International Journal of Network Security, Vol.8, No.3, PP.201-210, May 2009

201

Agent-based Intrusion Detection for
Network-based Application

Jianping Zeng' and Donghui Guo?
(Corresponding author: Donghui Guo)

Department of Physics, Xiamen University, Fujian 361005, China'

Department of Electronic Engineering, Xiamen University, Fujian 361005, China?

(Email: dhguo@xmu.edu.cn)
(Received Apr. 20, 2006; revised and accepted Sept. 25, 2006)

Abstract

Now days, different kinds of IDS systems are available
for serving in the network distributed system, but these
systems mainly concentrate on network-based and host-
based detection. It is inconvenient to integrate these sys-
tems into distributed application servers for application-
based intrusion detection. An agent-based IDS that can
be smoothly integrated into the applications of enterprise
information systems is proposed in this paper and we dis-
cuss the system architecture, agent structure, and integra-
tion mechanism. Our IDS system consists of three kinds
of agents, namely, client agent, server agent and commu-
nication agent. This paper also explains how to integrate
agents with an access control model for getting better se-
curity performance. By introducing standard protocols
such as KQML, IDMEF into the design of agent, our
agent-based IDS shows how to build more flexible soft-
ware applications.

Keywords: Agent-based, IDMEF, intrusion detection,

KQML

1 Introduction

Many application services, such as e-business, remote ed-
ucation and Internet-based design, etc, are necessary to
be distributed over the Internet. However, because the
Internet is an open society so that anyone can access the
resource on it, then the application system may confront
with all kinds of attacks or intrusions, such as Denial of
Service (DoS), port scan, illegal intrusion by hacking user
information, etc.

Of all these security events, illegal intrusion is a more
serious issue. But standard security deployments such as
firewalls are limited in their effectiveness because of sim-
ple access control mode and also the intrusion methods
are evolving fast. Once an attacker has breached the fire-
wall, he can roam at will through the network [13]. This
makes intrusion detection system (IDS) very important

and necessary. Traditionally, there are two main classes
of IDSs: host-based and network-based systems. A host-
based IDS monitors the detailed activity of a particular
host, while network-based IDS monitors networks of com-
puters and other devices such as, routers, gateways, and
primarily detects intrusion by sniffing and analyzing data
from network traffic. Network and host-based IDSs, can
be further classified based on two methods of detection
[17]: anomaly detection and misuse detection.

However, Masquerading attack is a typical intrusion
and it can be a more serious threat to the security of
computer systems and the computational infrastructure
[15]. By this kind of attacks, an assailant attempts to
impersonate a legitimate user after gaining access to this
legitimate user’s account. So, the assailant can fully un-
derstand the information he gets. While by other kinds of
attacks, he just gets some segment of data or encrypted
data, which is much more difficult to be understood. A
well-known instance of masquerader activity is about a
FBI mode [15]. Since masquerading attack happens ex-
actly at application layer, we call the methods to detect
this kind intrusion as application-based intrusion detec-
tion. Application-based intrusion is more difficult to be
detected and the detection program is usually unable to
get satisfactory performance for the following reasons:

1) Data about user action on system is much more diffi-
cult to be collected than network-based or host-based
detection, because of the independency of application
system.

2) Application-based detection can degrade the perfor-
mance of corresponding application system due to
the extra work that should be done in the process of
data collection and analysis.

3) A masquerader may happen to have similar behav-
ioral patterns as the legitimate user, therefore it can
escape detection and successfully cause damage un-
der the cover of seemingly normal behavior [4].

International Journal of Network Security, Vol.8, No.3, PP.201-210, May 2009

Fortunately, there have been several attempts to
tackle the problem of detecting masqueraders. Sev-
eral masquerade-detection algorithms, such as Sequence-
Match, TPAM, Bayes 1-Step Markov, etc are presented
by Schonlau together with his colleagues and many other
researchers [15, 18, 24, 27, 31]. However, the performance
of those detection methods is still unsatisfied, for exam-
ple, the detection rate is still low in order to keep the
false alarm rate at an expected lower level. One of the
main reasons is that user feature is improperly selected.
Most of those detection methods only use the sequence
of system call that is related to the user sessions as the
feature of user action. Obviously, the insufficient knowl-
edge about users will lead to frequent wrong decision on
whether the user is masqueraded or not. So, extra user
feature should be collected and used in the detection pro-
cess. On the other hand, when building an effective sys-
tem for masquerade detection, several issues should be
considered in addition to the detection algorithm, such as
data collection, system structure and the ability of smooth
integration with current application systems. They are
particularly important for getting a good performance of
the detection algorithm and relieving the burden, such as
higher memory or too much CPU time requirement, on
the computers where user application systems are run-
ning.

And we believe that agent technology can be a bet-
ter choice to deal with these issues when implementing
an intrusion detection algorithm. Agent is a software en-
tity that functions continuously and autonomously in a
particular environment, and is able to carry out activities
in a flexible and intelligent manner that is responsive to
changes in the environment [3]. So, agent can improve the
means of applying detection techniques, for example, we
can deploy agents at different user computers to collect
extra feature data and agents can also provide an inter-
face to user application systems for smooth integration.
So, applying agents to the intrusion systems can provide
a good mechanism for implementation of detection algo-
rithm on network-based application systems.

In this paper we mainly focus on building an agent-
based system for detecting masquerade intrusion in
network-based application systems. And the specific ob-
jectives and the main contributions of this research are:

1) propose an agent-based architecture that can be
smoothly integrated into a network-based application
systems, without affecting the performance the user
systems too much while keeping a good detection per-
formance.

2) design a new mechanism for acquiring extra data
about user action from client machines or from access
control module in server applications.

3) design and implement a detection algorithm and
show its effectiveness in network-based application
systems.

202

To reach these goals, AIDSI (Agent-based Intrusion
Detection System for Integration) is proposed in the pa-
per. The system consists of three kinds of agents, i.e.
client agent, server agent and communication agent. The
system architecture, agent structure, integration mech-
anism, etc, are mainly discussed. Being different from
other agent-based IDSs, AIDSI can be integrated with
enterprise information system very well and achieve bet-
ter security performance.

The paper is organized as follows. Section 2 describes
related work and discusses previous efforts to utilize agent
based or non-agent based techniques for intrusion detec-
tion, and provide a comprehensive discussion of them.
Section 3 introduces our system that can be integrated
with user application systems and performs application-
based intrusion detection. And we mainly focus on system
structure, detection mechanism, etc. Section 4 describes
the implementation of the system in detail, discusses the
integration of AIDSI with a real network-based applica-
tion system, and presents some performance of testing.
Finally, in Section 5 we briefly conclude the paper and
point out the future work.

2 Related Work

As far as the realization methods of the intrusion detec-
tion systems are concerned, there are two main classes
of approaches, namely, agent based and non-agent based
methods.

Non-agent based IDS usually monitors the activities of
a single host or collects information of a special network
with the deployment of a network IDS in a critical point
of the network, and then and the data is analyzed by a
single module using different techniques [8, 10].

Obviously, the data collection, analysis and detection
may spend too much CPU time and memory, which can
cause the user application systems running in the com-
puter to become bluntness. On the other hand, the cen-
tral analyzer is a single point of failure, which will make
the reliability of the system very poor. And the system
scalability is limited, it is difficult to reconfigure or add
capabilities to the IDS. So, the non-agent based IDS is
difficult to be successfully used in a larger scale network.

In order to perform a good detection in the network,
there has been a trend to build agent-based IDS for net-
work applications in recent years.

Agent can be used to collect data from network or hosts
by several data acquiring technology. For example, sniff-
ing agent monitors in network [9]. SNMP agent reads
event from MIB database [7]. Sensor agent directly reads
from files [23]. However, the reliability of the agent is
mostly important to make sure that the data is correct,
so mobile agent is employed into IDS to help the design of
data collecting agent. Because mobile agent is able to mi-
grate from host to host on a network under its own control
and it do not require network connectivity with remote
service to interact with it [26], so it is more reliable.

International Journal of Network Security, Vol.8, No.3, PP.201-210, May 2009

On the other hand, agent is usually used to analyze the
data provided by data collection agent in IDS. To make
a correct decision on input data, this kind of agent is
usually required to have intelligence. And this is realized
by incorporating intelligent technology into the design of
the agent, such as immunity [19], genetic algorithm [29]
and fuzzy computation [6].

Also, there may be other kinds of agent, such as report-
ing agent, alert generating agent. Although these agents
can run separately in a IDS, it is a trend to organize these
kinds of agents into a well group with capabilities to in-
teract with each other to detect intrusion by distributing
agents reasonably or making agent autonomous [2].

Several agent-based IDSs have been built or proposed
in recent years. Autonomous Agents For Intrusion De-
tection (AAFID) [1] is proposed in early year and focuses
on network-based intrusion. The AAFID system consists
of three essential components: agents, transceivers and
monitors. Agents are used as the lowest-level element for
data collection. All agents in a host report their findings
to a single transceiver. However, the communication pro-
tocol between agents or transceivers is based on SNMP,
System V IPC, this may lead to extra work when devel-
oping a new agent.

In 2003, Hegazy built a multi-agent based intrusion
detection system [9]. It is also a network-based detec-
tion system. The system employs sniffing agent, analysis
agent, decision agent and report agent to detect three
kinds of attack: the Denial of Service attack, the ping
swept attack and the secure coded document theft.

Although there are many other network-based or host-
based detection systems based on agent technology now
[11, 20], the application-based detection systems are still
rarely found since there exists many difficulties in an
application-based detection, such as we list in the pre-
vious section.

In 2002, an intelligent agent security intrusion system
is built [21]. The system is an application-based detec-
tion one. It utilizes the Bayesian multivariate statistical
model to predict user action. In such a system, a user
agent resides in a user workstation, while a core agent re-
sides on the server. User agent monitors and analyzes the
user action according user profile that is downloaded from
server via core agent. The file contains rules that describe
the legal past behavior of the user and the statistical pre-
dictions. Therefore, the file must be kept secure by itself;
however, it’s difficult to be ensured in this system.

Although these agent-based IDSs may be effective in
detecting some kinds of intrusion in different operating
system respectively, but as we can see, the IDS and the
user application system are usually difficult to be inte-
grated together, and this will lead to the delay in data
collection and thus lengthen the response time in an
application-based detection system. As a result, how to
integrate the IDS with all kinds of application in enter-
prise information system is a critical problem to be re-
solved. In the research of AIDIS, we focused on the ability
for the AIDSI to be smoothly integrated into user appli-

203

Database Server Database Server

Application
Server

Internet/
Intranet

Client

Client Client

Figure 1: Structure of a typical network-based application

cation systems. However, there are many issues to be con-
sidered, such as the communication mechanism between
the two systems, how to keep a good overall performance
when the detection system is running on the application
system.

3 Architecture and Algorithms of
Aidsi

3.1 System Architecture

In a typical network-based application, there are one or
more application servers, database servers and clients.
And the corresponding logical architecture is shown in
Figure 1. Several application tools are running on applica-
tion server, while any data or configuration information is
usually stored in databases. Thus application server and
database server becomes a critical part in such a struc-
ture. To ensure the security of the system, clients are
not allowed to visit the database server directly and the
visiting to the application server is based on strict user
authentication.

In order to ensure the security for such a system, es-
pecially to detect to anomaly intrusion into the server,
we can design a system for building IDSs that can be
distributed over network-based applications. In this sys-
tem, we use HMM (Hidden Markov Model) to model the
normal user’s action, thus a user model can reflect the
user’s activities in the application statistically. By com-
puting the probability of a user action sequence that is
comprised of commands on the application, we can then
make decision on whether the user is illegal or not. The
user model is automatically learnt, created and updated
by using the audit data of user action on the application
servers. There are three types of agents in this system,
i.e. client agent, communication agent and server agent.
The relationship among them is shown in Figure 2.

Client agents are installed on a client workstation, and
responsible for collecting extra user information and then
sending it to server agents with the help of communication
agents.

International Journal of Network Security, Vol.8, No.3, PP.201-210, May 2009

Server—agent

Communication—
agent

Communication—
agent

Client—agent Client—agent Client—agent

Figure 2: Relationship among agents

Server agents are running in the server where masquer-
ade intrusion is to be detected. They process the message
sent from client agents, read from and write to user model.
However, most important of all, server agents can make a
decision on whether the current user is a legal one or not
according to the prediction model.

Communication agents monitor the client agent’s re-
quest. After the received message is parsed, the useful
message is forwarded to the server agents. Also, the com-
munication agents can accept other message that gener-
ated from access control module.

In the following section we describe each component in
detail.

3.2 Server Agent

The server agent has several main tasks to be performed,
and we describe them in details as follows:

1) Create a suitable model for each user

Although intrusion can be detected on line or off
line, the AIDSI focuses on on-line detection, so we
need a proper description of normal user, namely, a
user model. The AIDSI defines different models for
each user. There are several alternative choices of
model that can be used to describe the action of a
normal user. For example, the sequence database
model, markov model, etc. Warrender represented
a normal user by a database of user activities short
sequence [28], then, many kinds of intrusion can be
detected by matching the user action sequence with
the database. The main disadvantage is that the size
of the sequence database will increase too much in
order to get a good detection performance, and the
maintenance of the database becomes very difficult.
Although, the size of database can be reduced by
transferring short sequence to HMM hidden state se-
quence [30], the process for updating and detecting
become complex.

If we exam the system calling sequences that are re-
lated to a user session, we can find that the sequences

204

can be described by a Hidden Markov Model very
well [28].

The HMM model is described by a quintuplet, i.e.
A = (N,M,A,B,7), and these parameters are ex-
plained as follow, and detailed description can be
found in [22].

N is the number of hidden states in the model, M is
the number of distinct observation symbols per state,
7 is the initial state distribution, A is the transition
probability distribution between hidden states and B
is the observation symbol probability distribution.

HMM can be treated as two stochastic processions,
the first one is a Markov model described by param-
eter A, and its output is feed to another stochastic
procession described by B. Furthermore, there are
many extended HMM models, such as IO-HMM, Fac-
tor HMM. These HMMSs can be used to model much
more real-world application, therefore, we adapt
HMM to model user’s activities on server.

The HMM model is trained by using Baum-Welch
algorithm [22]. The algorithm can make sure that
the likelihood of sequence with respect to the HMM
increases after each iteration in the training. Ac-
tion events sequences with fixed-length are extracted
from each trace of training set by moving a window
of specified width. And these training sets are con-
structed from the event database. In our system,
these events are recoded by BSM (Basic Security
Module) provided by SUN Solaris system [25]. How-
ever, we use an advance data mining algorithm to fil-
ter those events that may seems abnormal, because
abnormal user sequence are not allow to be included
in train set. So this data-mining algorithm should
produce the sequence of normal user action event
with high certainty, we use certainty factor to evalu-
ate the similarity of stochastic patterns of sequence
data. The detail of this algorithm is described in our
other paper [33].

After creating the HMM user model, we perform a
simple computation to generate the probability of se-
quence with certain length, i.e. suppose

x = p(0O|A), O is the sequence.

Then, a probability distribution P(x) on z is gener-
ated for this model.

Get the events of user action in real time

By reading the audit data generated by BSM in a cer-
tain sliding window size, we can construct an event
sequence on line, which includes all events since last
reading. However, how to determine the window size
is an important issue. If the value is set to a larger
numeric, the complexity of the computation will in-
crease, while the detection accuracy will degrade if
the value is set to a small numeric. In this system,
we use theory of entropy to adaptively determine the
optimistic value for different users [34].

International Journal of Network Security, Vol.8, No.3, PP.201-210, May 2009

Another method to get user action events in real time
is through access control module. After the commu-
nication agent gets the KQML (Knowledge Query
and Manipulation Language, which is a relatively
mature agent communication language [12]) package
about user action from the instance of access control
module, the server agent can simply perform a stan-
dard action on KQML package to acquire the user
action in real-time.

Compute the distinguished value for the sequence
and make decision

This is calculated by HMM by the following equation
for a given sub-sequence O, that is,

z p(O]A)
P(z)

Disv) = e, P

However, to avoid making wrong decision on the sud-
den action of normal users, an average Des(x) is com-
puted on a sequence with a certain length. So the
final distinguished value for the sequence is

S0y Des(ai)

len —win +1

T1 (LE) =

where, win is the sliding window size, and len is the
sequence length.

Another two features are calculated in the similar
way. Suppose Pj(t1,ts) is the probability distribu-
tion of user login time between ¢, and to. Py(x) is the
probability distribution of client ID where the user lo-
gin. And P (t1,t2) and Py(z) should be set up first.
Then, for a given user login time and client ID, we
can calculate their corresponding distinguished value,
that is,

Py (ti,t5)
maxtz,ty (P1 (tm, ty>)
PQ(SU)

Tg(x) =

T3(x)

After getting the value of Ti(z),Tz(x),T3(x),the
user’s final distinguished value can be obtained by
the following equation,

3 i (T

Then, a decision can be made by checking whether
formula

T(z)<¢

is satisfied or not, where £ means the belief of the
normality of user action provided by the operator.

205

3.3 Communication Agent

The main function of communication agent is to receive
the message from client agent. The message contains ex-
tra user information and it is in KQML format. So the
agent should extract the useful data and send it to the
server agent.

Another main task done by the agent is to receive user
action event data sent from the instance of access control
model.

We define a standard event data acquiring protocol
based on IDMEF (Intrusion Detection Message Exchange
Format). IDMEF [5] is a XML-based language to
describe intrusion events. Thus, access control module in
user application system can encapsulated the user login
information and access information into IDMEF package
in real time, and the communication agent provides a
mechanism for receiving message. An example of message
about user’s access is as follow:

<?xml version="“1.0" encoding=“UTF-8"7>
<IDOCTYPE IDMEF-Message PUBLIC
“//IETF//DTD IDMEF v0.1//EN”
“idmef-message.dtd” >
<IDMEF-Message version=“0.1">
<Alert alertid=“101" impact="“attempted-user” >
<Time offset=“0">
<date>2004/10/09< /date>
<time>10:08:07< /time>
</Time>
<Analyzer ident=*%“800” >
<Node category="“wfw” >
<name>myserver.eda</name>
< /Node>
< /Analyzer>
<Source>
<Node>
<Address category="“ipv4-addr” >
<address>192.168.1.90< /address>
</Address>
< /Node>
< /Source>
</Alert>
< /IDMEF-Message>

However, in order to improve the scalability of AIDSI,
all kinds of IDMEF message is further encapsulated into
KQML package by assigning IDMEF as the content part
of KQML package.

3.4 Client Agent

The main function of client agent is to collect extra user
information, such as Operating System, network card, etc.
which is used to improve the detection accuracy.

The structure of client agent is shown in Figure 3.
Layer 1 collects extra information by calling operating
system API when the user login into the application.
Layer 2 translates the message into a special format de-

International Journal of Network Security, Vol.8, No.3, PP.201-210, May 2009

Layer3 Report to server

Layer?2 Code KQML

Layer1 Collect extra
information

Figure 3: Structure of client agent

fined by KQML and Layer 3 simply sends the KQML
message to communication agent.

Another important feature of the client agent is relia-
bility in communication. Each client agent is connected to
a default communication agent. However, when the com-
munication agent is busy or fails to response, the client
agent may select another communication agent from the
local lists and then tries to connect to it.

4 Implementation and Perfor-

mance

4.1 Implementation

The three agents in the AIDSI detection system have been
developed in JAVA language, and they should run in JVM
(Java Virtual Machine). Because Java is a kind of more
flexible and portable language, so AIDSI can run on many
kinds of operating systems.

The three agents are composed of several Java classes
respectively, and some of the main interface definitions
are described in Tables 1-3.

These agents can work together to get a good perfor-
mance of detection. The activities diagram of the three
agents and user application is shown in Figure 4.

First, client agent is called by user application software,
and it collects the extra user information and sends it to
the communication agent. The communication agent can
then send the message to the server agent. The server
agent can initialize an instance for the user and set up a
user model and compute the three feature values of the
user, then make a decision on whether the user is mas-
queraded or not. There are two methods in AIDSI to get
the user action event sequence, that is, from log files or
from access control module of user application system.

4.2 Case study

In order to explain how to integrate the AIDSI with a
network-based application system and detect masquerade
intrusion, we give an example for integrating AIDSI with a
network-based application system, W-EDA, (WEB-based
Electric Design Automation), which provides a common
design platform for many electric design engineers [32].
The W-EDA has three basic components, i.e. Designer,

206

Communication

client
agent

server server agent Client agent

start
P

sendtoc
<

sendtoc getCID

>

Access
control
module

l
ReadfromAudit
<

<

IDMEFStream

Figure 4: activity diagram of AIDSI and user application

system
Server Agent ToolServer
Data server

Cormmunication
ServerProxy
Agent

Application Server

Client Agent AA{ClientProXy+4444+ Designer

Client

Figure 5: Integration of AIDSI into W-EDA

Application Server and Tool Server. Because, the data
in Tool Server is required to keep security, so W-EDA
makes use of mainframe-hidden technology so as not to
allow any Designers to access it directly. And this is re-
alized by deploying a proxy on the side of Designer and
building a proxy in Application Server respectively. And
the Designer can visit the Tool Server only through these
two proxies.

In order to perform masquerade intrusion detection,
we integrate the AIDSI into the design of W-EDA, and
the software structure for integration is shown in Figure
5. Three agents can perform task by invoking the public
interface from user application.

Now we provide a sample scenario to show that how
the masquerade detection is going on. Suppose the user
model has been created, then, we can simply follow these
steps:

1) the client proxy is started up by user at the Designer,
then, the client agent in AIDSI is instanced by the
client proxy’s calling the interface start().

2) after the server proxy receives the connection require-
ment from client proxy and the user authentication
is successful, it send the user information to the com-
munication agent.

3) extra user feature is collected at Designer side and
sent to communication agent by client agent.

4) the communication agent then sends these informa-
tion to the server agent.

International Journal of Network Security, Vol.8, No.3, PP.201-210, May 2009

207

Table 1: Interface description of client agent

Public interface

Function description

public void start();

Start the agent

public String getCID();

Get the ID of network interface card

public sendtoc(String);

Send the ID to the communication agent

public void end();

Close and destroy itself

Table 2: Interface description of communication agent

Public interface

Function description

public void start();

Start the agent, and wait for the request from
client agent or access control module

public sendtoc(String);

Send the user information to the server agent

public String IDMEFStream();

Get the user events in IDMEF from access control module

public String encapKQML(String)

Encapsulate the message from access control
module into KQML package

public void end();

Close and destroy itself

Table 3: Interface description of server agent

Public interface

Function description

public void start();

Start the agent, and wait for the request from
Communication agent

public String parseKQML(KQML)

Parse a KQML package into a string

public String ReadfromAudit(String file)

Read user audit records from a predefined file

public HMM InstanceUserModel(String Userid)

Created a HMM user model by reading from model file

public Boolean detect(double threshold);

Performance detection with a threshold value

public void end();

Close and destroy itself

5) the server agent initializes the user model and con-
tinually checks the audit records in ToolServer and
encodes them into a sequence in a certain length that
can be recognized by HMM.

6) server agent calculates the user’s distinguished value
and makes decision on whether masquerade intrusion
happens or not by comparing the distinguished value
with a threshold value.

4.3 Experiments and Analysis

In this section, we do some experiments to show the ef-
fectiveness of the AIDSI. First, BSM data is collected by
monitoring BSM audit daemon. Then the data set is
parsed and encoded into sequence that can be dealt with
HMM. We collect 50 users’ data and design an experi-
ment. We randomly select two users A and B, suppose
user A as masquerade and select several event sequence
with a probability and inject the data into user B. Then
we perform the experiment for all 50 users and calculate
the overall performance, which includes hit rate and false
alarm rate. And in the experiment, we vary the length

of sequence from 30 to 100, the result is shown in Figure
6. As we can see, as the length of the sequence increases,
the performance of our detection algorithm is becoming
better and better.

To verify the effectiveness of the automatically se-
lected sliding window size, we perform another experi-
ment, which uses different method of sliding window size
selection. The performance is shown in Figure 7, and
we can see that the detection performance using adaptive
length selection is the best.

To show the impact of user feature selection on de-
tection algorithm, we do another two experiments with
different feature selection. The first one just uses the sys-
tem calling sequence as the user feature; the second one
also includes two kinds of extra user information, that is,
the identity of client’s network card and the user’s login
time. And the testing result is show in Figure 8. The
abscissa in the figure stands for different user, while the
ordinate indicates the ROC-1 value [27]. The larger it is,
the better the performance is.

As we can see there are 41 users’ detection performance
is better when using multi-feature. So, the performance

International Journal of Network Security, Vol.8, No.3, PP.201-210, May 2009

208

120 OSingle feature

BMnulti—feature

ROC-1

‘IIII‘I
il

28 313 43 7 40 434 64 9
User #

WL

10 13 161 92 22 5

II'!I'III‘III

1 4 7

Figure 8: Performance comparison on feature selection

— Sequence length=100
— - Sequence length=80

+ Sequence length=70
— - Sequence length=50
— Sequence length=30

I L I I L I
0.05 0.1 015 02 0.25 03 0.35
False Alarm Rate

Figure 6: Performance under different sequence length

Hit Rate

[— adaplive length
fix length =10
| random length asgined

o2 fy

0.1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
False Alarm Rate

Figure 7: Performance under different sliding window
size.

is much better when more user features are included in
detection.

Now, we turn to test the impact of AIDSI on user
application system. In the experiment, we record the
mean memory and CPU usage in server under two circum-
stances, that is, whether AIDSI is running in the servers
or not. The results are shown in table 4. As we can see
that the mean memory required and the CPU usage in-
crease when AIDSI is running on the server, however, the
increasing value is much lower as the number of users in-
creases. So AIDSI’s impact on user application system is
minor.

From the above experiment and discussion, we can see
that the proposed AIDSI is of following merits.

Ability for integration. The AIDSI is an agent-based
intrusion detection system, which is easy to be inte-
grated.

The client agent just acts as an extra information col-
lector, and it need not exchange data with the client
of user application. The three agents are written in
Java language so that they can be deployed at differ-
ent operation system. The agent and access control
module is loosely coupled because they use standard
protocol, such as KQML, IDMEF, in the process of
data exchanging. The impact of AIDSI on applica-
tion system is minor as far as memory and CPU usage
are concerned.

Detection performance. In AIDSI, the performance of
the proposed detection algorithm can be better if the
length of sequence and the size of sliding window are
properly selected. Extra user information can effec-
tively improve the performance of the detection al-
gorithm.

5 Conclusion
Application-based intrusion is a kind of more serious in-

trusion since masqueraders can get the data meaning in a
visual mode. AIDSI, which is different from other IDS, is

International Journal of Network Security, Vol.8, No.3, PP.201-210, May 2009

209

Table 4: impact on user application system

Number of users 5 10 |15 |20 |25 |30
Memory required when AIDST is running (K) 208 | 331 | 402 | 471 | 525 | 601
Memory required when AIDSI is not running (K) | 205 | 324 | 390 | 453 | 502 | 572

CPU Usage when AIDSI is running (%)

44 | b3 | BT |67 | 73 | 80

CPU Usage when AIDSI is not running (%)

40 | 48 |55 |63 |69 |75

proposed to deal with such kind of intrusion. Agent tech-
nology is introduced into the system design. Server agent
detects the masquerade intrusion using HMM model.
Client agent gets extra user information for detection al-
gorithm to improve the detection accuracy. AIDSI is more
flexible and can be integrated with enterprise information
systems well.

Also in this paper, we present an example of integration
AIDSI with a WEB-based application system W-EDA to
detect an application-based intrusion. And experiment
shows that AIDSI can work well with W-EDA and get
a satisfactory performance. In fact, for an application
system, if its logical structure is a three tiers type like
Figure 1, the AIDSI can be applicable.

Although it is effective in some kind of network-based
application systems, there may be still some disadvan-
tages in AIDSI, which will enable us to research further.
Server agent is the center of AIDSI and its impact on
user application may be notable when the user number
increases. So, how to distribute the user model on differ-
ent servers and perform a cooperative detection is a main
task in future. On the other hand, mechanism of response
when the server agent detects an intrusion should be de-
signed to improve the performance of AIDSI.

Acknowledgements

This paper is supported by the funding of Fujian province
of China NSFC Project No. A0410007 and Corporation
Start-up Project. We would like to thank the anonymous
reviewers for their comments, which is helpful to improve
the quality of our paper.

References

[1] J. S. Balasubramaniyan, J. O. Garcia-Fernandez,
D. Isacoff, E. Spafford, and D. Zamboni, “An ar-
chitecture for intrusion detection using autonomous
agents,” 14th Annual Conference on Computer Se-
curity Applications, pp. 13-24, 1998.

[2] A. Berqia and G. Nacsimento, “A distributed ap-
proach for intrusion detection systems,” Interna-
tional Conference on Information and Communica-
tion Technologies: From Theory to Applications, pp.
493-494, 2004.

[3] J. M. Bradshaw, Software Agents, AAAI Press/The
MIT Press, 1997.

[4] S. Coull, J. Branch, B. Szymanski, and E. Breimer,
“Intrusion detection: a bioinformatics approach,”
19th Annual Conference on Computer Security Ap-
plications, pp. 24-33, 2003.

[5] D. Curry, H. Debar, and M. Huang, IDMEF
Data Model and XML DTD, http://www.oasis-
open.org/cover /IDMEF-provisional-draft-ietf-idwg-
idmef-xml-02.html, 2000.

[6] J. E. Dickerson, J. Juslin, O. Koukousoula, and J.
A. Dickerson, “Fuzzy intrusion detection,” Joint 9th
IFSA World Congress, pp. 1506-1510, 2001.

[7] L. P. Gaspary, E. Meneghetti, and L. R. Tarouco,
“An SNMP agent for stateful intrusion detection in-
spection,” Integrated Network Management, pp. 3-16,
2003.

[8] L. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J.
Wood, and D. Wolber, “A network security moni-
tor,” IEEE Symposium on Research in Security and
Privacy, pp. 296-304, 1990.

[9] I. M. Hegazy, T. Al-Arif, Z. T. Fayed, and H. M.

Faheem, “A multi-agent based system for intrusion

detection,” Potentials, IEFE, vol. 22 | no. 4, pp. 28-

31, 2003.

J. Hochberg, K. Jackson, C. Stallings, J. F. McClary,

D. DuBois, and J. Ford, “NADIR: An automated

system for detecting network intrusion and misuse,”

Computers and Security, vol. 12, no. 3, pp. 235-248,

1993.

V. Kasarekar, and B. Ramamurthy, “Distributed hy-

brid agent based intrusion detection and real time

response system,” First International Conference on

Broadband Networks, pp. 739-741, 2004.

Y. Liu, C. F. Xu, W. D. Chen, and Y. H. Pan,

“KQML realization algorithms for agent communi-

cation,” 5th World Congress on Intelligent Control

and Automation, pp. 2376-2379, 2004.

P. Loshin, Intrusion detection, Computerworld,

http://www.computerworld.com/hardwaretopics/ha

rdware/story/0,10801,59611,00.html, 2001.

Y. Maruyama and K. Yamanishi, “Dynamic model

selection with its applications to computer security,”

IEEE Conference Information Theory Workshop, pp.

82-87, 2004.

R. A. Maxion and T. N. Townsend, “Masquerade de-

tection augmented with error analysis,” IEEE Trans-

actions on Reliability, vol. 53, no. 1, pp. 124-147,

2004.

International Journal of Network Security, Vol.8, No.3, PP.201-210, May 2009

[16] L. I. Millett and S. H. Holden, “Authentication and
its privacy effects,” IEEE Internet Computing, vol.
7, no. 6, pp. 54-58, 2003.

B. Mukherjee, T. L. Heberlein, and K. N. Levitt,
“Network intrusion detection,” IFEEFE Network, vol.
8, no.3, pp. 26-41,1994.

M. Oka, Y. Oyama, H. Abe, and K. Kato, “Anomaly
detection using layered networks based on eigen co-
occurrence matrix,” Proceedings of Seventh Interna-
tional Symposium on Recent Advances in Intrusion
Detection (RAID), LNCS 3224, pp. 223-237, 2004.
T. Okamoto, T. Watanabe, and Y. Ishida, Mecha-
nism for generating immunity-based agents that de-
tect masqueraders, LNAI 321/, pp. 534-540, 2004.
D. Pi, Q. Wang, W. Li, and J. Lv, APA: An interior-
oriented intrusion detection system based on multi-
agents, LNCS 3619, pp. 1227-1233, 2005.

J. Pikoulas, W. Buchanan, M. Mannion, and K.
Triantafyllopoulos, “An intelligent agent security
intrusion system,” IEEE International Conference
and Workshop on Ninth Annual the Engineering of
Computer-Based Systems, pp. 94-99, 2002.

L. R. Rabiner, “A tutorial on hidden Markov mod-
els and selected applications in speech recognition,”
Proceedings of the IEEE, vol. 77, no. 2, pp. 257-286,
1989.

A. J. Rocke and R. F. DeMara, CONFIDANT:
Collaborative object notification framework for in-
sider defense wusing autonomous network transac-
tions, Autonomous Agents and Multi-Agent Systems,
http://netmoc.cpe.ucf.edu:8080/internal /conversion
/2004/CONFIDANT framework.pdf .2005.

M. Schonlau, W. DuMouchel, W.-H. Ju, A. F. Karr,
M. Theus, and Y. Vardi, “Computer intrusion: De-
tecting masquerades,” Statistical Science, vol. 16, no.
1, pp. 58-74, 2001.

J. Sun, BSM Security Auditing for Solaris Servers,
Ver. 1.4 (option 1), http://www.sans.org/rr/
whitepapers/solaris/1098.php, 2003.

University of Ottawa, Intelligent mobile agents re-
search, 2000. http://deneb.genie.uottawa.ca/ web-
data/research/

K. Wang and S. J. Stolfo, “One-class training for
masquerade detection,” 3rd IEEE Conference Data
Mining and Workshop on Data Mining for Computer
Security, pp. 1-10, 2003.

C. Warrender, S. Forrest, and B. Pearlmutter, “De-
tecting intrusions using system calls: alternative data
models,” IEEE Symposium on Security and Privacy,
pp- 133-145, 1999.

Q. Xue, J. Sun, and Z. Wei, “T'JIDS: an intrusion de-
tection architecture for distributed network,” IFEFE
CCECE, pp. 709-712, 2003.

Q. Yan, W. X. Xie, G. Song, J. P. Yu, System Call
Anomaly Detection Method Based on HMM, ACTA
Electronica Sinica (in Chinese), vol. 31, no. 10, pp.
1486-1490, 2003.

K. H. Yung, Using Self-Consistent Naive-Bayes to
Detect Masquerades, PAKDD, pp. 329-340, 2004.

[26]

[27]

[28]

210

[32] J. P. Zeng and D. H. Guo, “A prototype of Web-
based middleware system for EDA tools sharing,”
8th International Conference on Computer Supported
Cooperative Work in Design, pp. 26-28, 2004.

J. P. Zeng and D. H. Guo, A new clustering algo-
rithm for time series analysis, International Confer-
ence on Intelligent Computing (ICIC 2006), pp. 759-
764, 2006.

J. P. Zeng and D. H. Guo, Method for masquerade
intrusion detection based on HMM and genetic algo-
rithm, Mini-Micro Systems (in Chinese), vol. 28, no.
7, pp. 1200-1215, 2007.

Jianping Zeng, PhD. He got a PhD degree in Xiamen
University, China in 2006, and now he works as a
post-doctoral researcher in Fudan University in China.
His research mainly focuses on Artificial Intelligence,
Information Security and Software Engineering. E-Mail:
zeng_jian_ping@hotmail.com.

Donghui Guo, BSc, MSc, PhD, MIEEE. He joined Xi-
amen University in 1994 and became as a full professor
in 2001. He had been to City University in Hong Kong,
University of Ulster in UK, UC Berkeley in USA as vis-
iting researcher or visiting professor for several years. He
is now the head of circuit and system institute in Xiamen
University and doing researches on Telecommunication,
IC design and Artificial Intelligence.

