
International Journal of Network Security, Vol.8, No.2, PP.139–150, Mar. 2009 139

Efficient Dealer-Less Threshold Sharing of
Standard RSA

Maged Hamada Ibrahim
Department of Electronics, Communications and Computers,

Faculty of Engineering, Helwan University, 1, Sherif St., Helwan, Cairo, Egypt (Email: mhii72@hotmail.com)
(Received Jan. 11, 2007; revised Oct. 23, 2007; and accepted Dec. 30, 2007)

Abstract

In [15] an efficient two-party, two-prime RSA function
sharing protocol was proposed. The protocol proves ef-
ficiency over previously proposed protocols. When the
sharing of standard RSA is considered, the protocol is
faster than ever. In this paper, under the assumption
that the adversary has eavesdropping and halting capa-
bilities, we propose an efficient extension to the proto-
col of [15]. Our protocol enjoys the following properties
(some of which are inherit from [15]): The protocol is
fully distributed (i.e. does not require an honest dealer).
It is a t-private and t-resilient (t, n)-threshold structure
against a stationary adversary and also t-proactive (t, n)-
threshold structure against a mobile adversary, where the
number of players n > 3t. The players jointly generate
two-prime RSA modulus in a number of trials of O(`/lg`)
since, the protocol avoids the inefficient distributed bipri-
mality test. An extension of the protocol allows the gen-
eration of a RSA modulus which is a composite of two
safe primes. Distributed primality tests are performed
over a public modulus not a shared secret one, which re-
duces complexity on a per trial basis. We must emphasize
that robustness against malicious adversaries (adversaries
that masquerade the corrupted player by altering, delet-
ing, sending wrong values, etc.) are beyond the scope of
this paper.
Keywords: Digital signatures, distributed trust, GCD al-
gorithm, primality test, quadratic slowdown, secure dis-
tributed computations, standard RSA, threshold RSA

1 Introduction

Distributed threshold computations (threshold cryptol-
ogy) performed by a set of n players allow a fraction of
these players, that exceeds a specified threshold, 1 ≤ t <
n, to carry out the computation of a function via some
secret parameters shared among them. Yet, no fraction
of the players that does not exceed the threshold value
can perform the computations correctly. Such threshold
structures have many desirable security properties. For
example, we are not forced to give complete trust to a sin-

gle player that can misuse the output of the computation
(e.g. digital signature), instead, the trust is distributed
among a number of players. Another benefit is that the
computation of the function will be performed correctly
even if at most t players are disconnected (it is assumed
that an adversary that is able to disconnect a player is
also able to eavesdrop him). In other words, threshold
structures deplete the capabilities of the adversary. An
adversary that eavesdrops and halts at most t of the n
players cannot perform the computations correctly and
cannot prevent the correct computation of the function
by the rest of the alive players. With the help of some
proofs of knowledge techniques, threshold structures are
also able to tolerate malicious behavior of a minority of
the players. However, in this paper, we will not consider
malicious adversaries. We only consider an adversary that
has eavesdropping and halting capabilities.

Along the lifetime of the shared secret parameters, the
adversary has plenty of time to attack as many players as
she can. Consequently, the assumption that the adversary
will not exceed a specific threshold t along the lifetime of
the secret (stationary (non-mobile) adversary) is imprac-
tical, and threshold structures are becoming useless. In
this case, proactive security comes to play. In proactive
security, the lifetime of the secret is divided into time pe-
riods such that the adversary cannot successfully attack
more than t players within any time period. A structure
is t-proactive if it remains secure even if up to t players
are successfully attacked within every time period. The
idea is that at the beginning of each time period, the
players join to randomize the shares of the secret without
changing the value of this secret and without disclosing
its value. As a result, the information gained by an ad-
versary within any time period becomes obsolete in the
next time period.

Threshold signature schemes represent the most impor-
tant application of threshold cryptology. Secure threshold
schemes for discrete log based systems were given: El-
Gamal [3, 10], and DSS [7]. The results were considered
theoretically satisfactory. However, solutions for the RSA
function are considered more challenging due to the num-
ber theoretic constraints associated with the generation
of this function. The main reason is that, in El-Gamal

International Journal of Network Security, Vol.8, No.2, PP.139–150, Mar. 2009 140

and DSS algorithms, all computations are performed over
prime fields with publicly known primes. On the other
hand, RSA requires secret primes in order to securely gen-
erate the function, also, the computations are performed
over a secret non-prime modulus.

The nature of the RSA modulus N as a composite of
two secret primes increased the difficulties to share the
generation of the RSA function without the help of a
trusted dealer. Due to the way the modulus is gener-
ated –as a product of two `-bit random numbers chosen
simultaneously– the probability that such generated mod-
ulus is a product of exactly two primes is (ln 2.`)−2, ac-
cording to the prime number theorem, requiring a number
of trials in the order of O(`2). Since ` ranges from 512 to
1024 bits depending on the security level and policy, the
running time to reach a suitable modulus is several days
using average processing speed which is quite a burden.
Another, less challenging problem is that the RSA Euler
totient ϕ(N) does not represent a field which increased the
difficulties to share the private exponent using efficient
threshold secret sharing schemes which require a prime
field to perform (e.g. Shamir’s secret sharing scheme).
The later problem is solved by employing an extension to
Shamir’s secret sharing scheme to perform over the inte-
gers (i.e. modulo nothing). Yet, still the nature of the
RSA modulus N represents the major obstacle facing the
efficient sharing of the RSA function without the help of
an honest dealer. The honest dealer may setup the RSA
function for the players and distribute shares of the pri-
vate exponent. However, the honest dealer assumption
threatens the main merit of distributed threshold com-
putations, since, we are still forced to completely trust a
single entity which represents a single point of failure and
which may keep a copy of the secret exponent and go sign
messages on behalf of the players.

Paper organization. This paper is organized as fol-
lows: Section 2 represents the previous work in the field.
The motivations and contributions are stated in Section
3. The model assumptions are given in Section 4. Sec-
tion 5 describes the outlines of our protocol. The tools
used in building our protocol is given in Section 6. The
protocol for a stationary adversary is described in Section
7. In section 8 we describe the protocol for safe primes.
The protocol for mobile adversaries is discussed in Section
9. In Section 10, we compare an evaluate our protocol.
Finally, the conclusions are given in Section 11.

2 Previous Work

The work in [5] represents the first realistic and general
solution to RSA function sharing, the protocol in [5] is a
modification of the protocol in [2]. In [17] a new idea to
share the RSA function was introduced, it uses multi-level
sharing. The RSA secret exponent is shared additively
among the n players and each of the n shares is re-shared
using any (t, n) secret sharing scheme. The robustness of
the protocol of [17] was introduced in [8]. However, the

idea of using multi-level (backup) sharing is practically in-
efficient as discussed in [4], specially in the absence of the
honest dealer. In all the above protocols, in the absence of
an honest dealer, when full distribution of the RSA func-
tion is considered, due to the employment of the inefficient
biprimality distributed test, the running time complexity
– according to number theory – is O(`2), requiring a long
time (several days) to reach a suitable two `-bit primes
RSA modulus N . The time goes longer and longer when
safe primes are considered. Such quadratic slowdown was
always considered as a nightmare. The protocol in [6]
is a dealer-less protocol for the threshold sharing of the
RSA function, the protocol employs biprimality testing
and hence, it is rather slow.

In [4], to escape the complexity of the joint genera-
tion of the RSA modulus, it is assumed that the RSA
Euler totient is shared among the players using (t, n) se-
cret sharing scheme and this sharing among the players
is performed by an honest dealer in an isolated environ-
ment. Such assumption overcomes the difficulties associ-
ated with the nature of the RSA modulus, yet, the pro-
tocol is not fully distributed and the idea of isolating the
players is not practical as well. However, [4] introduced an
efficient algorithm (GCD algorithm) to compute inverses
over the shared secret Euler totient in order to efficiently
compute shares of the RSA private exponent. The GCD
algorithm is very efficient and we will employ it in the
final phase of our protocol.

Different from the above, in [1] the idea to perform dis-
tributed primality tests over a shared secret modulus was
given in an attempt to reduce the quadratic slowdown
in the shared generation of the RSA function. Yet, per-
forming distributed primality tests over a shared secret
modulus, not a public modulus, increases complexity on
per trial basis.

For the seeking of speed, drifting from the standard
RSA settings and employing multiprime RSA (which is
theoretically acceptable) the protocol proposed in [13] is
a one trial protocol that does not require any distributed
primality tests to jointly generate the RSA modulus. Con-
sequently, the protocol in [13] and its extension [12, 14]
are faster than ever known. Yet, still the multiprime
RSA represents a drift from standard. Also, the protocols
[12, 14] have the restriction that the number of primes of
the modulus N are governed by the threshold value t,
namely, N is required to be a composite of t + 2 primes.
Such requirement becomes impractical for large threshold
values.

In [15], under standard RSA assumptions, a two-party
protocol for the shared generation of the RSA function
was given. The protocol is faster than previously pro-
posed protocols in the sense that it completely avoids the
inefficient distributed biprimality test. The idea is as fol-
lows: Alice picks a random `-bit secret integer a1 and a
random `-bit secret prime pa, Bob picks a random `-bit
secret integer b1 and a random `-bit secret prime pb, us-
ing private two-party computations they jointly compute
N1 = (a1 + b1)papb, with no information revealed about

International Journal of Network Security, Vol.8, No.2, PP.139–150, Mar. 2009 141

any of their secret parameters. Then, they perform dis-
tributed Fermat’s test to test a1 + b1 for primality. The
test is performed over a public modulus N1, consequently,
the computational complexity is farther improved (on per
trial basis). Since pa and pb are already primes, the num-
ber of trials in this case is in the order of O(`). They
repeat the computations to share another prime a2 + b2.
Now, Alice holds a1, a2 and Bob holds b1, b2 such that
a1 + b1 and a2 + b2 are both primes. The sharing of
the two primes could be performed in parallel and conse-
quently the number of trials is still O(`). If trivial divi-
sion tests are performed on the picked random integers,
the complexity will improve to O(`/lg`). They proceed to
compute the RSA modulus N = (a1 + b1)(a2 + b2) with
no information revealed about any of the secret param-
eters. Alice and Bob agree on a public exponent e and
proceed to compute shares of the secret exponent d using
a reduced version of the GCD algorithm from [4].

3 Motivations and Contributions

In this section we present our motivations behind the work
introduced in this paper and our contributions.

3.1 Motivations

The recent two-party protocol in [15] efficiently eliminates
quadratic slowdown in the two-prime RSA function shar-
ing and allows two parties to jointly generate shares of
the private exponent in a number of trials in the order of
O(`/lg`). Hence, considering standard RSA, the proto-
col of [15] is the fastest. Yet, the protocol is limited to
the two-party case. Direct extension of the protocol us-
ing oblivious transfer of strings will result in a (n− 1, n)
threshold structure requiring all the n players to be alive
in order to jointly generate the signature. An adversary
that successfully kills at least one player prevents the rest
of the players from computing the signature and conse-
quently losing one of the main merits of threshold struc-
tures. Also, such direct extension will be computationally
very complex.

3.2 Contributions

The contributions of this paper is to propose an efficient
(t, n) threshold RSA signature protocol under standard
settings. The protocol is faster than previously proposed
threshold RSA signature protocols (assuming standard
settings). The protocol is considered an efficient extension
to the two-party protocol proposed in [15]. Our protocol
enjoys the following properties:

• It is fully distributed and does not require a trusted
dealer.

• The players jointly generate two `-bit primes RSA
modulus in a number of trials of O(`/lg`).

• It allows the generation of a RSA modulus which is
a composite of two safe primes.

• It is an optimum t-private, t-resilient protocol against
a stationary eavesdropping and halting adversary. It
is t-proactive against a mobile eavesdropping and
halting adversary.

• Distributed primality test is performed over a pub-
licly known modulus.

4 The Model Assumptions

In this section we precisely state our assumptions of the
adversary and the communication models.

4.1 The Adversary Model

We assume that the adversary can see and learn all in-
formation sent to or from the corrupted player without
compromising the correct behavior of this player. The
alive players follow the execution steps of the protocol
word for word. We must emphasize that, in this work,
we do not consider malicious behavior of an adversary.
The only active behavior assumed in this work is that the
adversary can halt (disconnect) the player to prevent him
from participating in the protocol.

Under the assumption that the adversary has an eaves-
dropping and halting capabilities, we distinguish two
types of this adversary according to her mobility. A sta-
tionary one which means that the players chosen by the
adversary will not exceed the threshold t along the life-
time of the secret. A mobile one which is able to jump
among the players attacking as much players as she can,
she has the whole life-time of the secret to do so.

We assume that the number of players n > 3t, t ≥ 1.
The protocol is t-private, an adversary that successfully
eavesdrops no more than t players cannot factor N . We
assume that the adversary has a halting capabilities, an
adversary that is able to halt a player can also eavesdrop
him. The protocol is t-resilient, i.e. an adversary that is
able to disconnect at most t players cannot prevent the
rest of the players from completing the computations cor-
rectly. The protocol is t-proactive, the life-time of the
secret is divided into time periods, an adversary that suc-
cessfully eavesdrops and halts no more than t players in
every time period does not threaten the secrecy of the
protocol.

4.2 The Communication Model

In the communication model, the n players are fully con-
nected such that any player can communicate with any
other player through a private and authenticated one-to-
one channel. Also the players have access to a dedicated
broadcast channel. By dedicated we mean that if a player
broadcasts a message, this message will be received by
all other players and will be recognized as coming from

International Journal of Network Security, Vol.8, No.2, PP.139–150, Mar. 2009 142

this particular player. Private and authenticated channels
can be realized by standard cryptographic techniques to
achieve privacy, commitments, non-repudiation and au-
thentication.

5 The Protocol Outlines

For clarity, we prefer to describe the idea and outlines
of our protocol assuming stationary adversary model and
without considering safe primes at the moment. With
a set P of n players that are fully connected and that
have access to a dedicated broadcast channel, the proto-
col outlines are as follows: The players run JRSS over the
integers to share a random `-bit secret integer p1 so that
each player holds a share of p1 over a polynomial of de-
gree t. Let P∗ be a subset of any available t + 1 players.
Each player in P∗ picks a random `-bit secret prime qi, he
shares his picked prime among the n players using (t, n)-
Shamir’s secret sharing over the integers. At this point,
each of the n players holds a share of p1 over a polynomial
of degree t and a share of each selected prime over t + 1
polynomials each of degree t. The set of t + 1 primes qi’s
are not part of the final RSA modulus N , they are here
to preserve the privacy of p1 and to help in simplifying
the distributed primality tests. Using secure distributed
computations (the completeness theorem) the players join
to compute shares of N1 = p1(

∏t+1
i=1 qi) over a polynomial

of degree t. During the sharing of N1, the players per-
form successive polynomial degree reduction to avoid the
increase in the degree of the polynomial over which they
share N1. Each player broadcasts his share of N1 so that
each player is able to securely compute N1.

Once N1 is computed, the players proceed to perform
the distributed primality test. They assume for an instant
that ϕ(N1) = (p1 − 1)(

∏t+1
i=1(qi − 1)). Of course, this as-

sumption is not true unless p1 is also a prime. In this
test the players agree on an integer g ∈R Z∗N1

and using
secure distributed computations they securely compute
G = gϕ(N1)modN1 with no information revealed about
ϕ(N1). They check G for unity. The players repeat the
above described computations until G = 1, in this case, p1

is a prime. The expected number of trials is O(`). If triv-
ial division test is performed by each player on his picked
random integer during the sharing of p1, the complexity
is improved to O(`/lg`).

Now, the players share a suitable prime p1, they repeat
the above computations to share another prime p2. Notice
that the computations for p1 is completely independent
of the computations for p2 and hence, these computations
maybe performed in parallel.

Each player now holds a share of a secret prime p1 over
a polynomial of degree t and a share of a secret prime p2

over a polynomial of degree t. Next, using the complete-
ness theorem, the players proceed to securely compute
the RSA modulus N = p1p2 with no information revealed
about p1 or p2. Using the shares of p1 and p2, the play-
ers share the RSA Euler totient ϕ(N) = (p1 − 1)(p2 − 1).

They agree on the public RSA exponent e and employ
the efficient GCD algorithm [4] to compute shares of the
private exponent d over a polynomial of degree t. At the
end, any t + 1 players are able to perform the signature
on a given message.

6 Existing Tools

In this section we review the basic tools used in our pro-
tocol. The reader must be familiar with these tools in
order to smoothly follow the protocol.

6.1 Shamir’s Secret Sharing over a Prime
Field

Although we will not employ Shamir’s secret sharing over
a prime filed, we briefly review it here since it repre-
sents the original scheme. Let s ∈ Zp be a secret held
by the dealer where Zp is a prime field. In order to
share this secret among n players, P ={P1, ..., Pn}, where
p > n > t ≥ 1 [18], the dealer defines a polynomial
f(x) =

∑t
i=0 aix

imodp, he sets a0 = s and each other
coefficient aj 6=0 ∈R Zp. ∀i = (1, ..., n), the dealer secretly
delivers f(i) to player Pi. In the reconstruction phase,
each player Pi broadcasts f(i), the players are able to
compute s from any t + 1 shares using Lagrange interpo-
lation formula, s = f(0) =

∑
i∈B λif(i) modp, where, λi

is Lagrange coefficient of player i, B⊆ P and |B|= t + 1.

6.2 Shamir’s Secret Sharing over the In-
tegers

Let s ∈ [0, ..., K] be a secret where K is an approximate
upper bound on s. In order to share the secret s over the
integers (i.e. not modulo anything) among n > t players
[4, 6], the dealer defines the polynomial f(x) =

∑t
i=0 aix

i.
He sets a0 = Ls where L = n! and each other coeffi-
cient aj 6=0 ∈R [−L2K...L2K]. ∀i = (1, ..., n), the dealer
computes and secretly delivers f(i) to player Pi. In the
reconstruction phase, the players broadcast their shares,
the secret s can be computed from any t + 1 shares us-
ing Lagrange interpolation. The players must not forget
to divide the interpolation result by L. The reason for
incorporating L in the computations is to ensure that La-
grange coefficients are integer values and no fractions will
arise, since we are working modulo nothing.

6.3 Joint Random-Secret Sharing (JRSS)

The purpose of this scheme is to allow a set of n players
to jointly agree on a random secret value r with no infor-
mation revealed to any of them about r, also no coalition
of at most t players knows any information about r. We
describe the scheme over a prime field Zp. Each player Pi

picks t + 1 values ri = a
(i)
0 , ..., a

(i)
t ∈R Zp, he constructs

the polynomial Ri(x) =
∑t

j=0 a
(i)
j xj . ∀j = (1, ..., n), each

player Pi computes and secretly delivers Ri(j) to player

International Journal of Network Security, Vol.8, No.2, PP.139–150, Mar. 2009 143

Pj . Each player Pi sums what he receives from the other
players to compute σ(i) =

∑n
j=1 Rj(i). Each σ(i) is a

point on a t-degree polynomial σ(x), notice that the free
coefficient of this polynomial is r =

∑n
i=1 ri. A special

case of this scheme is the Joint zero-secret sharing in
which the players distribute shares of a zero secret, r = 0
among themselves. The only difference is that each player
constructs a t-degree polynomial with its free coefficient
equals zero.

6.4 Changing the Polynomial Degree

In this sub-section we show how a set P of n players switch
from a (t, n) secret sharing structure to a (t′, n) secret
sharing structure with t 6= t′. This technique is very help-
ful when polynomial degree reduction is required. The
idea is simple, let A(x) be the t-degree polynomial over
which the players share a secret a. Each player Pi ∈ P
holds a share A(i) of a. Let B ⊂ P be a subset of t + 1
players, therefore, a =

∑
i∈B λiA(i) where λi is Lagrange

coefficient. Each player Pi ∈ B simply shares the quan-
tity A′(i) = λiA(i) among the n players using a t′- degree
polynomial, pi(x). Notice that, a =

∑
i∈B A′(i). Each

player Pi ∈ P computes
∑

j∈B pj(i) which is a share of
the secret a over a polynomial of degree t′.

6.5 Secure Distributed Computations

Let a, b ∈ Zp be two secrets that are shared using the t-
degree polynomials A(x) and B(x) respectively. To com-
pute a+b, each player Pi holding A(i) and B(i) computes
C(i) = A(i)+B(i) which is a share (point) on the t-degree
polynomial C(x) = A(x)+B(x), notice that the free term
of C(x) is a+ b. In order to compute ca where c is a pub-
lic constant, each player Pi computes C(i) = cA(i), now
each C(i) is a point on a t-degree polynomial C(x) which
has a free term ca.

In the multiplication scenario, the number of players
n > 2t, notice that the free coefficient of the polyno-
mial M(x) = A(x)B(x) is ab. However, there are two
problems to be considered: The first is that the degree
of M(x) is 2t requiring at least 2t + 1 shares to inter-
polate the polynomial. The second is that M(x) is not
random. It is required to randomize the coefficients of
M(x) and then to reduce its degree back to t. The re-
duction step is very important when successive multipli-
cations are to be performed in order to avoid a large in-
crease in the degree of the resulting polynomial since in
this case there may not be enough players (shares) to
interpolate the polynomial. To randomize M(x) each
player Pi simply selects a random 2t-degree polynomial
ri(x) subject to the condition that its free coefficient is
0 and distributes shares of this polynomial among the
players. Each player Pi sums what he has to compute
M(i) +

∑n
j=1 rj(i) which represents a share of the 2t-

degree polynomial M ′(x) = M(x)+
∑n

i=1 ri(x) satisfying
M ′(0) = M(0) = ab. The players finally redistribute their

shares of M ′(x) in order to reduce the degree back to t
[9].

6.6 The GCD Algorithm

The GCD algorithm [4] is an algorithm to compute in-
verses over a shared secret modulus. For simplicity, we de-
scribe the algorithm in an n-out-of-n structure. The algo-
rithm can be easily modified to support a threshold struc-
ture. Assume that a multiple of the RSA Euler totient φ
is shared additively among a set of players, that is, each
player Pi holds a share αi such that

∑
i αi = ψφ. each

player Pi picks a randomizing integer ri of order O(N3)
and broadcasts γi = αi + rie. All the players are able
to compute γ =

∑
i γi =

∑
i(αi + rie) = ψφ + Re where

R =
∑

i ri. Assume that gcd(γ, e) = 1, there exist a and
b such that aγ + be = 1 and thus d = aR + b = e−1modφ.
Player P1 sets d1 = ar1 + b and each other player Pi 6=1

sets di = ari. It is obvious that d =
∑

i di. A warning
has been given in [4] not to use the same value of ψ for
different values of e since this attempt reveals ψφ via the
Chinese remainder theorem.

7 Our Protocol: Stationary Ad-
versary

Let P={P1, ..., Pn} be the set of n players. By the nota-
tion stationary adversary, we assume that the adversary
eavesdrops and halts no more than t players. Since we
will perform distributed multiplications side by side with
polynomial degree reductions, we need 2t+1 alive players.
Consequently, it is required that the number of players
n ≥ 3t + 1. Notice that, if the adversary has no halting
capabilities, the number of players required will drop to
n ≥ 2t+1. For clarity, we do not consider the safe primes
RSA modulus in this section. The protocol to share the
generation of the RSA function under stationary adver-
sary assumptions is as follows:

7.1 Sharing two Random Primes

In this subsection we show how the players share and test
two secret primes p1 and p2. Each prime is to be shared
over a polynomial of degree t. The sharing and testing of
p1 is similar to the sharing and testing of p2. The players
share p1 as follows:

1) Sharing a random integer p1

The players run the JRSS” to share a random `-bit
integer p1, each player Pi ∈ P,

• Picks a random `′-bit integer ri, where `′ '
`−lgn.

• Defines t + 1 values, a
(i)
0 , ..., a

(i)
t . He sets a

(i)
0 =

Lri, and sets each a
(i)
j 6=0 ∈R [−L22`′ ...L22`′]

where 2`′ is an approximate upper bound on
ri.

International Journal of Network Security, Vol.8, No.2, PP.139–150, Mar. 2009 144

• Constructs the t-degree polynomial,
fi(x) =

∑t
j=0 a

(i)
j xj .

• ∀j = (1, ..., n), computes fi(j) and secretely de-
livers fi(j) to player Pj .

• Collects n shares, f1(i), ..., fn(i), from the other
players.

• Computes his share of p1 as fp1(i) =
∑n

j=1 fj(i).

As a result, each player Pi ∈ P holds a share fp1(i),
which represents a point on a t-degree polynomial
fp1(x), with fp1(0) = Lp1.

2) Sharing the temporary prime factors and their
Euler totients
Let P∗ ⊂ P be any available subset of t + 1 players.
For simplicity and wlog, let P∗={P1, ..., Pt+1}. Each
player Pi ∈ P∗ picks a random `-bit prime qi, he
shares qi and its Euler totient, ϕ(qi) = qi − 1 as
follows, each player Pi ∈ P∗,

• Defines t + 1 values, a
(i)
0 , ..., a

(i)
t . He sets a

(i)
0 =

Lqi, and sets each a
(i)
j 6=0 ∈R [−L22`...L22`].

• Defines t + 1 values, b
(i)
0 , ..., b

(i)
t . He sets b

(i)
0 =

L(qi− 1), and sets each b
(i)
j 6=0 ∈R [−L22`...L22`].

• Constructs the t-degree polynomials, fqi(x) =∑t
j=0 a

(i)
j xj and fqi−1(x) =

∑t
j=0 b

(i)
j xj .

• ∀j = (1, ..., n), computes and secretely delivers
fqi(j) and fqi−1(j) to player Pj .

As a result, each player Pi ∈ P holds the shares,
fp1(i), fq1(i),, fqt+1(i), fq1−1(i),, fqt+1−1(i).
Each share is a point on a t-degree polynomial.

3) Computing the modulus N1

The players want to compute N1 = p1(
∏t+1

i=1 qi)
with no information revealed about p1. They em-
ploy the completeness theorem to perform successive
multiplication with polynomial degree reduction. To
share p1q1 over a polynomial of degree t, each player
Pi ∈ P computes fp1q1(i) = fp1(i)fq1(i). The quan-
tity, fp1q1(i) represents a point on a 2t-degree poly-
nomial fp1q1(x) with its free term, fp1q1(0) = L2p1q1.
Next, it is required to reduce the degree of fp1q1(x)
back to t before performing any farther multiplica-
tions. Let B ⊂ P be a subset of 2t+1 players, there-
fore, fp1q1(0) =

∑
i∈B λifp1q1(i) where λi is Lagrange

coefficient. Each player Pi ∈ B simply,

• Shares the quantity f ′p1q1
(i) = λifp1q1(i) among

the n players using a t-degree polynomial, say
pi(x). Notice that, fp1q1(0) =

∑
i∈B f ′p1q1

(i).

• Computes Fp1q1(i) =
∑n

j=1 pj(i) which is a
share of the secret L2p1q1 over a polynomial of
degree t.

The players repeat the multiplication and the poly-
nomial degree reduction for the remaining values

q2, ..., qt+1 in a pairwise fashion. At the end, each
player Pi ∈ P holds a share FN1(i) which is a point
on a t-degree polynomial FN1(x) with its free term,
FN1(0) = Lt+2p1

∏t+1
i=1 qi. The players are now ready

to compute the modulus, N1.

• Each player Pi broadcasts his share FN1(i).

• Any player is able to compute N1 using La-
grange interpolation. The players must not for-
get to divide the interpolation result by Lt+2.

Remark 1. To avoid the blowup in the size of the fi-
nal shares as well as FN1(0) due to the accumulation
of the quantity L which may case technical problems
for large t and n, it is possible to perform successive
division by L without compromising the correctness
of the protocol. As we keep the free term as well as
the coefficients of any shared polynomial multiplied
by L then one may write fp1(x) = Lf∗p1

(x), likewise,
fq1(x) = Lf∗q1

(x) and consequently fp1(x)fq1(x) =
L2f∗p1

(x)f∗q1
(x) thus any share fp1(i)fq1(i) could be

written as L2f∗p1
(i)f∗q1

(i). This allows each player to
divide his share by L before performing the next poly-
nomial multiplication by fq2(x). Notice that fq2(x)
will contain a free term multiplied by L, therefore,
the blowup will not exceed L2 and we are still keeping
the resulting Lagrange coefficients as integers. This
technique can be employed along the whole protocol
whenever successive multiplications and polynomial
degree reductions are performed. We will continue
the description of our protocol without performing
such successive division by L assuming it is under-
stood.

4) Distributed primality test for p1

Each player Pi ∈ P holds the shares, fp1(i),
fq1−1(i),..., fqt+1−1(i), while N1 is publicly known.
They agree on a quantity g ∈R Z∗N1

. Assuming for
an instant that ϕ(N1) = (p1 − 1)(

∏t+1
i=1(qi − 1)).

Of course, this assumption is not true unless p1 is
also a prime. The objective now is that the play-
ers jointly compute the quantity gϕ(N1)modN1 and
test this quantity for unity. Using multiplication side
by side with polynomial degree reduction, the play-
ers compute shares of the quantity ϕ(N1) = A − B

where A = p1

∏t+1
i=1(qi−1) and B =

∏t+1
i=1(qi−1). As

a result, each player holds a share Fϕ(N1)(i) which
is a point on a t-degree polynomial Fϕ(N1)(x) with
Fϕ(N1)(0) = Lt+2ϕ(N1). Again, Let B be a subset of
any t + 1 alive players. This subset is not necessar-
ily the same subset chosen before, however, for sim-
plicity, wlog we assume that B={P1, ..., Pt+1}. Let
λ1, ..., λt+1 be the Lagrange coefficients correspond-
ing to the chosen B which are publicly known. Each
player Pi ∈ B,

• Computes and broadcasts gFϕ(N1)(i)modN1.

International Journal of Network Security, Vol.8, No.2, PP.139–150, Mar. 2009 145

Each player in P locally computes,

G = g
∑t+1

i=1 λiFϕ(N1)(i) mod N1 = gLt+2ϕ(N1) mod N1.

Distributed primality test for p1 (alternative).
In an attempt to reduce interaction among the play-
ers during the distributed primality test of p1, this
test may be performed in an alternative way, given
that the subset of players or a fraction of them that
originally picked the temporary prime factors are still
alive. However, this attempt requires more recur-
sive exponentiations and hence, loses speed. The
alive players maybe determined by letting each player
broadcasts ”I’m alive” message. There must be at
least one alive player in P∗ since the adversary can
halt no more than t players. The interaction among
the players decreases as the number of alive play-
ers in P∗ increases. Each player Pi ∈ P broadcasts
gfp1 (i)modN1. Any player in P is able to compute
G0 = g

∑
i λifp1 (i)−LmodN1 which is gL(p1−1)modN1.

Distributed primality test of p1 can be performed us-
ing the following recursive technique:

• For k = 1, ..., t + 1:

– If player Pk ∈ P∗ is alive, he computes
and broadcasts (replaces Gk−1 by) Gk =
Gqk−1

k−1 modN1. Else, the players set Gk =
Gk−1 for a dead player Pk.

Obviously, if all the players in P∗ are alive, it is
easily verified that the final quantity, G = Gt+1 =
gLϕ(N1)modN1.

Let I= {i1, ..., ik} be the set of indices of the dead
players in P∗, k ≤ t. Define ϕ′ =

∏
ij∈I(qij − 1).

Each player in P already holds a share fqij−1(i) of
each (qij − 1) over a t-degree polynomial fqij−1(x).
Using multiplication, side by side with polynomial
degree reduction (a maximum of t−1 multiplications
and reductions) each player Pi ∈ P holds a share Φ(i)
of ϕ′ over a t-degree polynomial Φ′(x) with Φ(0) =
Lkϕ′. Given a subset of any t+1 alive players B each
player Pi ∈ B broadcasts G

λiΦ(i)
k modN1. Finally, any

player is able to compute G = G
∑

i λiΦ(i)
t+1 modN1.

The players repeat steps 1,2,3 and 4 until the quantity
G = 1. Since q1, ..., qt+1 are originally primes, the
expected number of trials to reach a prime p1 is O(`).

Sharing another prime p2. Once the players establish
shares of a suitable prime p1 over a t-degree polynomial,
they repeat the steps 1 through 4 in exactly the same
way to establish shares of another suitable prime p2. No-
tice that the sharing of p1 is completely independent of
the sharing of p2, consequently, the computations may be
performed in parallel, resulting in an overall complexity
of O(`). If trivial division test is performed during the
sharing of the random integer in step 1, the complexity is
reduced to O(`/lg`).

Lemma 1. Under the assumption that, 1) Shamir’s se-
cret sharing over the integers is secure, 2) The complete-
ness theorem for distributed computations holds, 3) The
factorization of a composite of at least two `-bit primes
is hard and 4) solving the discrete log problem over a
composite group (RSA assumption) is hard; an eavesdrop-
ping adversary that successfully eavesdrops no more than
t players gains no information about the shared random
primes p1 or p2.

Proof. Considering the situation for p1 (the situation for
p2 is similar), a wise adversary (capable of eavesdrop-
ping no more than t players) will try her attack on
the set of players that picked the temporary prime fac-
tors, say, P∗−{Pt+1}. In this case, the adversary learns
q1, ..., qt, the shares fp1(1), ..., fp1(t) of the integer p1 and
the shares fqt+1(1), ..., fqt+1(t) of the prime qt+1. Follow-
ing assumption (1), the adversary gains no information
about p1 or qt+1 from the collected shares. The adver-
sary knows the public modulus N1 and is able to com-
pute p1qt+1 = N1/

∏t
i=1 qi. In case p1 is a prime, fol-

lowing assumption (2) and (3), the adversary is unable
to factorize p1qt+1 and hence, unable to fully factorize
N1. During the primality test, assumption (4) empha-
size the infeasibility of the adversary to deduce any infor-
mation broadcasted in the exponent of g. Consequently,
the secrecy of p1 is preserved. Notice that the polyno-
mials used to share q1, ...qt+1 are completely independent
of the polynomials used to share (q1 − 1), ..., (qt+1 − 1),
consequently (and following assumption (2)) the shares
fqt+1−1(1), ..., fqt+1−1(t) do not help the adversary to gain
any information about the prime factor, qt+1.

7.2 Joint Computation of the RSA Mod-
ulus N

We reached the situation where each player Pi ∈ P holds
a share fp1(i) of a random prime p1 over a t-degree poly-
nomial fp1(x) and a share fp2(i) of a random prime p2

over a t-degree polynomial fp2(x). Except for the shares
of p1 and p2, all other parameters are erased. The players
compute the RSA modulus N = p1p2 as follows: Each
player Pi ∈ P,

• Defines 2t + 1 values, a
(i)
0 , ..., a

(i)
2t ,

each a
(i)
j 6=0 ∈R [−L222`...L222`] and a

(i)
0 = 0.

• Constructs the 2t-degree randomizing polynomial,
fi(x) =

∑2t
j=0 a

(i)
j xj .

• Computes and secretely delivers fi(j) to player Pj ,
∀j = (1, ..., n).

Now, each player Pi ∈ P computes and broadcasts,
fp1p2(i) = fp1(i)fp2(i) +

∑n
j=1 fj(i). The quantity,

fp1p2(i) represents a point on a 2t-degree polynomial
fp1p2(x) with its free term, fp1p2(0) = L2p1p2. Any player
is able to compute N = fp1p2(0)/L2.

International Journal of Network Security, Vol.8, No.2, PP.139–150, Mar. 2009 146

Lemma 2. Under assumptions 1,2 and 3 in Lemma 1,
an adversary that eavesdrops no more than t players and
knows N gains no information about p1 or p2.

7.3 Sharing the RSA Private Exponent

The RSA totient, ϕ(N) = (p1−1)(p2−1) = p1p2−p1−p2+
1 = (N +1)−p1−p2. Regarding N +1 as a leftover term,
which is publicly known, the players already holds shares
of p1 and p2 and consequently, ϕ(N). One must not forget
L, that is, interpolating fp1(x) and fp2(x) will result in
Lp1 and Lp2 respectively. The players agree on a public
exponent e. Next, they join to compute shares of the
private exponent d. We recall the efficient GCD algorithm
from [4] to compute inverses over a shared secret modulus.
We carefully adapt the algorithm to match the situation
on hand. The players proceed as follows:

1) Shared computation of γ = ψϕ(N) + Re
Each player Pi ∈ P:

• Picks ψi ∈R [0...N2] and,
b
(i)
1 , ..., b

(i)
t ∈R [−L2N3...L2N3].

• Picks ri ∈R [0...N3] and,
c
(i)
1 , ..., c

(i)
t ∈R [−L2N4...L2N4].

• Picks v
(i)
1 , ..., v

(i)
2t ∈R [−L2N5...L2N5].

• Constructs the polynomials gi(x) = Lψi +
b
(i)
1 x+ ...+b

(i)
t xt, hi(x) = Lri +c

(i)
1 x+ ...+c

(i)
t′ xt

and the randomizing polynomial vi(x) = 0 +
v
(i)
1 x + ... + v

(i)
2t x2t.

• ∀j = (1, ..., n), sends gi(j), hi(j) and vi(j) to
player Pj .

• Computes g(i) =
∑n

j=1 gj(i), h(i) =
∑n

j=1 hj(i)
and v(i) =

∑n
j=1 vj(i).

Each player Pi ∈ P holds a share g(i) on a t-degree
polynomial g(x) with g(0) = Lψ, a share h(i) on a t-
degree polynomial h(x) with h(0) = LR and a share
v(i) on a 2t-degree randomizing polynomial v(x) with
v(0) = 0.

• Each player Pi ∈ P computes and broadcasts
Γ(i) = [L(N +1)−fp1(i)−fp2(i)]g(i)+Leh(i)+
v(i).

Γ(i) represents a point on a 2t-degree polynomial
Γ(x) with its free term Γ(0) = L2γ. Any player can
compute Γ(0) by interpolating any 2t + 1 shares,
Γ(.) and finally computes γ = Γ(0)/L2.

Remark 2. To avoid the growth in the size
of the shares of the private exponent d, O(N5),
we have one of two options: (i) As notified in [4],
such growth is due to the fact that lg N is used to
define negligible anything less than 2− lg N . One
may choose a different security parameter k and
define negligible anything smaller than 2−k instead

of 2− lg N , then part of the growth in the size of the
shares would be in multiplicative factors of 2k rather
than N , e.g. k = 100 instead of lg N = 1024. In this
case the growth is O(N223k) which is even much
less than O(N3). Notice that the essential size of ψ
is in the order of O(ϕ(N)2) not O(N2). One may
consider the growth is still in the order of O(N3).
Actually, the parameter k is used in [4] to allow
their security definitions and analysis. (ii) Another
suggestion is to agree on a public prime p > N22k

and to perform the shared computation of γ over
the prime field Zp. Notice that ψ is to be in the
order of O(N2k) and hence γ < N22k. Both options
have their bros and cons. The first suffers from the
growth in the size of the final shares of d and the
technical difficulties associated with working over
the integers while the second is expected to be slow.
We will continue the description of the protocol
assuming the first option is chosen.

2) Computing shares of the secret exponent d

• Using the Euclidean algorithm, find a, b such
that aγ + be = 1. If such a, b do not exist (with
very low probability), repeat from step 1.

• Each player Pi ∈ P computes his share of the
secret key as D(i) = ah(i) + b.

Lemma 3. The above GCD algorithm reveals no infor-
mation about ϕ(N) or the secret exponent d.

Proof. The reader may refer to [4] for a complete proof of
Lemma 3

8 Safe Primes RSA Modulus

It was always recommended by the inventors of the RSA
algorithm and other experts in the field that the RSA
modulus is to be a composite of two safe primes instead
of ordinary primes. A safe prime is on the form 2p + 1
where p is also a prime spoken of as Sophie-Germain
prime. Such setting has many theoretical and technical
benefits. Theoretically, it allows several security proofs to
take place. Technically, it facilitates the computation of
the RSA function. For example, if N = (2p1 +1)(2p2 +1)
where p1 and p2 are also primes then ϕ(N) = 4p1p2. The
selection and agreement on a public modulus e is more
efficient since in order for the condition e ∈R Z∗ϕ(N) to
be satisfied, it is enough to select e as an odd number
less than p1 and p2 without any farther trials. Our proto-
col can be carefully extended to allow the sharing of safe
primes. However the complexity will slightly increase ac-
cordingly.

Once the players complete steps 1,2,3 and 4, each
player Pi ∈ P holds a share fp1(i) of a prime p1 over
a t-degree polynomial fp1(x). Assuming for an instant
that 2p1 + 1 is also a prime. In this case, define N∗

1

as N∗
1 = (2p1 + 1)(

∏t+1
i=1 qi) and consequently, ϕ(N∗

1) =

International Journal of Network Security, Vol.8, No.2, PP.139–150, Mar. 2009 147

2p1

∏t+1
i=1(qi − 1). In order to securely test 2p1 + 1 for

primality, the players proceed as follows:

1) Sharing the temporary prime factors and their
Euler totients
Let P∗ ⊂ P be any available subset of t + 1 play-
ers. For simplicity and wlog, let P∗={P1, ..., Pt+1}.
Each player Pi ∈ P∗ picks a random `-bit prime qi,
he shares qi and its Euler totient, ϕ(qi) = qi − 1.
As a result, each player Pi ∈ P holds the shares,
fq1(i),, fqt+1(i), fq1−1(i),, fqt+1−1(i). Each
share is a point on a t-degree polynomial.

2) Computing the modulus N∗
1

The players want to compute N∗
1 = (2p1+1)(

∏t+1
i=1 qi)

with no information revealed about p1 or any of the
qi’s. They employ the completeness theorem to per-
form successive multiplication with polynomial de-
gree reduction in a way very similar to the sharing of
N1. At the end, each player Pi ∈ P holds a share
FN∗

1
(i) which is a point on a t-degree polynomial

FN∗
1
(x) with its free term, FN∗

1
(0) = Lt+2N∗

1 . The
players are now ready to compute the modulus, N∗

1 .

• Each player Pi broadcasts his share FN∗
1
(i).

• Any player is able to compute N∗
1 using La-

grange interpolation. The players must not for-
get to divide the interpolation result by Lt+2.

3) Distributed primality test for 2p1 + 1
Each player Pi ∈ P holds the shares, fp1(i),
fq1−1(i), ..., fqt+1−1(i), while N∗

1 is publicly known.
They agree on a quantity g ∈R Z∗N1

. Assuming for
an instant that ϕ(N∗

1) = 2p1(
∏t+1

i=1(qi − 1)). This
assumption is not true unless 2p1 +1 is also a prime.
The objective now is that the players jointly compute
the quantity gϕ(N∗

1)modN∗
1 and test this quantity for

unity. Using multiplication side by side with polyno-
mial degree reduction, the players compute shares of
the quantity ϕ(N∗

1). As a result, each player holds a
share Fϕ(N∗

1)(i) which is a point on a t-degree polyno-
mial Fϕ(N∗

1)(x) with Fϕ(N∗
1)(0) = Lt+2ϕ(N∗

1). Again,
Let P∗ be a subset of any t+1 alive players. Wlog let
P∗={P1, ..., Pt+1}. Let λ1, ..., λt+1 be the Lagrange
coefficients corresponding to the chosen P∗ which are
publicly known. Each player Pi ∈ P∗,

• Computes and broadcasts g
Fϕ(N∗1)(i)modN∗

1 .

Each player in P locally computes,
G = g

∑t+1
i=1 λiFϕ(N∗1)(i)modN∗

1 = gLt+2ϕ(N∗
1)modN∗

1 .

The players repeat for a fresh value p1 and fresh
primes qi’s until G = 1.

4) Computing the RSA modulus N
Once p1, p2, 2p1+1 and 2p2+1 are found to be primes,
the players proceed to compute the RSA modulus
N = 4p1p2 + 2p1 + 2p2 + 1. Each player Pi ∈ P

• Defines 2t + 1 values, a
(i)
0 , ..., a

(i)
2t ,

each a
(i)
j 6=0 ∈R [−L222`...L222`] and a

(i)
0 = 0.

• Constructs the 2t-degree randomizing polyno-
mial, fi(x) =

∑2t
j=0 a

(i)
j xj .

• Computes and secretely delivers fi(j) to player
Pj , ∀j = (1, ..., n).

Now, each player Pi ∈ P computes and broad-
casts, fN−1(i) = 4fp1(i)fp2(i)+2Lfp1(i)+2Lfp2(i)+∑n

j=1 fj(i). The quantity, fN−1(i) represents a point
on a 2t-degree polynomial fN−1(x) with its free term,
fN−1(0) = L2(N −1). Any player is able to compute
N = (fN−1(0)/L2) + 1.

5) Sharing the RSA Euler totient

Due to the simple expression for ϕ(N) = 4p1p2, the
players easily compute shares of ϕ(N). Let B ⊂ P
and |B|=2t + 1. Each player Pi ∈ B,

• Computes fϕ(i) = 4fp1(i)fp2(i).

• Shares the quantity f ′ϕ(i) = λifϕ(i) among the
n players using a t-degree polynomial, pi(x).

• Computes Fϕ(i) =
∑n

j=1 pj(i).

Now each player Pi ∈ P holds a share Fϕ(i) which is
a point on a t-degree polynomial Fϕ(x) with Fϕ(0) =
4L2p1p2 = L2ϕ(N).

The players proceed to compute shares of the secret ex-
ponent d using the GCD algorithm.

9 Proactive Security and Mobile
Adversaries

Long-lived shared secrets are vulnerable to a mobile ad-
versary, an adversary that is able to jump among the
players attacking as much players as she can. She has
the whole life-time of the secret to attack t + 1 or more
players to possess the secret key. Also, she can kill n−t or
more players to destroy the secret key, since in this case,
at most t good players remain, which are not enough to
compute the RSA function. In order to attain long-lived
certified secret key, its shares held by the players must be
periodically renewed so that the information gained by
the adversary in a time period say τ is nonsense in time
period τ +1. The new shares must interpolate to the same
secret key. A good survey on this issue can be found in
[11].

9.1 Proactiveness Phases

What is actually required to protect the secrecy of shared
information over the long run is to periodically refresh the
shares without changing the secret information in such a
way that any information learned by the adversary about
individual shares becomes obsolete after the shares are
renewed. Similarly to avoid the gradual destruction of

International Journal of Network Security, Vol.8, No.2, PP.139–150, Mar. 2009 148

the information by corruption of shares, it is necessary
to periodically recover lost or corrupted shares without
compromising the secrecy of the shares. In the proactive
approach, the lifetime of the secret is divided into peri-
ods of time (e.g. a day, a week etc.). At the beginning
of each time period the share holders engage in an inter-
active update protocol, after which they hold completely
new shares of the same secret. If there exist some halted
players, all good players join together to re-share their
shares with the rebooted players.

A proactive signature scheme involves three main
phases:

1) The key distribution phase. In this phase, the
players join to compute shares of the secret key over
a polynomial of degree t. We use in this setup phase
our protocol assuming the adversary is stationary.

2) Joint signature generation phase. In this phase
each player publishes his partial signature on the
message piece using his share of the secret key. Any
t+1 or more pieces combine to generate the final sig-
nature. Yet, no player by himself or any coalition of
players not exceeding the threshold value can forge
the signature.

3) Shares refreshment phase. Where the players are
able to periodically renew their shares of the secret
key. The information about the shares of the secret
key that an adversary is able to collect in one time
period becomes obsolete in the next time period after
renewing the shares. This is the phase we consider
in this section.

9.2 Shares Refreshment

Once the shares of the secret key d are established (this is
identical to what we have already described in the sta-
tionary adversary model) each player Pi ∈ P holds a
share D(0)(i) which is a point on a polynomial of degree
t, D(0)(x) with D(0)(0) = d. The superscript indicates
that we are in time interval number 0 (i.e. the initial
shares). Consider any intermediate time period (τ). Let
P ′⊆P represents the set of all players with alive shares at
the end of time interval τ (the beginning of time interval
τ + 1). Each player Pi ∈ P ′ holds a share D(τ)(i). Once
time interval (τ) has elapsed, at the beginning of time in-
terval (τ +1), the players initialize a shares renewal phase.
All halted players reboot their systems. We assume that
the player loses his share after rebooting. There must be
at least t + 1 players with correct shares. The players in
P ′ must help the rebooted players to recover their lost
shares by redistributing valid shares of the secret key d
among them. Assume wlog that |P ′|= t + 1. Each player
Pi ∈ P ′,

• Defines t + 1 values, a
(i)
0 , ..., a

(i)
t ,

each a
(i)
j 6=0 ∈R [−L2N3...L2N3] and a

(i)
0 = λiD

(τ)(i).

• Constructs the t-degree polynomial,
fi(x) =

∑t
j=0 a

(i)
j xj .

• Computes and secretely delivers, fi(j) to player Pj ,
∀j = (1, ..., n).

Now each player Pi ∈ P is able to compute his
new/recovered share of the secret key as D(τ+1)(i) =∑

j fj(i). Notice that, the described shares recovery
protocol automatically refreshes the shares held by all
the players. Another method to refresh the shares (this
method could be performed if all the players are already
alive i.e. none of the players is halted and no recovery
is needed) is as follows: Each player simply run a joint
zero-secret sharing, that is, each Pi ∈ P,

• Defines t + 1 values, a
(i)
0 , ..., a

(i)
t ,

each a
(i)
j 6=0 ∈R [−L2N3...L2N3] and a

(i)
0 = 0.

• Constructs the t-degree randomizing polynomial,
fi(x) =

∑t
j=0 a

(i)
j xj .

• Computes and secretely delivers fi(j) to player Pj ,
∀j = (1, ..., n).

• Computes his new share as,
D(τ+1)(i) = D(τ)(i) +

∑n
j=1 fj(i).

Notice that the shares D(τ)(.) are completely inconsistent
with the new shares D(τ+1)(.). However, any t+1 shares,
D(τ+1)(.) will interpolate to the same secret d. conse-
quently, the shares collected by the adversary (no more
than t shares) in time period τ become obsolete in time
period τ + 1.

9.3 Updating Personal Public-Keys

We must mention that each player Pi ∈ P has his own
private and public key pair which is used to attain all pri-
vate and authenticated information transfers in the RSA
function sharing protocol. These keys must be renewed
as well or else, the discussed proactiveness will fail to pre-
serve the privacy of the secret key, since, an adversary
controlling a player in time period (τ) but not in time
period (τ + 1) can know all private information sent by
this player in time period (τ + 1). Hence, before initial-
izing a share renewal phase, the first thing to be done is
that every player must update his own private and public
key pair. Also, any player after reboot must negotiate for
a new private/public key pair including registration and
certification of the new pair.

10 Comparison and Evaluation

In this section we compare our protocol to the protocol
of [15]. In secure multiparty computations (SMPC), the
two-party computations have been always considered as
a special case that require special treatment due to sev-
eral reasons. (i) In two-party computations there are no

International Journal of Network Security, Vol.8, No.2, PP.139–150, Mar. 2009 149

fraction of the parties that may represent a majority, con-
sequently, both parties must be alive in order to share the
computations. (ii) Threshold structures tools used in this
paper fail to fit the two-party case whenever secure dis-
tributed computations (e.g. shared multiplication of two
secrets) are performed since in this case at least three par-
ties are required (n > 2t, t ≥ 1) in the absence of a halting
adversary and at least four parties (n > 3t, t ≥ 1) for an
eavesdropping and a halting adversary. (iii) In case of a
malicious adversary (corruption of players), in the two-
party case, it is theoretically impossible to correct errors
(to filter out bad players), only error detection is possi-
ble, after which, the protocol aborts, whereas, when there
are plenty of players, minority corrupted players may be
detected and filtered out from disturbing the correct be-
havior. Therefore, the comparison to the protocol of [15]
in the strict sense would be unfair. However, to overcome
the above mentioned problems in the two-party structure,
the protocol in [15] relies heavily on the oblivious transfer
protocols that require extensive amount of modulo expo-
nentiations which are computationally expensive. In our
protocol, no exponentiations are performed except when
performing the distributed primality test. This test is
also performed in [15]. Yet, the protocol proposed in this
paper as a threshold structure fails to fit the two-party
situation.

11 Conclusions

In this paper, we introduced a fully distributed proac-
tive and threshold RSA function sharing protocol un-
der standard RSA assumptions. The protocol represents
an efficient extension to the two-party protocol of [15]
and proves efficiency over previously proposed threshold-
structure protocols. Our protocol avoids many of the ex-
isting inefficient techniques such as backup sharing, dis-
tributed biprimality test and distributed primality test
over a shared secret modulus. It is an optimum t-private,
t-resilient protocol against a stationary eavesdropping and
halting adversary. It is t-proactive against a mobile eaves-
dropping and halting adversary. Although we proposed
our protocol assuming an eavesdropping and halting ad-
versary, the protocol can be extended to face a malicious
adversary using verifiable secret sharing and techniques
from [14, 16]. However, an efficient extension is not ex-
pected to be straightforward.

Acknowledgments

The author would like to thank the anonymous reviewers
of the IJNS for their valuable comments that reflect their
sharp reading of this paper.

References

[1] J. Algesheimer, J. Camenisch, and V. Shoup, “Effi-
cient computation modulo a shared secret with ap-
plication to the generation of shared safe-prime prod-
ucts,” Crypto ’02, pp. 417-432, 2002.

[2] D. Boneh, and M. Franklin, “Efficient generation of
shared RSA keys,” Crypto ’97, pp. 425-439, 1997.

[3] M. Cerecedo, T. Matsumoto, and H. Imai, “Efficient
and secure multiparty generation of digital signa-
tures based on discrete logarithms,” IEICE Trans-
actions on Fundamentals of Electronics, Communi-
cations and Computer Sciences, vol. E76–A, no. 4,
pp. 532-545, 1993.

[4] D. Catalano, R. Gennaro, and S. Halevi, “Computing
inverses over a shared secretmodulus,” Eurocrypt ’00,
pp. 190-206, 2000.

[5] Y. Frankel, P. Gemmell, P. D. MacKenzie, and M.
Yung, “Optimal-resilience proactive public-key cryp-
tosystems,” 38th Annual Symposium on Foundations
of Computer Science (FOCS ’97), pp. 384-393, 1997.

[6] Y. Frankel, P. D. MacKenzie, and M. Yung, “Robust
efficient distributed RSA-key generation,” Proceed-
ings of STOC ’98, pp. 663-672, 1998.

[7] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin,
“Robust threshold DSS signatures,” Eurocrypt ’96,
pp. 354-371, 1996.

[8] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Ra-
bin, “Robust and efficient sharing of RSA function,”
Crypto ’96, pp. 157-172, 1996.

[9] O. Goldreich, S. Micali, and A. Wigderson, “How to
play any mental game or a completeness theorem for
protocols with honest majority,” Proceedings of the
19th STOC, pp. 218-229, 1987.

[10] L. Harn, “Group-oriented (t, n) threshold digital dig-
nature scheme and multisignature,” IEE Proceedings
- Computers and Digital Techniques, vol. 141, no. 5,
pp. 307-313, 1994.

[11] A. Herzberg, S. Jarecki, H. Krawczyk, M. Yung,
“Proactive secret sharing or: How to cope with per-
petual leakage,” Crypto ’95, pp. 339-352, Springer
Verlag, 1995.

[12] M. H. Ibrahim, I. A. Ali, I. I. Ibrahim, and A.
H. E. Sawy, “Fast fully distributed and threshold
RSA function sharing,” Proceedings of the Informa-
tion Systems: New Generations (ISNG-2004), spe-
cial Session on Smart Cards, pp. 11-16, Las Vegas,
USA, 2004.

[13] M. H. Ibrahim, I. I. Ibrahim, and A. H. E. Sawy,
“Fast three-party shared generation of RSA keys
without distributed primality tests,” Proceedings of
the Informatin Systems: New Generations Confer-
ence (ISNG 2004), special Session on Smart Cards,
pp. 5-10, Las Vegas, USA, 2004.

[14] M. H. Ibrahim, “Verifiable threshold sharing of a
large secret safe prime,” Proceedings of the Interna-
tional Conference on Information Technology Cod-
ing and Computing, ITCC 2005, pp. 608-613, USA,
2005.

International Journal of Network Security, Vol.8, No.2, PP.139–150, Mar. 2009 150

[15] M. H. Ibrahim, “Eliminating quadratic slowdown
in two-prime RSA function sharing,” International
Journal of Network Security (IJNS), vol. 7, no. 1,
pp. 107-114, 2008.

[16] T. V. Le, K. Q. Nguyen, and V. Varadharajan, “How
to prove that a committed number is prime,” Asi-
acrypt ’99, pp. 208-218, Springer-Verlag, 1999.

[17] T. Rabin, “A Simplified approach to threshold and
proactive RSA,” Crypto ’98, LNCS 1462, pp. 89-104,
Springer-Verlag, 1998.

[18] A. Shamir, “How to share a secret,” Communication
of the ACM, vol. 22, no. 11, pp. 612-613, 1979.

Maged Hamada Ibrahim Received his BSc in commu-
nications and computers engineering from Helwan Univer-
sity, Cairo; Egypt. Received his MSc and PhD in Cryp-
tography and Network security systems from Helwan Uni-
versity in 2001 and 2005 respectively. Currently, working
as a lecturer, post doctor researcher and also joining sev-
eral network security projects in Egypt. His main inter-
est is Cryptography and network security. More specifi-
cally, working on the design of efficient and secure crypto-
graphic algorithms, in particular, secure distributed mul-
tiparty computations. Other things that interest him are
number theory and the investigation of mathematics for
designing secure and efficient cryptographic schemes.

