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Abstract

Various cryptosystems use exhaustive techniques to
search the key space. Such search techniques should be
guided in order to be computationally adequate. Here, a
Genetic Algorithm, GA, is proposed for the cryptanalysis
of DES-like systems to find out the underlying key. The
genetic algorithm approach is adopted, for obtaining the
exact key by forming an initial population of keys that
belong to the key subspace. In the proposed algorithms
the premature convergence could be avoided by dynamic
variation of control parameters that can affect the fitness
function. In this paper a new method has been developed
for the first time to break DES-like examples. These ex-
amples include both DES and FEAL with eight rounds.
The performance of the propsed method, as such, is con-
siderably faster than exhaustive search and differential
cryptanalysis, DC. Therefore, it can be directly applied
to a variety of DES-like systems instead of the current
DC techniques.

Keywords: Data encryption standard, DES-like systems,
differential cryptanalysis, fast encryption algorithm, ge-
netic algorithm

1 Introduction

a random search through a finite but large key space is
not usually an acceptable cryptanalysis approach. The
focus of this work is on the use of a genetic algorithm
(GA) to conduct a directed search in a key space. In fact
GAs as an evolutionary optimization method [7] could be
used with the advantages of:

1) Finding solutions for problems that are not analytical
in nature.

2) Natural capability to solve combinatorial optimiza-
tion problems.

3) Combining the exploitation of past results with the
exploration of new locations of the search space.

They provide a guide search technique based on uti-
lizing a fitness function that grows up with evolution of
the solution. However, in DES-like ciphers nothing can be
observed and subkeys are equally probable [3]. Thus, how
the search is guided in such space? This paper presents,
for the first time, a fitness function that could be success-
fully used to find out the underlying key.

The relative merits of the method proposed here are:

1) It outperforms the methods of simple random search
and random walk. For DES-like cryptanalysis these
methods always diverge and consequently a solution
could be obtained only by impractical exhaustive
search.

2) Also, Particle Swaron Optimization, PSO [12] and
[14], cannot be used for seeking the key of DES-like
cipher. The reasons are:

a. PSO is cooperative, by nature, since a particle
is moving in the key space. They communicate
with their neighbors to exchange the best new
information. Of coarse this is not the case of
DES-like ciphers, however, PSO may be appli-
cable for simple substitution cryptosystems.

b. During a trip each particle places (lays) an
amount of virtual pheromone trail. The change
in the amount of each pheromone trail repre-
sents the change of the swarm information and
reflects the experience acquired by particles dur-
ing the cryptanalysis process. Again, this is not
the case of DES-like ciphers.



International Journal of Network Security, Vol.8, No.2, PP.177–186, Mar. 2009 178

Actually, in DES-like systems the key has no charac-
teristics and it could not be built incrementally since
a change in one key bit will load to totally different ci-
phertext. Thus neither the exploration provided by
neighborhood nor the experience expressed by the
amount of virtual pheromone trail can successfully
guide the search to find out the key of DES-like sys-
tems.

3) Actually, GAs have been recently used in various ap-
plications of cryptography [4] and [13]. However, the
algorithm proposed here out performs all GA meth-
ods that are used to solve simple tinge encryption
problems [1]. The proposed algorithms exploit a
novel fitness function that is effective, sensible and
incorporates a deep analysis specific knowledge.

The ability to add direction to what seems to be a ran-
dom search can be provided by genetic algorithms, which
allow efficient search of a large key space. In what follows
the proposed algorithms are applied to basic DES-like ci-
phers as a start for more complicated implementations.

In Section 2, a background of DES design, FEAL de-
sign, and summary of DC technique are given. In Section
3, a background of GA is discussed. In Section 4, new
methods of using GA for analysis of DES-like systems
DES-8 and FEAL-8 are explained. In Sections 5, 6, there
are discussion implementation and conclusion.

2 Preliminaries

In an r-round iterated block cipher such as DES, the
ciphertext is computed by iteratively applying a round
function g to the plaintext such that

Ci = g(Ci−1, Ki), i = 1, 2, . . . , r,

where C0 is the plaintext, Ki is a round key and Cr is the
ciphertext. The round function is usually based on using
S boxes, arithmetic operations, and bitwise XORing [2].

A Feistel cipher with block length of 2n and r rounds
is defined as follows. The round function is:

g : GF (2)n × GF (2)n × GF (2)m → GF (2)n × GF (2)n

g : (X, Y, Z) = (Y, F (Y, Z) + X).

Thus, Given plaintext P = (PL, PR) and r round keys
K1, K2, . . . , Kr, the ciphertext C = (CL, CR) is com-
puted in each round as follows:

1) Set CL
0 = PL, CR

0 = PR and,

2) Compute (CL
i , CR

i ) = (CR
i−1, F (CR

i−1, Ki)+CL
i−1) for

i = 1, 2, . . . , r,

3) Set, CL = CL
r , CR = CR

r , where the round key Ki ∈
GF (2)m.

A DES-like system is a Feistel cipher, where F is de-
fined as [8]:

• F : GF (2)m → GF (2)n,

• F (X, Ki) = P (f(E(X)⊗Ki)), where Ki ∈ GF (2)m,

• f : GF (2)m → GF (2)n, m ≥ n be a weak round
function,

• E : GF (2)n → GF (2)m be an affine expansion map-
ping, and

• P : GF (2)n → GF (2)n be a permutation.

2.1 Background of DES Cipher

DES, as Feistel cipher, has had a greatest impact upon
data security since 1977 in [10].

Algorithm DES-8 [Men 96]

Input: 64-bit plaintext block M = m1 . . . m64; 64-bit key
block K = k1 . . . k64 (induced 8 parity bits)

Output: 64-bit ciphertext block C = c1 . . . c64;

1) Compute eight 48-bit round subkeys Ki from K
(key schedule).

2) Use the initial permutation IP to permute
bits; and split the result into left and right
32-bit halves L0 = m58m50 . . .m8, R0 =
m57m49 . . . m7, respectively;

3) For i from 1 to 8 compute Li = Ri−1, Ri =
Li−1 ⊕ f(Ri−1, Ki), where f(Ri−1, Ki) =
P (S(E(Ri−1) ⊕ Ki));

a. Expand Ri−1 = r1 . . . r32 from 32 to 48 bits
E(Ri−1) = r32r1 . . . r32r1;

b. E(Ri−1)⊕Ki is eight 6-bit character string
B1 . . . B8;

c. S(E(Ri−1) ⊕ Ki) is the 32-bit result sub-
stitution of eight S-boxes S1(B1) . . . S8(B8)
each of which substitute 6 bits by 4 bits
from the S-box tables;

d. P (S(E(Ri−1) ⊕ Ki)) permutes the 32 bits
from permutation round;

4) (L8, R8) is the final block b1 . . . b64;

5) C = IP−1(b1 . . . b64) = b40b8 . . . b25;

Algorithm DES-8 key schedule [Men 96]

Input: 64-bit key block K = k1 . . . k64 (induced 8 parity
bits)

Output: Eight 48-bit round subkeys Ki, 1 ≤ i ≤ 8;

1) Define vi, 1 ≤ i ≤ 8 as follows vi = 1 if i ∈
{1, 2}vi = 2 otherwise are the left-shift values
for 28-bit circular rotations;

2) PC1(K) is the 28-bit halves C0 = k57k49 . . . k36,
D0 = k63k55 . . . k4, respectively;
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3) For i from 1 to 8 compute Ci = vi(Ci−1), Di =
vi(Di−1) with left circular shift, and select 48
bits from the concatenation b1 . . . b56 of Ci and
Di(PC2(Ci, Di) = Ki = b14b17 . . . b32.

In fact, the decryption process executes the encryp-
tion algorithm with the same key schedule using the or-
der k8, k7, . . . , k1, the effect of IP−1 is cancelled by IP in
decryption, leaving (L8, R8).

2.2 Background of FEAL Cipher

To confirm the applicability of the GA to cryptanalysis of
block cipher systems, FEAL is also examined. FEAL was
designed, in the initial version with 4 rounds (FEAL-4)
as a DES-like system, but with a far simpler f-function,
that are augmented by initial and final stages. These
stages XOR the two data halves, and as well as they XOR
subkeys directly onto data halves. Within the f-function,
two byte-oriented data substitution (S-boxes) S0 and S1

are each used twice, so that:

Sd : GF (2)8 × GF (2)8 → GF (2)8, d ∈ {0, 1}.

S0 and S1 add a single bit d to 8-bit arguments x and
y, ignore the carry out of the top bit, and left rotate the
result 2 bits (ROL2).

Sd(x, y) = ROL2(x + y + d mod 256).

The key schedule uses a function fk-function similar to
f-function.

f : GF (2)32 → GF (2)32, fk : GF (2)32 → GF (2)32.

Take Ai, Bi, Yi, ti and Ui ∈ GF (2)8, 0 ≤ i ≤ 3, the
output ∪ = (∪0,∪1,∪2,∪3) for FEAL functions f, fk is
defined as shown in the following table.

Table 1: FEAL functions f, f − k and ∪ (the output)
= (∪0,∪1,∪2,∪3)

f(A, Y ) → ∪ fk(A, B) → ∪
(A0 ⊕ A1) ⊕ Y0 A0 ⊕ A1 = t1
(A2 ⊕ A3) ⊕ Y1 A2 ⊕ A3 = t2
S1(t1, t2) S1(t1, t2 ⊕ B0) = ∪1

S0(t2,∪1) S0(t2,∪1 ⊕ B1) = ∪2

S0(A0,∪1) S0(A0,∪1 ⊕ B2) = ∪0

S1(A3,∪2) S1(A3,∪2 ⊕ B3) = ∪3

Algorithm FEAL-8 [Men 96]
In the algorithm of FEAL-8, the f-function f(A, Y )

maps an input pair of 32-bits to a 32-bit output. Within
the f function, two byte-oriented data substitutions (S-
boxes). S0 and S1 are each used twice. Each maps a pair
of 8-bit inputs to an 8-bit output (as in the Table). S0

and S1 add a single bit d (0 or 1) to 8-bit arguments x
and y, ignore the carry out of the top bit, and left rotate
the result 2 bits. This yields

(ROT2): Sd(x; y) = ROT 2(x + y + d mod 256).

Input: 64-bit plaintext M = m1, . . . , m64; 64-bit key
K = k1, . . . , k64.

Output: 64-bit ciphertext C = c1, . . . , c64.

1) (Key schedule) Compute sixteen 16-bit subkeys
Ki from K, using algorithm above for FEAL-8
key schedule.

2) Define ML = m1, . . . , m32, MR = m33, . . . , m64.

3) (ML, MR) ⊕ ((K8, K9), (K10, K11)) becomes
(R0, L0) (XOR initial subkeys).

4) R0 ⊕ L0 becomes R0.

5) Ri−1 becomes Li, Li−1⊕f(Ri−1, Ki−1) becomes
Ri, for i = 1, 2, . . . , 8 (use the table for f(A, Y )
with A = Ri−1 = (A0, A1, A2, A3) and Y =
Ki−1 = (Y0, Y1)).

6) L8 ⊕ R8 becomes L8.

7) (R8, L8) ⊕ ((K12, K13), (K14, K15)) becomes
(R8, L8) (XOR final subkeys).

8) (R8, L8) becomes C.

Algorithm FEAL-8 key Schedule [Men 96]

The key schedule uses a function fK as a function
Ai, Bi, Yi, ti, and Ui that are 8-bit variables, for mapping
two 32-bit inputs to one 32-bit output. As the opera-
tions of 2-bit rotation and XOR are both linear, the only
nonlinear elementary operation in FEAL is addition mod
256.

Input: 64-bit key K = k1, . . . , k64.

Output: 256-bit extended key (16-bit subkeys
K0, . . . , K15).

1) Take ∪(−2) = 0,∪(−1) = (k1, . . . , k32) and
∪(0) = (k33, . . . , k64).

2) Since ∪ = (∪0,∪1,∪2,∪3) for 8-bit ∪i, compute
K0, . . . , K15 as i runs from 1 to 8.

a. fk(∪(i−2),∪(i−1) ⊕ ∪(i−3)) becomes ∪.
(use the table for fk(A, B) with A =
(A0, A1, A2, A3) and B = (B0, B1, B2, B3)).

b. K2i−2 = (∪0,∪1), K2i−1 = (∪2,∪3),∪ be-
comes ∪(i).

FEAL decryption may be achieved using the above
algorithm with the same key K and ciphertext C =
(R8, L8), but with the key schedule reversed. More specif-
ically, subkeys ((K12, K13); (K14, K15)) are used for the
initial XOR, (Step 3) while ((K8, K9) and (K10, K11)) are
used for the final XOR (Step 7), and the round keys are
used fromK7 back to K0 (Step 5).
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2.3 Background of Differential Crypt-

analysis

In 1993 Biham and Shamir [2] have developed a type of
cryptanalitic attack that can break DES-like cryptosys-
tems, and known as differential cryptanalysis, DC. They
described an n-round characteristic, which allowed them
to push the knowledge of the plaintext by making use of an
XOR operation, to knowledge of an intermediate round.
Every round characteristic has a particular plaintext dif-
ference P ⊕ P∗ = ΩP , a particular XOR of the data in
the nth round ΩT and a probability (for ΩT which are
produced by using random pairs whose plaintext differ-
ence is ΩP ). Any pair whose plaintext difference is ΩP

and whose XOR of the data in the nth round, using a
particular key, is ΩT is called a right pair with respect to
that key and the n-round characteristic. Any other pair
is a wrong pair. Therefore, the right pairs form a fraction
of all possible pairs.

DC attempts to find out the round key Kn. Then for
two plaintext P, P∗ of difference ΩP the cryptanalyst can
solve the following equation for Kn:

F−1(Cn, Kn) ⊕ F−1(C∗

n, Kn)−1 = ΩT .

The solutions are candidate round keys. The method
of DC can be summarized as follows [8]:

Step 1. Find a proper round characteristic with high
probability.

Step 2. Uniformly select a plaintext pair P, P∗ with dif-
ference ΩP and get the encryption of this pair. De-
termine candidate round keys such that each of them
could have caused the observed output difference. In-
crement a counter of each candidate round key.

Step 3. Repeat Step 2 until one round key is distin-
guished as being counted significantly more often
than other round keys. Take this key to be the actual
candidate round key.

Biham and Shamir found that, from experiments on
restricted versions of FEAL, the complexity of the attack
was approximately c/pΩ, where pΩ is the probability of
the characteristic being used, and c is a constant bounded
as 2 < c < 8. They used the signal to noise ratio S/N
to measure the efficiency of DC. Assume that m pairs
of chosen plaintexts are used in DC and that pΩ is the
probability of the characteristic used. Then about m×pΩ

pairs are right pairs, each of which actually can suggest
the right key value among other values. In some cases the
attacker can classify pairs for the plaintext as wrong pairs
using the intercepted ciphertexts. In this case such pairs
are discarded and should not be used in the analysis.

The signal to noise ratio S/N determines the num-
ber of times the right key is counted over the number

of times a random key is counted, i.e., S/N = k×pΩ

γ×λ
,

where k is the number of possible values of the key we
are looking for, γ is the number of keys suggested by each

non-discarded pair of plaintexts and λ is the ratio of non-
discarded pairs to all pairs [11]. A necessary condition
for the success of a DC attack is that S/N > 1 and the
expected success of the attack increases with that ratio.

Actually, DC attacks need a large number of right pairs
that consume memory and time to suggest the encrypted
key. On the other hand, GA’s cannot be directly applied
on the population of keys represented in the form of chro-
mosomes. Therefore, DC is needed to determine the right
pairs. This is accomplished by examining - in each round
- the input difference, which causes the correct output
difference, produces the last actual subkey K7, which is
defined in [2]. Such pairs are needed to obtain the subkeys
of the key.

3 Genetic Algorithms

Genetic Algorithms (GA’s) had been applied by Holland
[6] as an adaptive heuristic search method that depends
on the evolutionary ideas of natural selection and genetics.
The basic goal of a genetic algorithm is to simulate the
process of natural evolution, taking into consideration the
principle of survival of the fittest. It is generally used in
situations where the search space is relatively large and
cannot be traversed efficiently by classical search meth-
ods. This is mostly the case with problems whose so-
lution requires evaluation of many apparently unrelated
variables. GA’s represent an intelligent mapping of a ran-
dom search space to a guided search space in which the
problem solution could be found. The algorithm performs
the following steps:

1) Generate an initial population, randomly.

2) Compute the fitness for each individual in the current
population.

3) Define selection probability of each individual so that
it is proportional to its fitness.

4) Generate the next current population by probabilisti-
cally selecting the individuals from the previous cur-
rent population, in order to produce offspring via the
genetic operators represented by: selection, crossover
and mutation.

5) Repeat Steps 2, 3 and 4 until satisfactory solution is
obtained.

Holland has analyzed the influence of GA operators (se-
lection, crossover and mutation) on the number m(H, t) of
schemata H when going from one-generation t to the next
t + 1. A good discussion can be found in [5]. Holland’s
schemata theorem can be expressed as:

m(H, t + 1) ≥ m(H, t)
fH(t)

f(t)
[1 − pc

δ(H)

l − 1
− o(H)pm],

where
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fH(t) is the fitness value of the string representing schema
H ,

f(t) is the average fitness value over all strings in the
population pc, pm are probabilities of crossover and
mutation respectively, l is the schema length,

δ(H): Length of schema H measured as the distance be-
tween the first and the last fixed string positions of
schema H ,

o(H): Order of schema H , defined by the number of fixed
string positions of schema H .

This implies that the fitness function will grow up when
better offspring are used. This fact as well as the ability
of Genetic Algorithms to search efficiently huge spaces,
would afford GA’s as natural candidate for use in crypt-
analysis [9].

4 Using GA for Analysis of DES-

like Systems

In what follows GA’s have been exploited to calculate the
key of some DES-like cryptosystems by two methods:

1) Using a number of DC generated right pairs, which
are stored in order to be implemented with a proper
characteristic.

2) Generating right pairs genetically.

4.1 The Method of Stored Right Pairs

First, the proper number of right pairs, with respect to the
key, along with the proposed characteristic is stored for
future processing. For each one of these right pairs there
exist a number of expected keys, for every S-box. The
GA is used to find out the output bits for each S-box,
in the last subkey. In any iteration, the S-box output
bits constitute the current chromosome of the GA. The
chromosome correctness is determined by making use of
the following theorem:

Theorem 1. The chromosome correctness Cr =
nsr

nP
(where is the number of right pairs for the current

chromosome r and nP is the total number of stored right
pairs) can be successfully used as a fitness function of a
genetic algorithm.

Proof. Since Cr =
nsr

nP
, then it monotonically increases

with the increase of nsr
and

lim
nsr→nP

Cr → 1.

Taking f(S) = Cr, for the schema S, then the fitness
f(S) monotonically increases with the increase of nsr

and

lim
nsr→nP

f(S) = 1.

That is, f(S) is always less than 1 except when nsr
=

nP . This guarantees that Holland’s schemata theorem is
satisfied and the expected number m(S, t + 1) of repre-
sentative schema S at time t + 1 is always greater than
or equals the number m(S, t) of S at the previous time
t. Then m(S, t + 1) ≥ m(S, t), means that the number of
schemata is growing up and proves this theorem.

Since the fittest chromosome is the one that satisfies
the entire number of right pairs nP , then the fittest chro-
mosome will make Cr reach as 1.

In average, Cr = 1
l

∑l

i−1 Cri
, where l is the chromo-

some length that represents the schema S. The popula-
tion size should be greater than or equal to l. The stored
right pairs, which have been prepared by DC are used to
obtain some key bits using algorithm denoted by SPCA
(Stored Pair Cryptanalysis), emphasized below.

4.1.1 Algorithm SPCA

This is the proposed algorithm that can be applied to
DES-like systems using Theorem 1 as fitness.

Input: number of right pairs with respect to the expected
key along with the proper characteristic.

Output: some bits of the last round subkey (segment of
that key).

Procedure:

1) Read the stored right pairs nP ;

2) For each segment do:

a. Create an initial population in which each indi-
vidual (chromosome) has number of bits equal
to that segment of the last subkey input of the
current segment.

b. Evaluate the fitness Cr =
nsr

np
for each individ-

ual r of the population in the current genera-
tion.

c. Apply crossover operation.

d. Apply mutation operation, if needed.

e. Upon convergence take the fittest chromosome,
which may be an expected key in the current
segment.

3) Put the correct bits in their positions in the last sub-
key.

4) Calculate the position of the unknown bits of the key.

5) Apply the exhaustive search on one pair to get the
remainder bits of the key.
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Figure 1: The 5-round characteristic with probability
1

10485.76

4.1.2 Application of SPCA to DES-8

Here the cryptanalysis DES-8 is considered. For each
one of the eight S-boxes (as segment of the eighth sub-
key), the genetic algorithm, SPCA, is used to find out
a 6-bit chromosome. The emphasis is on the first 8
rounds while the initial and final permutation are omit-
ted, since they are not important for the attack analysis.
Such analysis is based on using a number of right pairs,
which were generated differentially and stored in work-
ing area. By making use of the 5-round characteristic,
ΩP = 405C000004000000x, with probability 1

10485.76 , Fig-
ure 1, in the analysis proceeds. Particularly, these pairs
are generated and stored, by satisfying the causing condi-
tion for S2, S5, S6, S7, and S8 S-boxes for the subkey K8.
Thus one can calculate correct 36 bits in K8, for S-boxes:
S1, S2, S5, S6, S7, and S8 using GA. Figure 2 shows the
remaining three rounds of the 5-round characteristic that
complete the eight rounds of DES-8 system. The right
pairs have been satisfied the condition:

R′ = h′, L′ = H ′ ⊕ P (x0xx0000x) ⊕ 04000000x,

where P is the permutation round. For each right pair,
ΩP = P ⊕ P ∗ there is a corresponding ciphertext pair T

Figure 2: The last 3 rounds of a DES-8 system

and T ∗, with the difference T ′ = T ⊕ T ∗. The right half
of T ′ is R′, and the left is L′ Figure 2. For every S-box
there is a corresponding 6 bits SK in K8 satisfying the
causing condition.

The algorithm SPCA has been applied to break down
DES-8 using a chosen plaintexts/ciphertexts attack. In
this case 1000 right pairs are computed “differentially”
and stored in a particular list structure. These pairs are
used as the input of SPCA which has been carried out
with the following parameters:

• Number of right pairs = 100,

• Population size = 5,

• Chromosome length = 8,

• Probability of crossover = 0.6,

• Probability of mutation = 0.2,

• Maximum number of generations = 100,

• Seed of random process = 0.8.

In this algorithm the value of the fitness function Cr

should satisfy the threshold condition Cr ≥ 0.15. Oth-
erwise the underlying S-box is by-passed and the next S-
box is considered. The algorithm performance is reported
in Figure 4, which shows that increasing the number of
right pairs reduces the number of runs and consequently
the time required to obtain the correct key.

4.1.3 Application of SPCA to FEAL-8

Here the cryptanalysis of FEAL-8 is considered. For the
last actual subkey (as segment of the eighth subkey), the
genetic algorithm, SPCA, is used to find out a 16-bit chro-
mosome. Such analysis is based on using a number of right
pairs, which were generated differentially and stored in
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Figure 3: The computational results for 200, 500 and 1000
right pairs are used for finding S1 genetically

working area. By making use of the 5-round characteris-
tic, Figure 1, ΩP = A200800022808000x, with probability
1
16 , in which P ′ = A200800022808000x, the analysis pro-
ceeds. Particularly, these pairs are generated and stored,
by satisfying the causing condition, with respect to FEAL,
for the last subkey K7. Thus one can calculate correct 16
bits in the last actual subkey AK7.

For each right pair, ΩP = P ⊕ P ∗ there is a corre-
sponding ciphertext pair T and T ∗, with the difference
T ′ = T ⊕ T ∗. The right half of T ′ is R′, and the left is L′

Figure 2. For every S-box there is a corresponding 6 bits
SK in K8 satisfying the causing condition.

The algorithm SPCA has been applied to break down
FEAL-8 by using the chosen plaintexts/ciphertexts at-
tack. In this case 1000 right pairs are computed “differ-
entially” and stored in a particular list structure. These
pairs are used as the input of SPCA, which has been car-
ried out with the same parameters values of algorithm
SPCA.

In this case the value of the fitness function Cr should
satisfy the threshold condition Cr ≥ 0.15. Otherwise, the
underlying S-box is by-passed and the next S-box is con-
sidered. The algorithm performance is reported in Figure
4, which shows that increasing the number of right pairs
reduces the number of runs and consequently the time
required to obtain the correct key.

4.2 The Method of Generated Right

Pairs

This method is based on a memoryless approach and it
exploits the idea, that without storing any pair, the fitness

Figure 4: The five-round characteristic with probability
1/16

function can be used to generate right pairs that satisfy a
proper characteristic. After generating a proper number
of right pairs we get a number of last subkeys. The last
subkey which is repeated with the largest number of right
pairs is the candidate subkey.

Theorem 2. Let ΩP and ΩT be the input and output
pair of the underlying characteristic, respectively. Then
any pair P, P ∗ such that ΩP = P ⊕ P∗, enciphered by a
DES-like, to T ′ = T ⊕ T ∗ is a right pair. Accordingly,
such right pair maximizes the fitness function given by:

Fitness(ΩT , T ′) = 1 −
Hd(ΩT , T ′)

n
,

where Hd(ΩT , T ′) is the Hamming distance between ΩT

and T ′ whereas n is the block length. This function can be
successfully used as fitness function for genetic algorithms
to break down DES-like systems.

Proof. If P, P ∗ is right pair then ΩT = T ′. Hence,
Hd(ΩT , T ′) = 0. Also, when Hd(ΩT , T ′) decreases, the
expectation of the right pair increases.

Thus limT ′→Ωr
Fitness(ΩT , T ′) = 1 and the fitness,

as such, increases monotonically with the decrease in dis-
tance. Then, as in Theorem 1, it means that the number
of schemata is growing up with the fitness increase, and
this proves the theorem.
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Figure 5: The computational results for 50, 100 and 150
right pairs that have been used for finding mx(ak7) genet-
ically. Where two bytes mx(ak7) = (ak7(0) XOR ak(1),
ak7(2) XOR ak(3)), ak(i) is byte, 0 ≤ i ≤ 3

The following algorithm, that can be used to gener-
ate the required right pairs genetically denoted by GPCA
(Generated Pair Cryptanalysis).

4.2.1 Algorithm GPCA

This i algorithm can be applied for DES-like systems and
guided by the fitness function given in Theorem 2.

Input: difference of two plaintexts with respect to a
proper characteristic.

Output: some bits of that key.

Procedure:

1) Create an initial population in which each individual
(chromosome) is the first plaintext P .

2) For each chromosome do:

a. Evaluate the second plaintext P∗ = ΩP ⊕ P ,
where ΩP is the characteristic difference.

b. Obtain the ciphertext pair T ′ = T ⊕ T ∗.

c. Evaluate the Hamming distance Hd(ΩT , T ′).

d. Form a two-dimensional table τ =< εS , ζS >,
where εS is an expected subkey and ζS is the
corresponding counter for it. Set all counters to
zero.

e. Compute the fitness function

Fitness(ΩT , T ′) = 1 − Hd(ΩT ,T ′)
n

, where n
is the system block length, for each individual
in the current population.

Figure 6: The 2-round characteristic with probability ≈
1

234

f. If the fitness value is greater than half then the
pair is right pair.

g. If the pair is right then:

i. Produce from table τ subkeys for this pair.

ii. Generate all possible bits that may appear
in the last round subkey (associated with
the concept of DC) by choosing one sub-
key, εS for the underlying pair from table
τ . Denote such bits by σ.

iii. For each σ, increment the corresponding
counter ζS .

3) Apply crossover operation.

4) Apply mutation operation, if needed.

5) Generate the next population.

6) Repeat step ii to obtain the counter of the maximum
value ζopt. Such counter is associated with σopt that
is probably a correct expectation for the last round
subkey.

4.2.2 Application of GPCA to DES-8

Here the cryptanalysis DES-8 is considered. For each
one of the eight S-boxes, the genetic algorithm, GPCA,
is used to find out a 64-bit chromosome. By making
use the 2-round characteristic with probability ≈ 1

234 ,
ΩP = 1960000000000000x, Figure 3. Thus, by using the
concept of DC, one can calculate correct 18 bits in K8

for S-boxes S1, S2, and S3. Hd(ΩT , T ′) measures ΩP and
FP−1(T ′).

Actually algorithm GPCA is a “deepening” of role of
GA’s in cryptanalysis. In this case 1000 pairs are gener-
ated “genetically” and employed as input to the algorithm
GPCA. The algorithm is executed with the same param-
eters values of SPCA.

Figure 7 shows the change of the fitness function,
Fitness(ΩT , T ′), with increasing the number of genera-
tions. Also, it shows the effect of increasing the number of
right pairs on the required number of runs (generations).
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Figure 7: The results of 200 right pairs are used for finding
S1 genetically
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Figure 8: The results of 100 right pairs are used for finding
mx(AK7) genetically

4.2.3 Application of GPCA to FEAL-8

Here the cryptanalysis FEAL-8 is considered. For
the last actual subkey, the genetic algorithm, GPCA,
is used to find out a 64-bit chromosome. By mak-
ing use of the 5-round characteristic, Figure 1, ΩP =
A200800022808000x, with probability 1

16 , in which P ′ =
A200800022808000x, the analysis proceeds. Hd(ΩT , T ′)
measures ΩP and T ′. Using the concept of DC for FEAL
to produc the last actual subkey,AK8.

Actually algorithm GPCA is a “deepening” of role of
GA’s in cryptanalysis. In this case 1000 pairs are gener-
ated “genetically” and employed as input to the algorithm
GPCA. The algorithm is executed with the same param-
eter values that have been mentioned above.

Figure 8 shows the change of the fitness function,
Fitness(ΩT , T ′), with the number of generations.

5 Conclusion

In DES-like cryptosystems the language properties do not
characterize the ciphertext. Therefore, it is impossible to
find out a straightforward fitness function that can guide
the search to the target plaintext.

It has been presented that the use of genetic algorithms
can improve the cryptanalysis of DES-like cryptosystems.
For convenience these algorithms are applied on DES-8
and FEAL-8. In these cases, the following concluding
remarks are pointed out.

1) GA’s can be either combined with differential crypt-
analysis methods or relied upon solely to break down
block-ciphered texts. Consequently, first: The to-
tal number of right pairs, np, is computed “differen-
tially” and stored in the memory. Hence the num-
ber ns of right pairs satisfying the current chro-
mosome, is evaluated. The ratio Cr = nS

np
is ex-

ploited, for the first-time to serve as fitness function
for GA. Second: The total number np, of right pairs,
is calculated “genetically”. Accordingly, a weight
w = Hamming−distance

Chromosome−length
is calculated. For that w,

the hamming distance is the difference between the
current right pair and the output of a high proba-
bility characteristic. Again (1 − w) is exploited, for
the first time as a fitness function. This scheme is
superior since it is not required to store any right
pair.

2) The problem of using a huge number of right pairs
can be solved by generating the right pairs geneti-
cally. Such generation process is carried out by ex-
ploiting the relation Y = ΩP ⊕ X . Thus if ΩP is
available, then Y can be obtained when X is genet-
ically generated. The pair that satisfies the causing
of the underlying S-boxes may be an expected key.

3) Despite the fact that the time complexity of GA’s is
O(n3), where n is the input size, computing the right
pairs (needed for estimating the key) genetically are
faster than differentially. This is due to the fact that
no right pair are stored and examined for the former
technique.

4) The mutation operation is used to accelerate the
break down process. In our experiments the best
value of mutation rate is about 0.2. Actually, other
improvements such as elitism can be added to accom-
plish the required cryptanalysis.

5) The performance evaluation of SPCA and GPCA in-
dicates that genetic algorithms can successfully re-
place the available cryptanalysis methods of DES-like
systems. A comparison with Biham, [2] shows that
he has used 15000 right pairs of plaintext/ciphertext
in order to get 18 bits out of 48, however, the use of
GA’s could reduce the number of needed right pairs
from 15000 to about 5000 pairs, in order to obtain
30 bits out of the same subkey K8.
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