Technology, Mathe-
matics and Electrical Engineering, The Norwegian Uni-
versity of Science and Technology (NTNU), Trondheim,
Norway.

