
International Journal of Network Security, Vol.8, No.1, PP.90–95, Jan. 2009 90

Short Signatures from Difficulty of Factorization

Problem

Nikolay A. Moldovyan

Specialized Center of Program Systems “SPECTR”

Kantemirovskaya, 10, St-Petersburg 197342, Russia. (Email: nmold@cobra.ru)

(Received July 10, 2007; revised Dec. 5, 2007; and accepted Mar. 3, 2008)

Abstract

New ways are proposed to design short signature schemes
based on difficulty of factorizing a composite number n
that is a product of two large secret primes. The paper
presents digital signature schemes in which the signature
represents a pair of numbers (k, g) and its length is re-
duced to 320 bits providing security of the RSA cryp-
tosystem with 1024-bit modulus.

Keywords: Cryptography, digital signature, factorization
problem

1 Introduction

Public key cryptosystems based on hard mathematical
problems are well approved for information authentica-
tion with digital signatures. An important practical prob-
lem is developing digital signature schemes (DSSes) with
short signature length [7]. In general the minimum signa-
ture length provided by a DSS depends on the required
security level that can be estimated as number of group
operations that should be performed to forge a signature.
In this paper we consider the signature length of different
DSSes, which relates to the security level corresponding
to 280 group operations. At present this figure can be
accepted as the minimum security level. The RSA and
Rabin’s DSSes based on factorization problem use the
1024-bit signature length [5]. The Rabin’s DSS is very
attractive as provably secure one, but becuase of com-
paratively large size of its signature it is not widely used
in practice. More suitable for practical applications are
DSSes based on difficulty of discrete logarithm problem
in multiplicative groups [2] or in groups of elliptic curve
points, which allow reducing the signature size [11]. The
DSA standard and Schnorr’s DSSes based on difficulty
of finding discrete logarithm modulo large prime number
provide comparatively short signatures having the 320-bit
length, while providing the security level of the 1024-bit
RSA [10]. The ECDSA standard also requires the use of
the 320-bit signature size [1].

In present paper we consider some ways to reduce
the signature length in DSSes based on difficulty of

factorizing the composite number n generated as product
of two unknown large primes q and r. To reduce the
signature length in the DSSes based on complexity of the
factorization problem we use the randomization signature
formation mechanism. The paper proposes designs with
signature length 320 bits. In Section 2 we describe a
new signature formation mechanism used to reduce the
signature length and present several new DSSes based on
the factorization problem, which provide reduction of the
signature length. We show that security of the proposed
DSSes can be formally proved using the approach [8] used
earlier to provide security proof for Schnorr’s DSS. In
Section 3 we propose a “double exponentiation” function
to design modified variants of the 320-bit DSSes and
estimate their security. Section 4 presents conclusion of
the paper.

Notation:

Gm denotes multiplicative group (Z/mZ)∗;

ωm(x) denotes the order of the element x ∈ Gm;

|x| denotes the length of binary representation of the
value x;

(x‖y) denotes the concatenation of the values x and y;

gcd(x, y) denotes the greatest common divisor of the val-
ues x and y;

lcm [x, y] denotes the least common multiple of the values
x and y;

H = FH(M) denotes the hash value calculated from
message M , using some specified hash function FH

Algorithm, for example SHA-1 [5].

2 Algorithms Based on a New Sig-

nature Formation Mechanism

2.1 Method for Reduction of the Signa-

ture Length

The well known cryptosystem RSA [9] is based on cal-
culations modulo n that is a product of two randomly

International Journal of Network Security, Vol.8, No.1, PP.90–95, Jan. 2009 91

chosen prime numbers r and q: n = rq. The public key
is represented by a pair of numbers (e, n), and the secret
key is a number d, which is calculated using the following
formula: ed mod ϕ(n) = 1, where ϕ(n) = (r− 1)(q− 1) is
Euler phi function of n. Security of this system is based
on difficulty of calculating d while ϕ(n) is an unknown
value. The ϕ(n) value can be easily calculated after fac-
torization of the modulus n, therefore divisors of n have
to be kept in secret (or to be annihilated after the keys
e and d are generated). The signature corresponding to
a plaintext M is a value S, which satisfies the following
verification Equation: Se mod n = H, where H is the
hash function value corresponding to the message to be
signed. The signature generation Equation is the follow-
ing one: S = Hd mod n. In RSA the signature length is
approximately equal to |n|. Security requirements define:
|n| ≥ 1024 bits (this value corresponds to the mentioned
above minimum security level).

To reduce the signature length in the case of DSSes
based on the factorization problem we use the novel sig-
nature formation mechanism [6] that can be applied while
developing DSSes with two-element signatures denoted
as (k, g). The mechanism is characterized in using a
two-element public key with the structure (n, α), where
α ∈ Gn and ωn(α) = δ, i. e. α is a generator of the δ
order subgroup of Gn. The secret key is δ.

Some internal relation between the α and n values
provides potentially some additional possibilities to fac-
torize modulus n. Let us assume that δ is a divisor
of r − 1 and δ does not divide q − 1. In practice to
generate the α value the following expression is used:
α = hϕ(n)/δ mod n 6= 1, where h is a random number for
which we have gcd(h, n) = 1. In genegal ∀α : ωn(α) = δ
there exists such h ∈ Gn that α = hϕ(n)/δ mod n. (Us-
ing the Euler’s Theorem one can easily demonstrate that
αδ = hϕ(n) ≡ 1 mod n, where ϕ(n) = (r − 1)(q − 1), i. e.
if hϕ(n)/δ mod n 6= 1, then the hϕ(n)/δ mod n value is a
generator of the δ-order group). We have:

α = hϕ(n)/δ mod n ≡ (h(q−1))(r−1)/δ mod n⇒
α ≡ (h(q−1))(r−1)/δ ≡ 1(r−1)/δ ≡ 1 mod q ⇒
α− 1 ≡ 0 mod q ⇒ q|α− 1⇒ gcd(α− 1, n) = q.

Thus, in the considered case it is possible to factorize
modulus using Euclidean Algorithm. Therefore some re-
strictions should be imposed on generation of the public
key. A way preventing the described factorization method
is to use such numbers r and q that both of them contain
the same required large divisor δ, the δ2 value dividing
neither r−1 nor q−1. If this additional requirement is im-
posed, then the α parameter can be generated as follows:
α = hL(n)/δ mod n 6= 1, where L(n) = lcm [r − 1, q − 1] is
generalized Euler’s function. Thus, α = huv mod n 6= 1,
where u = (r − 1)/δ and v = (q − 1)/δ. If we use, while
generating the α value, a value that is simultaneously
primitive element modulo r and primitive element mod-
ulo q as the number h (i.e. h is a “double” primitive ele-
ment), then we will have simultaneously α 6≡ 1 mod q and
α 6≡ 1 mod r. While using a “double” primitive element

we deterministically generate a “strong” α value. But it is
not strictly necessary to use “double” primitive elements.
We can generate a “strong” value α selecting random val-
ues h. In this case we should check if α 6≡ 1 mod q and
α 6≡ 1 mod r holds.

The second way to generate “strong” public key is to
use composite value δ, i. e. δ = δ′δ′′, where δ′|r − 1 and
δ′′|q − 1 and δ′ and δ′′ do not divide q − 1 and r − 1,
correspondingly. For generating the parameter α we have
the following formula: α = hL(n)/δ mod n 6= 1, i. e α =
huv mod n 6= 1, where u = (r − 1)/δ′ and v = (r − 1)/δ′′.
Analogously to the first case, while using the value h that
is ”double” primitive element, we get α 6≡ 1 mod q and
α 6≡ 1 mod r.

Thus, we have two different ways to define difficulty of
the n modulus factorization in the considered DSS. Un-
fortunately in the first way we have a problem to avoid
possibility to calculate the secret parameter δ without fac-
torizing the n modulus. Indeed, we have:

n− 1 = (uδ + 1)(vδ + 1)− 1

= uvδ2 + uδ + vδ = (uvδ + u + v)δ.

Usually the value n−1 can be easily factorized. There-
fore the secret δ can be recovered, if no new restriction
requirements are imposed on selection of the n modulus.
In the second way factorization of the value n−1 does not
allows one to determine the δ secret. Thus, we should use
the second way while generating the public key. To choose
the size of the δ value we should take into account that the
α value can be used to factorize the modulus n with the
help of the calculation of the value gcd(αi mod n − 1, n)
for i = 1, 2, . . .min{δ′, δ′′}. Therefore we should use the
80-bit values δ′ and δ′′. Thus, we get the length of the
value δ should be |δ| ≈ |δ′|+ |δ′′| ≥ 160 bit.

2.2 Digital Signature Schemes

A secure variant of the DSS with the 320-bit signature
length is described by the following verification Equation:

k − g = FH(M‖αk+g(v−1) mod n), (1)

where v is a specified 80-bit prime number and M is a
message. The signature generation is performed as fol-
lows:

1) Generate a random number U and calculate H =
FH(M‖αU mod n);

2) Solve simultaneously Equation k − g = H and con-
gruence k + g(v − 1) ≡ U mod δ.

The solution gives the k and g signature elements:

g =
U −H

v
mod δ and k = H + g. (2)

The signature size is |k|+ |g| ≈ |H |+ |δ| ≈ 320 bits in the
case of the 160-bit hash function. Note that without using
the prime v the signature scheme is not secure, since in

International Journal of Network Security, Vol.8, No.1, PP.90–95, Jan. 2009 92

such case the secret δ is not used to calculate signature,
if we have U > H .

One can simplify the verification Equation and present
the following modified DSS:

k = FH(M‖αkg mod n). (3)

In this case the signature is calculated using the formulas:

k = FH(M‖αU mod n) and

g =
U

k
mod δ. (4)

Note that, while generating the signature, the events
corresponding to the case gcd(δ, k) > 1 have negligible
probability (if one of such cases takes place, then the
signer should repeat the signature generation procedure
using another value U). If k|U , then the value g is cal-
culated without using the secret value δ. However such
events have also negligible probability due to sufficiently
large value |k| = |H | = 160 bits (we assume that hash
function SHA-1 is used).

2.3 Security Discussion

The assumptions underlying the schemes described above
are the following two:

1) Problem to factorize n using the public key (n, α) is
difficult.

2) Finding discrete logarithm x = logα y modulo n is
difficult.

Solving one of these two hard problems allows one to
determine the secrete key. For the first problem it is ev-
ident. For the second problem we should consider the
following attack. Select two 160-bit numbers k′ and g′

and calculate the value y = αkg mod n. Finding discrete
logarithm x = logα y (modn) and factorizing the value
kg − x one can get the secret value δ. For the known
value δ = δ′δ′′ the difficulty of finding discrete logarithm
x = logα y (modn) can be estimated as

√
z exponenti-

ation operations, where z = max{δ′, δ′′}. However for
unknown value ωn(α) the difficulty of the second prob-
lem is approximately equal to

√
δ′δ′′ operations. Let us

note that difficulty of the second problem depends on
the difficulty of the first one. Indeed, solving the first
problem reduces the second problem to the problem of
finding logarithms modulo q and modulo r [5]. Since
|q| ≈ |r| ≈ 0.5 · |n| the difficulty of the second problem
decreases drastically after factorizing modulus n.

Like in the DSS proposed by Schnorr [11], in the pro-
posed DSS Algorithms the hash function value is com-
puted after the value αU mod n is calculated and con-
catenated to the message that is to be signed. Due to
this feature the formal security evidence of the proposed
DSS Algorithms can be provided using the approach pro-
posed in paper [8] and applied to provide formal security
proof for Schnorr’s DSS Algorithm. We will assume that

the hash function used in the considered DSSes posses no
special properties that the adversary can take advantage
of. In compliance with that approach we uses the fol-
lowing reductionist security claim corresponding to each
of the proposed DSSes. If an adversary can forge signa-
tures, then he can factorize modulus n in essentially the
same amount of time that it takes to forge a signature.
On the analogy of the formal security consideration of
Scnorr’s DSS the following argument can be supplied.

Suppose that the adversary can forge a signature
for message M . While his computing the value H =
FH(M‖αU mod n), suppose that he is suddenly given an-
other hash function F ′

H . Since the used hash function has
no special properties (see our assumption above) used in
the forgery Algorithm the last will work equally well with
both FH and F ′

H (the formal proof of this fact is provided
in [8] using the random oracle model and this fact does
not concern the details of the proposed DSSes). Thus,
the forger computes H ′ = F ′

H(M‖αU mod n) as well as
H = FH(M‖αU mod n) and produces two valid signa-
tures (k′, g′) and (k, g) for M , respectively. The both
signatures are calculated with the same value U but with
different H ′ and H .

Therefore, in the case of the first of the proposed
DSSes, we have k′ 6= k and g′ 6= g but k′ + g′(v − 1) ≡
U mod δ and k + g(v − 1) ≡ U mod δ, i. e. we have
k′ + g′(v − 1) ≡ k + g(v − 1) mod δ, therefore δ divides
the value k′ − k + (g′ − g)(v − 1). Since the size of δ
is sufficiently small it is not difficult to find δ after the
factorization of the value k′ − k + (g′ − g)(v − 1).

In the case of the second of the proposed DSSes, we
have k′ 6= k and g′ 6= g but k′g′ ≡ U mod δ and kg ≡
U mod δ, i. e. we have k′g′ ≡ kg mod δ ⇒ δ|k′g′−kg and
δ can be computed factorizing the value k′g′ − kg. Using
the computed value δ it is easy to factorize n. Indeed,
due to comparatively small size of δ it is easy to factorize
δ: δ = δ′δ′′ and to calculate gcd(αδ′

mod n − 1, n) = r
(see Subsection 2.1).

Thus, a successful attack on each of the proposed
DSSes, which provides possibility to forge signature on
a message, can be applied to factorize n, i.e. the pro-
posed DSSes are as secure as problem of factorizing n is
difficult.

In the next Section we propose a signature formation
mechanism that provides possibility to use prime value δ.
An interesting peculiarity of the scheme described below
is using calculations modulo prime q that is secret value.

3 Signature Schemes with Prime δ

3.1 The Used Function

Let us consider the main trick that provides to use prime
values of secrete number δ. Suppose we would like to
provide to a verifier possibility to check if a is congruent
to b modulo q, the q value being a secret one. It is possible
to be done using very simple mechanism avoiding direct
calculations modulo q. Really, let p = 2n + 1 is a prime,

International Journal of Network Security, Vol.8, No.1, PP.90–95, Jan. 2009 93

where n is the product of two large primes q and r, i. e.
n = qr, and β is an element in Gp for which we have
ωp(β) = q. Then we have

βa ≡ βb mod p⇔ a ≡ b mod q.

Thus, one can check validity of the last congruence per-
forming calculations modulo p, i. e. without use of the
secrete value q. In the DSS design we use the following
function:

y = βαx mod n mod p,

where p = 2n + 1, n = qr, β ∈ Gp, ωp(β) = q, and the
value α ∈ Gq is such that ωn(α) = δ(r−1) and ωq(α) = δ,
where δ is a prime such that δ|q − 1 and δ 6 |r − 1.

3.2 Signature Scheme

Using this mechanism we modify the verification Equa-
tions (1) and (2), respectively, in the following way:

k − g = FH(M‖βαk+g(v−1) mod n mod p), (5)

k = FH(M‖βαkg mod n mod p), (6)

where the public key is (p, β, α) and the secret key is (q, δ).
We suppose the following minimum length of the key val-
ues: |δ| = 160 bits, |q| = 512 bits. In DSSes described by
verification Equations (5) and (6) the g value in the sig-
nature is an element of the prime order group Gδ: g ∈ Gδ.

In the modified DSS described by Equation (5) the sig-
nature elements g and k are defined by Formula (2), with

exception that now we have Z = FH(M‖βαU mod q mod
p). In the modified DSS described by Equation (6) the
signature element k is calculated as follows:

k = FH(M‖βαU mod q mod p).

The second signature element is defined by Formula (4).

Statement 1. The signature verification Equations (5)
and (6) work correctly.

Proof. For Equations (5) and (6) the proof is analogous.
Let us consider the case of the verification Equation (6).
Let (k, g) be a valid signature corresponding to some
signed message M . Taking into account that ωq(α) = δ,
ωp(β) = q, and g = U/k mod δ, from the verification
Equation we get:

k′ = FH(M‖βαkg mod n mod p)

= FH(M‖βαkg mod q mod p)

= FH(M‖βαk U
k mod q mod p)

= k.

Since k′ = k the signature verification result is positive,
i.e. the verification Equation (6) works correctly.

Let us consider the case of the verification Equa-
tion (5). For some valid signature (k, g) for the message
M we have (see Formulas (2)):

k − g = H, where

H = FH(M‖βαU mod q mod p)

= FH(M‖βαU mod n mod p) and

H ′ = FH(M‖βαk+g(v−1) mod n mod p)

= FH(M‖βαH+g+g(v−1) mod n mod p)

= FH(M‖βαU mod n mod p)

= H.

Since H ′ = H the verification Equation (5) works cor-
rectly.

3.3 Security Discussion

In the DSSes proposed in Section 3.2 the β value should
satisfy the following security requirement: the ωn(α) value
should be sufficiently large, i.e. |ωn(α)| > 160 bits.
This requirement is defined by the following possible at-
tack against the Scheme (6) (analogous attack is possible
against Scheme (5)):

1) Calculate the value y = αkg mod n;

2) Find the value x = logα y (modn);

3) Calculate δ as one of divisors of the value kg − x.

If ωn(α) > 160 bits (this condition is satisfied in the con-
sidered case, since we have ωn(α) = δ(r − 1)), then Step
2) is computationally infeasible. Note that until modulus
n is not factorized the divisors of ωn(α) are not known.
We also suppose to follow the recommendations by [3],
i.e. to use strong primes q and r to generate n. For
strong prime r the value r − 1 contains large prime di-
visor, therefore finding the logarithm x = logα y (modn)
is computationally intractable even in the case of known
value ωn(α).

In another attack one can try to find value x′ =

logβ K (mod p), where K = βαkg mod n mod p, and cal-

culate q as a divisor of the value (αkg mod n)− x′. Then
the secret value δ can be determined dividing the value
q−1. Due to sufficiently large values |q| and |p| this attack
is also computationally infeasible.

Security against some other attacks is justified by
Statement 2.

Statement 2. An attack providing calculation of the
secret value δ is as difficult as factorizing the modulus n
is difficult.

Proof. Suppose an attack allows to calculate δ. Since
αδ ≡ 1 mod q, then (αδ mod n) ≡ 1 mod q ⇔ q|αδ mod
n − 1 ⇔ gcd(αδ mod n − 1, n) = q. Thus, difficulty of
factorizing the n modulus is comparable with difficulty of
the considered attacks.

International Journal of Network Security, Vol.8, No.1, PP.90–95, Jan. 2009 94

In the DSSes proposed in Section 3.2 the hash function

is calculated after the value R = βαkg mod q mod p is com-
puted. Therefore the forger is forced to choose the value
U before the determination of the hash value (we use the
standard assumption the used hash function is secure, i. e.
the function FH possesses no special properties that the
forger can take advantage of), like in the case of Snorr’s
DSS (for details see pp. 25-26 in [4]). So we can apply the
same argument as that used to provide formal security
evidence for DSSes presented in Section 2 (see Subsec-
tion 2.3). Such argumentation shows that the successful
forger can find the value δ and then he can factorize the
modulus n (see proof of Statement 2).

Thus, the DSSes presented by Formulas (5) and (6) are
also as secure as problem of factorizing the number n is
difficult

3.4 Security Estimation

In this Subsection we estimate security of the DSS de-
scribed by Formula (5) and (6) as complexity of the best
known Algorithms providing calculation of the δ value
given the function y = βαx mod n mod p. Due to “double
exponentiation” construction of this function the methods
based on calculating discrete logarithms are not efficient
relatively required time and storage. The following Algo-
rithm implements a more efficient method.

Algorithm 1

1: Select random U > 2|δ|+10 and calculate y =

βαU mod n mod p.
2: For i = 0 to N , where integer N ≈

√
δ, calculate

z′(i) = βαiN mod n mod p.
3: Order the Table of pairs (i, z′(i)) according to the z′(i)

value and set j = 0.

4: Calculate z′′(j) = y
1

αj mod n mod p.
5: Check if in the Table there exists z′(i0) such that

z′(i0) = z′′(j). If z′′(j) 6= z′(i) for i = 0 to N , then
increment the j counter j ← j + 1 and go to Step 4.

6: Calculate values U ′ = i0N +j and factorize the U−U ′

value.
7: Select divisor δ such that βαδ mod n mod p = β.

The Algorithm computes the value U ′ = i0N + j0 such

that y = βαU′

mod n mod p. Indeed, suppose for i0 and j0
we have

y
1

αj0
mod n

mod p = βαi0N mod n mod p.

Then

y ≡ βαi0N+j0 mod n mod p

⇒ βαU mod n ≡ βαU′

mod n mod p

⇒ βαU mod q ≡ βαU′

mod q mod p

⇒ αU ≡ αU ′

mod q.

Therefore U ≡ U ′ mod δ ⇒ δ|U − U ′.

Difficulty of Step 2 is about 2N = 2
√

δ exponentia-
tion operations. Difficulty of Step 3 is about N log2 N
comparison operations performed on |p|-bit values. Diffi-
culty of Steps 4 and 5 is about

√
δ exponentiations plus

2−1N log2 N comparison operations. Difficulty of Steps 1,
6, 7 and difficulty of all comparison operations are negligi-
ble in comparison with difficulty of all exponentiation op-
erations. In total the difficulty of Algorithm 1 is W ≈ 3

√
δ

exponentiation operations. For |δ| ≈ 160 bits we have
W ≈ 281 exponentiation operations. The Algorithm re-
quires very lage storage ≈ 290 bits for ≈ 280 |p|-bit num-
bers. Algorithm 1 is efficient on time, but not efficient on
storage.

Minimum storage requirement and efficient on time
computations are achieved with the Floyd’s Algo-
rithm [10] applied to the {x0, x1, .., xi, ..., xj , ...} sequence
of the 1024-bit numbers obtained with recursive formula

xi+1 = βαxi mod n mod p,

where xi is selected arbitrarily. Such random sequence
represents a a non-periodic part (tail) followed by the pe-
riodic rest (multiple repetition of some cycle). The aver-
age length of the tail is λ =

√

πδ/8. The average length

of the cycle is µ =
√

3πδ/8 [10]. For our sequence the
Floyd’s Algorithm [10] allows to find i and j such that
xi 6= xj and xi+1 = xj+2, where

(xi+1, xj+2) = (βαxi mod n mod p, βαxj mod n mod p),

performing about 4µ(1 + λ/µ) ≈ 4
√

δ ≈ 282 exponention
operations and using extremely small storage. Therefore
the δ divides the xi − xj value and can be easily find.
Thus, the secret prime δ should have the length |δ| ≥
156 ≈ 160 bits. So we have the minimum signature length
≈ 320 bits for the DSS described by Formulas (5) and (6).

4 Conclusion

Using a novel mechanism in the DSS based on difficulty
of factorization problem we have reduced the signature
size in such schemes to 320 bits in the case of the mini-
mum security level (280 operations). To obtain possibility
to use prime value of the secrete key element δ we have
proposed the DSSes defined by the “three-level“ verifi-
cation Equations, combining calculations in four differ-
ent groups Gδ, Gq, Gn, and Gp. In such schemes, while
generating signature, calculations are performed in three
groups Gδ, Gq, and Gp. While verifying the signature,
the calculations are performed in two groups Gn, and Gp.
In the streighfoward implementation of the DSSes based
on “three-level“ verification Equations with the modulus
p = 2rq + 1 the public key generation procedure is suffi-
ciently more complex than in the DSA standard and in
RSA, however it can be essentially simplified using the p
modulus with the structure p = erq + 1, where e is the
t-bit even number, t = 10 to 16 bits. In this case for the

International Journal of Network Security, Vol.8, No.1, PP.90–95, Jan. 2009 95

selected primes q and r one can choose with high probabil-
ity e such that p is prime. This variant provides sufficient
computational efficiency of the key generation procedure.

The DSSes described by verification Equations (1) and
(3) use composite element δ, however they have simpler
design and are faster while both the signature genera-
tion and the signature verification. Schemes (1) and (3)
appear to be more interesting for practical applications.
The computational efficiency of the signature generation
in these DSSes is about the same as in the DSA stan-
dard. Complexity of the signature verification procedure
is about two times lower than in DSA. For the proposed
DSSes we have provided formal security evidence.

Due to using a novel signature formation mechanism
we have succeeded to develop DSSes having comprehensi-
ble design and providing at present the shortest signature
size for the DSSes based on factorization problem.

Acknowledgements

This work was supported by Russian Foundation for Basic
Research grant # 08-07-00096-a.

References

[1] ANSI X9.62, and FIPS 186-2, Elliptic Curve Signa-
ture Algorithm, 1998.

[2] T. ElGamal, “A public key cryptosystem and a sig-
nature scheme based on discrete logarithms,” IEEE
Transactions on Information Theory, vol. IT-31, no.
4. pp. 469-472, 1985.

[3] J. Gordon. “Strong primes are easy to find,” Ad-
vances in cryptology - Eurocrypt ’84, LNCS 209, pp.
216-223, Springer-Verlag, 1985.

[4] N. Koblitz, and A. J. Menezes, “Another look at rov-
able security,” Journal of Cryptology, vol. 20, pp. 3-
38, 2007.

[5] A. J. Menezes, P.C. V. Oorschot, and S. A. Vanstone,
Handbook of Applied Cryptography, CRC Press, Boca
Raton, FL, 1997.

[6] A. A. Moldovyan, D. N. Moldovyan, and L. V.
Gortinskaya, “Cryptoschemes based on new signa-
ture formation mechanism,” Computer Science Jour-
nal of Moldova, vol. 14, no. 3, pp. 397-411, 2006.

[7] L. Pintsov, and S. Vanstone “Postal revenue col-
lection in the digital age,” Proceedings of Finan-
cial Cryptography 2000, LNCS 1962, pp. 105-20, Y.
Frankel, Editor, Springer-Verlag, Berlin, 2000.

[8] D. Pointcheval, and J. Stern, “Security arguments
for digital signatures and blind signatures,” Journal
of Cryptology, vol. 13, pp. 361-396, 2000.

[9] R. L. Rivest, A.Shamir, and L. M. Adleman. “A
method for obtaining digital signatures and public
key cryptosystems,” Communications of the ACM,
vol. 21, no 2, pp. 120-126, 1978.

[10] N. Smart, Cryptography: An Introduction, McGraw-
Hill Publication, London, 2003.

[11] C. P. Schnorr, “Efficient signature generation by
smart cards,” Journal of Cryptology, vol. 4, pp. 161-
174, 1991.

Nikolay A. Moldovyan is an honored inventor of Rus-
sian Federation (2002), a chief researcher with the Spe-
cialized Center of Program Systems “SPECTR”, and
a Professor with the Saint Petersburg Electrical Engi-
neering University. His research interests include com-
puter security and cryptography. He has authored or
co-authored more than 50 inventions and 200 scientific
articles, books, and reports. He received his Ph.D. from
the Academy of Sciences of Moldova (1981). Contact him
at: nmold@cobra.ru.

