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Abstract

In the present paper, we propose a new protocol for a scal-
able multicast key distribution protocol. The proposed
protocol is based on Key Management using Boolean
Function Minimization (KM-BFM) technique. It is con-
sidered one of the best solutions proposed for solving the
scalability of multicast security protocols depending on a
centralized manager. Instead of using one tree as in KM-
BFM, the members are divided into a number of subgroup
trees. A comparison between KM-BFM and other cen-
tralized protocols is detailed. The comparison shows that
KM-BFM protocol has the lowest communication over-
head. Furthermore, it has the lowest storage at the secu-
rity manager. Then, a comparison between the proposed
protocol and KM-BFM protocol is given. The compari-
son shows that the proposed protocol has lower storage
requirements. Further, it achieves a lower communication
overhead in case of a single member leave and a compa-
rable communication overhead in case of multiple leaves.

Keywords: Boolean approaches, combinatorial approaches
and centralized approaches, key distribution, multicast se-
curity

1 Introduction

Multicast communication as defined in [10] is an efficient
mean of distributing data to a group of participants. Mul-
ticast communication has many economical and military
applications, some of them need to deal with groups of
users and keep each group protected from other group ac-
cess. Group key distribution techniques are used in many
such applications like internet video transmissions, stock
quotes, news feeds, life multi-part conferencing and bat-
tlefield [3]. Multicast communication needs mechanism(s)
to control access to the transmitted data and protect the
group communication from illegitimate members. Multi-
cast security suggests encryption to protect messages ex-
changed among group members, so generating, distribut-
ing and updating of the cryptographic keys become hot

issues especially when group membership is highly dy-
namic.

Group key must be updated with the group member-
ship changes to prevent a new member from deciphering
messages exchanged before it joins the group; this is de-
fined as backward secrecy [3]. Group key revocation in
case of one member joins or multiple members join could
be achieved by sending the new group key to the old group
members encrypted with the old group key. Also, group
key must be updated with the group membership changes
to prevent an old member (leaved or expelled) from de-
ciphering current and future group communication which
is defined as forward secrecy [3]. Group key revocation,
when one member leaves or multiple members leave, is
more complicated than in case of join because of the dis-
closure of the old group key. The old group key is known
to the leaving member(s) so there is a need to re-key the
group using valid key(s) in a scalable way. The trivial
scheme for re-keying a group of n members is through
using individual secret key shared between the Key Dis-
tribution Center KDC and each member. This is not a
simple or scalable method and consumed large bandwidth
especially for large group with high membership changes;
furthermore it takes more time and needs more resources
per hosts than using multicasting to re-key the group. In
literature, there are many group key distribution proto-
cols. In the next subsection, a brief summary of previous
key distribution protocols is defined.

1.1 Related Work

According to [14], the classification of multicast key
distribution protocols is as follows:

Centralized group key management protocols: A
single entity is employed for controlling the whole group;
hence a group key management protocol seeks to mini-
mize storage requirements, computational power on both
client and server sides, and bandwidth utilization. Al-
though the centralized approach has a problem of a sin-
gle point of failure, some applications like stock quotes
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Figure 1: Logical key hierarchy tree

are still centralized. To overcome this problem, a mir-
ror of the centralized entity could be used to provide
fault tolerant and/or load sharing. Some examples of
centralized group key protocols are: Logical Key Hierar-
chy (LKH) [21], One-Way Function Trees (OFT) [11] and
Key Management using Boolean Function Minimization
(KM-BFM) technique [4]. The centralized approaches are
generally based on the idea of LKH where a key dis-
tribution center maintains a key tree as shown in Fig-
ure 1. Each node in the tree represents a symmetric key.
The leaves represent the group members. Each mem-
ber knows all the symmetric keys from its leaf to the
root. For example, U0 knows K0, K01, K0123 and the
group key K01234567. If U7 leaves the group, to main-
tain forward secrecy, the following keys must be changed:

K67, K4567 and K01234567. The key server generates
K67(new), K4567(new) and K01234567(new) and broad-
casts the following message: {K67(new), K4567(new),
K01234567(new)}K6, {K4567(new), K01234567(new)}K45,
{K01234567(new)}K0123. U6 obtains the new keys by de-
crypting the part encrypted by K6, U4 and U5 obtain the
new keys by decrypting the part encrypted by K45 and
finally users: U1, U2, U3 and U4 obtain the group key
by decrypting the part encrypted by K0123. Therefore,
for a group of m members, when a single member leaves,
the key server updates the group keys using a message of
length 2 log2 m keys. In LKH protocols, the key server
stores (2m + 1) symmetric keys and each member stores
(log2 m + 1) symmetric keys.

In order to reduce both storage at the key server
and the length of update message, Chang et al. [4]
proposed a key distribution protocol which we named
Key Management using Boolean Function Minimization
(KM-BFM) protocol. KM-BFM protocol is based on
the idea of using only two keys in each level as shown
in Figure 2. Each member knows the symmetric keys
along its path to the root. To reduce the number of
messages to be exchanged and to decrease the number
of encryption operations needed to be performed by
the key server, one-way functions are used. If U0 leaves
the group, the following keys must be changed: SK,

K̄0, K̄1 and K̄2. The key server generates SK(new)
and broadcasts the following message: SK(new)K0,
SK(new)K1, SK(new)K2. Upon receiving the message,
the remaining users can obtain SK(new) by decrypting
one part of the message. Then, the new keys: K̄0, K̄1 and
K̄2 are calculated using one-way functions of the old keys
and the new group key, i.e. K̄0(new)=f(SK(new),K̄0),
K̄1(new)=f(SK(new),K̄1) and K̄2(new)=f(SK(new),K̄2).
Therefore, for a group of m members, when a member
leaves, the key server updates the group keys using a
message of length log2 m keys. In KM-BFM protocol,
the key server stores 2(log2 m+1) keys and each member
stores (log2 m + 1) keys. Therefore, KM-BFM protocol
achieves lower communication and computation over-
heads compared to LKH protocols. Further enhancement
to both communication and computation overheads could
be achieved in case of multiple leaves as mentioned in [4].
In KM-BFM, the worst case occurs when certain m/2
members leave the group. Therefore, the key server has
to update each remaining member individually and the
length of update message is m/2 keys.

Decentralized key management protocols: The
management of a large group is divided among subgroup
managers, trying to minimize the problem of concen-
trating the work in a single manager. These protocols
need more trusted nodes and suffer from encryptions
and decryptions processes between subgroup managers.
Some examples of decentralized protocols are: Scalable
Multicast Key Distribution using Core Based Tree (CBT)
[1], Iolus [12], Dual-Encryption Protocol (DEP) [5] and
Kronos [16].

Distributed key management protocols: There is no
explicit manager, and the members themselves do the
key generation. All members can perform access control
and the generation of the key can be rather contributory,
meaning that all members contribute some information to
generate the group key, or done by one of the members.
The distributed protocols have a scalability problem in
case of key update, since they require performing large
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Figure 2: Key management using boolean function tree

computations and they are characterized by large commu-
nication overheads. Further, they need all group members
to have powerful resources. Some examples of distributed
key management protocols are: Octopus Protocol [2], Dis-
tributed Logical Key Hierarchy [15] and Diffie-Hellman
Logical Key Hierarchy [8]. In the following subsection, an
overview of the proposed protocol is given.

1.2 Overview of the Proposed Protocol

According to [14], the efficiency of the protocol can be
measured by storage requirements (number of stored keys
at both key server and each member), size of update mes-
sages, backward and forward secrecy and collusion resis-
tance (evicted members must not be able to work together
and share their individual piece of information to regain
access to the group key). Therefore, an ideal multicast key
distribution protocol is the one that achieves the lowest
storage at both the server and the group members. Also,
it has the lowest update message length. Furthermore, it
preserves both forward and backward secrecy and lowers
the collusion attack. In the present paper, we propose
a new protocol for multicast key distribution. The aim
of the new protocol is to enhance the scalability of the
group key management protocol that is used in a central-
ized system through minimizing the requirements of group
manager and group members. The proposed protocol is
based on KM-BFM protocol. Instead of using one tree
as in KM-BFM, the members are divided into a number
of subgroup trees. The group manager holds n key pairs
and each group member holds y keys. The number of sub-
groups is (nCy), where C represents a combination func-
tion. As will be shown, the proposed protocol achieves a
lower storage at both the group manager and the group
members compared to KM-BFM protocol. Also, it has a
lower update message length in case of a single member
leave and a comparable update message length in case of
multiple leaves. Furthermore, the probability of conduct-
ing a successful collusion attack in the proposed protocol
is less than that proposed in KM-BFM protocol. This is
due to the fact that, in the proposed protocol, each mem-

ber knows less number of keys than in KM-BFM protocol.
It has to be noted that the authentication problem is not
addressed in the present paper. To achieve authenticity,
protocols proposed in [13] and [6] could be used. The
paper is organized as follows: in the next section, de-
scription of the proposed protocol is detailed. Next, in
the Section 3, comparison of the proposed protocol with
other centralized protocols is depicted. Finally, the paper
concludes in Section 4.

2 Proposed Multicast Key Distri-

bution Protocol

The proposed protocol is based on the idea of KM-BFM
protocol. In KM-BFM, all the group members are orga-
nized in one tree hierarchy controlled by a group manager.
The group manager holds m pairs of auxiliary keys and
each group member holds m keys, where m represents the
tree length and the number of group members equals 2m.
On the other hand, in our approach, the group members
are divided into ‘nCy’ subgroups (C represents a combi-
nation function and equals n!

(n−y)!(y)!) managed by a group

manager, where the manager holds n pairs of auxiliary
keys and y represents the length of each subgroup tree (1
≤ y ≤ n−1). Each group member holds ‘y’ auxiliary keys.
For the same number of group members, ‘n’ is less than
‘m’ as will be shown later. In the following subsections
description of the proposed protocol will be illustrated.

2.1 General Notations and Assumptions

For the operation of the proposed protocol the following
assumptions are made: the group manager holds n key
pairs and each member holds y keys, where y represents
subgroup tree height. The number of subgroup equals
nCy. Each subgroup contains 2y members. Therefore,
the total number of group members ‘N ’ equals nCy × 2y

members. In our approach, each group member is associ-
ated with a unique binary string of length y. This binary
string is the unique identifier UID for each member. We
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Figure 3: Proposed protocol subgroup key hierarchy for n = 3 and y = 2

can write the member UID as X0, ...,Xy−2, Xy−1, where
Xi can be either 1 or 0. As mentioned above each group
member holds y auxiliary keys. Let these auxiliary keys
represented by the following: K0, . . . , Ky−2, Ky−1, where
Ki written as Ki if Xi = 1 and X̄i if Xi=0. It has to be
noted that the values of Ki and K̄i are not complements
of each other, they are two unrelated keys. Each key pair
corresponds to a bit in the UID. These y keys are drawn
from a set of n key pairs which are known to the group
manager. Figure 3 shows an example for 2-bits UID. In
this figure, y = 2 and n = 3. Subsequently, the group
members will be equal to (3C2) * (22) = 12, each group
member holds 2 keys and the group manager holds 6 keys.
On the other hand, for KM-BFM protocol, a system con-
taining 12 users must use 4-bits user ID. Therefore, the
manager holds 8 keys and each group member holds 4
keys. This implies that our approach leads to a smaller
storage at both the group manager and group members.
In Figure 3, the round nodes represent the auxiliary keys.
Each member possesses all the keys on the branch from
the leaf to the root of the tree. For example u2 possesses
the auxiliary keys K̄1 and K0 in addition to the group key
(current session key) which is known to all group mem-
bers. In order to obtain the value of y which maximizes
the total number of group members ‘N ’, we differentiate
N with respect to y. First, N is given by:

N = (nCy)(2y)

=
n!

(n − y)!(y)!
2y

=
Γ(n + 1)

Γ(n − y + 1)Γ(y + 1)
2y, (1)

where, n! is the factorial of n [9] and Γ(n) is the Gamma
Function, n! = Γ(n + 1) [9]. Then, ‘ δN

δy
’ is given in the

following equation:

∂N

∂y
=

∂

∂y

[

Γ(n + 1)2y

Γ(n − y + 1)Γ(y + 1)

]

=
2yΓ(n + 1)

Γ(n + 1 − y)Γ(y + 1)
×

[Ψ(n + 1 − y) − Ψ(y + 1) + ln(2)] , (2)

where, Ψ(n): Ψ(n) function is the logarithmic derivative
of gamma function [20]. The critical points are obtained
by finding the values of y which make δN

δy
equals zero [20].

Then, the second derivative δ2
N

δy2 is calculated to check the

value of y that leads to maximize N [18]. δ2N
δy2 is given by:

∂2N

∂y2
=

∂

∂y
[

2yΓ(n + 1)

Γ(n + 1 − y)Γ(y + 1)
×

[Ψ(n + 1 − y) − Ψ(y + 1) + ln(2)]]

=
Γ(n + 1)2y

Γ(n + 1 − y)Γ(y + 1)
∗

[−(n + 1 − y)Ψ(1) − (y + 1)Ψ(1)

+((n + 1 − y)Ψ − Ψ(y + 1) + ln(2))2]. (3)

Equations (2) and (3) are used to obtain Table 1 which
shows a comparison between KM-BFM protocol and the
proposed protocol. In Table 1, we see the effect of combi-
nations in reducing the storage of auxiliary keys at both
the group manager and group members. As mentioned
above each group member holds y keys and the group
manager holds n key pairs. On the other hand, in KM-
BFM, for the same number of users, each group member
holds m keys and the group manager holds m key pairs.
Table 1 shows that m is greater than both n and y. Fur-
thermore, for the same storage at the group manager,
the number of group members concerning our protocol is
greater than the number of group members in KM-BFM
protocol.
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Figure 4: Proposed protocol subgroup key hierarchy for n = 4 and y = 3
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Table 1: Comparison of the proposed protocol with KM-BFM protocol

n y N 2n m 2m

2 1 4 4 2 4
3 2 12 8 4 16
4 3 32 16 5 32
10 7 15,360 1024 14 16,384
15 10 3,075,072 32,768 22 4,194,304
25 17 1.4176e+011 33,554,432 38 2.7488e+11
30 20 3.1504e+013 1.0737e+9 45 3.5184e+13
40 27 1.6151e+018 1.0995e+12 61 2.3058e+18
45 30 3.7030e+020 3.5184e+13 69 5.9030e+20

* where, n: number of auxiliary key pairs hold by the group manager in the proposed protocol.
y: number of auxiliary keys hold by each group member in the proposed protocol.
N : number of group members in the proposed protocol.
2n: number of group members in KM-BFM protocol assuming the same storage at the group manager.
m: number of auxiliary key pairs hold by the group manager in KM-BFM protocol in order to cover the same group
size as the proposed protocol.

2.2 Member Leave

When a member leaves the multicast group or the group
manager deletes it (because its subscription has expired),
a new session key needs to be established by the group
manager and distributed to the remaining members in the
multicast group. Let the current session key be SK(t),
where t is the index of the current round, and the new
session key is SK(t + 1). When a member leaves, the
group manager computes SK(t+1) and encrypts it using
the auxiliary keys set after excluding the known auxiliary
keys for the leaving member. Figure 4 represents a system
with 32 members. The group manager stores 8 auxiliary
keys in addition to the session key. Each member in the
group stores 3 auxiliary keys in addition to the session key.
In this example, n = 4 and y = 3, therefore we have 4
subgroups (4C3) each subgroup has a height of 3. Due to
the use of binary notation each subgroup has 23 members,
thus the total number of the group members is 4C3×23 =
32. Assume that U30 is deleted form the group or leaves
the group. U30 possesses keys K0, K̄2 and K3. The new
session key SK(t + 1) is encrypted using 5 different keys
which are not known to U30. These keys are K̄0, K2, K̄3,
K1 and K̄1. Next the group manager sends the output of
encryption in one multicast message containing [SK(t +
1)]K̄0, [SK(t + 1)]K2, [SK(t + 1)]K̄3, [SK(t + 1)]K1 and
[SK(t+1)]K̄1. Every remaining member in the group can
decrypt at least one message. This is due to the fact that
every remaining member’s auxiliary key set differs at least
in one auxiliary key from the leaving member’s auxiliary
key set. Therefore, the new session key can be decrypted
by members from U1 to U24 using K1 or K̄1. For members
from U25 to U32 except U30 the new session key can be
decrypted using K̄0, K2 or K̄3. Since U30 does not know
the keys used in encryption, therefore it will not be able
to obtain the new session key. For a group of N members,
after deletion of a single member, y auxiliary keys of the

2n auxiliary keys are excluded when the manager updates
the session key.

Subsequently, the length of update message that need
to be sent out to update the session key after the deleting
a single member is 2n − y, with each message encrypted
with one of the remaining keys. On the other hand, the
number of messages that need to be encrypted and sent
in KM-BFM protocol is log2(N) [4]. After distributing
the new session key SK(t + 1), auxiliary keys possessed
by the leaving member needs to be updated to make sure
that the leaving member cannot use its auxiliary keys to
decrypt future session key updates. In the above example,
K0(t), K̄2(t) and K3(t) must be changed. The new keys
are calculated as follows:

K0(t + 1) = f(K0(t), SK(t + 1)),

K2(t + 1) = f(K̄2(t), SK(t + 1)),

K3(t + 1) = f(K3(t), SK(t + 1)),

where f is a one-way function which has the old key value
and the new session key as inputs, and it outputs the new
key value. In the proposed protocol, the group manager
calculates y one-way functions, while in KM-BFM pro-
tocol, a group manager calculates m one-way functions.
Further, a group member calculates at most (y − 1) one-
way functions, while in KM-BFM protocol, a group mem-
ber calculates at most (m − 1) one-way functions. In the
next subsection, multiple leaves will be explained.

2.3 Multiple Leaves

When several members are deleted or left in the same
round, it is better to aggregate the deletion of all mem-
bers from the group instead of deleting each member
individually. In general, consider a set of members,
U = {U1, U2, . . . , UN}, where N = nCy × 2y. Each mem-
ber knows y auxiliary keys and its combinations. For
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example, in Figure 4, U30 knows the following patterns;
K0, K̄2, K3, K0K̄2, K0K3, K̄2K3 and K0K̄2K3. The new
session key SK(t + 1) can be encrypted using composite
key if all single auxiliary keys are invalidated due to dele-
tion of members. The composite key is derived from a
one-way function of two keys or more to avoid the extra
cost of multiple encryptions. To update SK, first, we
use single auxiliary key pattern to cover all the remain-
ing members. When the single auxiliary key pattern does
not cover all the remaining members, we use pattern of
double keys and so on until cover all remaining members.

In the following, we present a systematic approach
to solve the problem of deleting members in the same
round and to find the minimum number of valid aux-
iliary keys that cover all remaining members. Given a
set of subsets P = {P1, P2, . . . , Ps} of the universal set
U = {U1, U2, . . . , UN}, where s is number of auxiliary key
patterns s =

∑y

m=1(nCm)(2m). Each Pi (key pattern)
covers subset of the users set U . We aim to find multiple
subsets Ti of P such that ∪Ti covers Ur, where ∪Ti repre-
sents the union of all subsets Ti and Ur is the remaining
members set after deleting or leaving of the member(s).
Minimum set cover is the problem of finding the minimum
sub-collection (cover) of subsets Ti whose union gives all
the elements of the main set Ur. The elements of the given
subsets Pi should cover all the elements of the main set
Ur. The set-covering problem, basically, is an abstraction
of many commonly arising combinatorial problem and it
is an optimization problem that models many resources
selection problem. The problem is solved approximately
by Greedy paradigm [7]. In Greedy approach, the next
subset selected for the minimum set cover is the subset
that covers the most uncovered elements. To find such
a subset, the effective weights (number of uncovered ele-
ments) of the subsets are calculated in each iteration until
the effective weights of all subsets are zero. Greedy ap-
proach for set covering problem does not always guarantee
an optimal solution. The more efficient approach would
be Backtracking approach [18] which always guarantees
an optimal solution, but this is achieved with high com-
putations and typically it is not worth the computational
expense.

We construct a table having all remaining members as
columns and all auxiliary key patterns as rows, then use
Greedy heuristic algorithm to search through our table.
Begin by placing the largest subset in the set cover, and
then mark all its elements as covered. Then repeat for
all remaining subsets containing the largest number of
uncovered elements, until all elements are covered. Steps
to search through the table are given below:

Step 1: Construct a table having all members as
columns and all auxiliary key patterns as rows.

Step 2: Put 1 in cell (i, j) to indicate that pattern Pi

covers member Uj .

Step 3: When member(s) Uj leaves the group, delete all
row(s) that have 1 in column(s) j, then delete all

column(s) j.

Step 4: Select a row which contains maximum number
of 1’s (cover maximum members). In the case where
two rows have the same number of 1’s, choose the row
which contains a user with the least column index.
Then, put this Pi to be the subset Tk, where k has
an initial value equals to 1.

Step 5: Remove all members Uj that have 1 in row Pi.
Then, remove row Pi.

Step 6: If ∪Ti 6= Ur, increase k by one and go to Step 4.

For example, in Figure 3 assume that U3 and U12

leaved the group, n = 3 and y = 2. The universal set
U = {U1, U2, U3, . . . , U11, U12}, the remaining members
set Ur = {U1, U2, U4, U5, U6, U7, U8, U9, U10, U11} and s =
∑2

m=1(3Cm)(2m)=18.
Let pattern P1 as K0, P2 as K̄0, P3 as K1, P4 as K̄1, P5

as K2, P6 as K̄2, P7 as K0K1, P8 as K0K̄1, P9 as K̄0K1,
P10 as K̄0K̄1, P11 as K0K2, P12 as K0K̄2, P13 as K̄0K2,
P14 as K̄0K̄2, P15 as K1K2, P16 as K1K̄2, P17 as K̄1K2

and P18 as K̄1K̄2.
From Figure 3, each pattern covers the following users:

P1 = {U1, U2, U5, U6}, P2={U3, U4, U7, U8}, P3={U1,
U3, U9, U10}, P4={U2, U4, U11, U12}, P5={U5, U7, U9,
U11}, P6={U6, U8, U10, U12}, P7=U1, P8=U2, P9=U3,
P10=U4, P11=U5, P12=U6, P13=U7, P14=U8, P15=U9,
P16=U10, P17=U11 and P18=U12. Table 2 represents
Steps 1 and 2.

Applying Step 3 after removing both U3 and U12 will
lead to Table 3.

Next, applying Step 4 leads to Table 4.
Therefore, the first subset is T1 = P1 ={U1, U2, U5,

U6}. After removing users contained in P1, we will obtain
Table 5.

Applying Step 4 again, we will obtain the second subset
T2 = P5={U7, U9, U11}. After removing users contained
in P5, we will obtain Table 6.

By repeating the algorithm, we obtain: T3 = P10 = U4,
T4 = P14 = U8 and T5 = P16 = U10.

Finally, union of T1, T2, T3, T4 and T5 will cover all the
remaining group members. To update the session key in
the above example, the group manager needs to encrypt
the new session key using K0, K2, K̄0K̄1, K̄0K̄2, and
K1K̄2.

For scalability and efficiency reasons, it is desired that
re-keying requires a minimum number of messages sent to
the group and/or that a minimum number of encryption
operations are performed. This is achieved by encrypt-
ing re-keying information with keys common to subsets
of the remaining members. In our approach, number of
updating messages depends not only on number of leav-
ing members, but also on their positions in the multi-
cast group. Deleting members from the same subgroup
needs less number of updating messages than deleting
them from different subgroups in the multicast group.
The worst case in our approach occurs when a certain se-
quence of members leave the group with knowledge of all
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Table 2: All key patterns and each corresponding user

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12

P1 1 1 1 1
P2 1 1 1 1
P3 1 1 1 1
P4 1 1 1 1
P5 1 1 1 1
P6 1 1 1 1
P7 1
P8 1
P9 1
P10 1
P11 1
P12 1
P13 1
P14 1
P15 1
P16 1
P17 1
P18 1

Table 3: Removing U3 and U12

U1 U2 U4 U5 U6 U7 U8 U9 U10 U11

P1 1 1 1 1
P5 1 1 1 1
P7 1
P8 1
P10 1
P11 1
P12 1
P13 1
P14 1
P15 1
P16 1
P17 1

Table 4: Applying Step 4

U1 U2 U4 U5 U6 U7 U8 U9 U10 U11

P1 1 1 1 1
P5 1 1 1 1
P7 1
P8 1
P10 1
P11 1
P12 1
P13 1
P14 1
P15 1
P16 1
P17 1
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Table 5: Removing users contained in P1

U4 U7 U8 U9 U10 U11

P5 1 1 1
P7

P8

P10 1
P11

P12

P13 1
P14 1
P15 1
P16 1
P17 1

auxiliary key patterns. This forces the group manager to
update the session key for each remaining member due to
invalidation of key patterns with length l, where l = y−1.
The number of key patterns of length l from n auxiliary
keys using Boolean notations ‘Np’ is given by:

Np = nCl ∗ 2l.

Further each member in the group knows yCl key pat-
terns of length l.Therefore, the number of leaving mem-
bers that leads to the worst case ‘W ’ is given by the fol-
lowing equation:

W =

⌈

Np

yCl

⌉

=

⌈

nCl × 2l

yCl

⌉

=

⌈

nC(y − 1) × 2y−1

y

⌉

.

Therefore, the number of update messages ‘M’ is given
by:

M = N − W. (4)

Where N is the total number of group members.

In Figure 4, W = 4C2×22

3C2 = 8. Therefore, there is a se-
quence of 8 members, when they leave, the group manager
updates the remaining members individually. The proba-
bility of this case equals (1/(32C8))×100 = 9.5×10−4%.
Although this probability is small and goes very small as
the group size goes larger, we can limit the number of
messages by restricting the group size to a certain value
instead of the maximum value N . If we desire the number
of messages to be D, we can limit the number of members
to be W +D. This reduces the group size but ensures that
number of update messages will not exceed D messages.
In the next subsection, analysis of the proposed protocol
is given.

2.4 Analysis of the Proposed Protocol

The efficiency of a protocol can be measured by: storage
requirements, size of update messages, backward and
forward secrecy and collusion resistance. The storage
requirements and the size of update messages will be

Table 6: Removing users contained in P5

U4 U8 U10

P7

P8

P10 1
P11

P12

P13

P14 1
P15

P16 1
P17

compared with other centralized protocols in the next
section. In the following paragraphs, we analyze if the
proposed protocol achieves both backward and forward
secrecy. Also, we analyze if it resists collusion attacks.

Backward secrecy: backward secrecy means that the
group key must be updated when a new member joins the
group. This is to prevent it from deciphering messages
exchanged before it joins the group. Assume U5 in Fig-
ure 3 joins the group, K0, K2 and SK must be changed
to K0(new), placeK2(new) and SK(new). The key
server generates SK(new) and broadcasts the following
message: {SK(new)}SK. Upon receiving the message,
all group members except U5 can obtain SK(new) by
decrypting the message using the old value of SK. Then,
the new keys: K0(new) and K2(new) are calculated using
one-way functions of the old keys and the new group key,
i.e. K0(new)=f(SK(new),K0), K2(new)=f(SK(new),
K2). Since U5 does not know the old values of K0, K2

and SK, therefore it cannot obtain or calculate K0(new),
K2(new) and SK(new). This means that it could not
access past group communications.

Forward secrecy: forward secrecy means that the
group key must be updated when a member leaves the
group. This is to prevent an old member from decipher-
ing current and future group communication. Assume
U5 in Figure 3 leaves the group, K0, K2 and SK must be
changed to K0(new), K2(new) and SK(new). The key
server generates SK(new) and broadcasts the following
message: {SK(new)}K1, {SK(new)}K̄0, {SK(new)}K̄1,
{SK(new)}K̄2. Upon receiving the message, the remain-
ing users can obtain SK(new) by decrypting one part of
the message. Then, the new keys: K0(new) and K2(new)
are calculated using one-way functions of the old keys
and the new group key, i.e. K0(new)=f(SK(new),K0),
K2(new)=f(SK(new), K2). Since U5 does not know the
K1, K̄0, K̄1 and K̄2, therefore it can’t obtain or calculate
K0(new), K2(new) and SK(new). This means that it
cannot access future group communications.
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Collusion attacks: collusion attacks means that evicted
members are able to work together and share their indi-
vidual piece of information to regain access to the group
key. In the proposed protocol, as in KM-BFM protocol,
two evicted members can co-operate together to regain
access to the group key. For the example given in Section
2.3, U3 and U12 can work together to get the new session
key. In this example, the group manager encrypts the
new session key using K0, K2, K̄0K̄1, K̄0K̄2 and K1K̄2.
It has to be noted that U3 knows K̄0 and K1. On the
other hand, U12 knows K̄1 and K̄2. Therefore, they could
co-operate together to calculate K̄0K̄1, K̄0K̄2 and K1K̄2

and get the new session key. In order to overcome this
problem, we suggest the following steps:

Step 1: Construct a table having all members as
columns and all auxiliary key patterns as rows.

Step 2: Put 1 in cell (i, j) to indicate that Uj knows at
least one key in pattern Pi.

Step 3: When member(s) Uj leaves the group, delete all
row(s) that have 1 in column(s) j, then delete all
column(s)j.

Step 4: Select a row which contains maximum number
of 1’s (cover maximum members). In the case where
two rows have the same number of 1’s, choose the row
which contains a user with the least column index.
Then, put this Pi to be the subset Tk, where the
initial value of k is 1. If there isn’t any 1’s in the
remaining rows, then go to Step 7.

Step 5: Remove all members Uj that have 1 in row Pi.
Then, remove row Pi.

Step 6: If ∪Ti 6= Ur, increase k by one and go to Step 4.

Step 7: For the remaining users, the key server can use
a shared key between it and each user to encrypt the
new group key. Table 7 represents Steps 1 and 2.

Applying Step 3 after removing both U3 and U12 will
lead to Table 8. Next, applying Step 4 leads to Table 9.
Therefore, the first subset is T1 = P1 ={U1,U2,U5,U6}.
After removing users contained in P1, we will obtain Ta-
ble 10.

Applying Step 4 again, we will obtain the second subset
T2 = P5 = {U7, U9, U11}. After removing users contained
in P5, we will obtain Table 11.

Therefore T3 = KS,U4
, T4 = KS,U8

and T5 = KS,U10
,

where KS,Ui
is the symmetric key shared between the key

server and Ui. Finally, union of T1, T2, T3, T4 and T5

will cover all the remaining group members. This modi-
fication will overcome the collusion attack problem with
higher storage requirements at the group manager. It
has to be noted that in LKH protocol, the server has to
store 2m keys, where m represents the number of group
members. While after making the above mentioned mod-
ification, the server in the proposed protocol has to store

at most m+log2(m) keys. Therefore, the proposed proto-
col still has a lower storage requirements compared to the
LKH protocol. On the other hand, KM-BFM protocol
also suffers from the collusion attack problem. Therefore,
in order to overcome this problem, the storage require-
ments at the server must also increase. In the next sec-
tion, a comparison of the proposed protocol with other
centralized key distribution protocols is detailed.

3 Comparison of Centralized Key

Distribution Protocols

We, first, compare centralized approaches: LKH, OFT
and KM-BFM protocols. Since, KM-BFM protocol has
the lowest communication overhead and it has the low-
est storage requirements as will be shown. Therefore, a
comparison between KM-BFM and the proposed protocol
is detailed. In order to conduct the comparison of cen-
tralized approaches, the following general assumptions are
considered:

• The total number of group members equals to Ng
members.

• The tree height is h, where h = log2(Ng).

• The time of encryption operation equals to the time
of decryption operation.

• The one-way function can be carried out using a hash
algorithm like SHA-512.

• The time required to make an encryption operation
is twice that of calculating a hash operation.

The comparison will be undertaken according to the
following criteria:

• Satisfying the forward and backward secrecies re-
quirements.

• Eliminating the problem of collusion attacks.

• The number of encryption operations needed to be
performed by Security Manager (SM), the requesting
user and non-requesting users in case of a member
leaves or joins.

• The length of re-key message needed to update the
group key after a member leave/join.

• Storage required at SM and users.

Table 12 shows the comparison between LKH, OFT and
KM-BFM protocols. From the table the following facts
could be deduced:

• Both OFT and KM-BFM protocols have lower com-
munication and computation overheads compared to
LKH protocol.
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Table 7: All key patterns and each corresponding user

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12

P1 1 1 1 1
P2 1 1 1 1
P3 1 1 1 1
P4 1 1 1 1
P5 1 1 1 1
P6 1 1 1 1
P7 1 1 1 1 1 1 1
P8 1 1 1 1 1 1 1
P9 1 1 1 1 1 1 1
P10 1 1 1 1 1 1 1
P11 1 1 1 1 1 1 1
P12 1 1 1 1 1 1 1
P13 1 1 1 1 1 1 1
P14 1 1 1 1 1 1 1
P15 1 1 1 1 1 1 1
P16 1 1 1 1 1 1 1
P17 1 1 1 1 1 1 1
P18 1 1 1 1 1 1 1

Table 8: Step 3

U1 U2 U4 U5 U6 U7 U8 U9 U10 U11

P1 1 1 1 1
P5 1 1 1 1
P11 1

Table 9: Applying Step 4

U1 U2 U4 U5 U6 U7 U8 U9 U10 U11

P1 1 1 1 1
P5 1 1 1 1
P11 1

Table 10: Removing users contained in P1

U4 U7 U8 U9 U10 U11

P5 1 1 1
P11

Table 11: Removing users contained in P5

U4 U8 U10

P11
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Figure 5: Key storage comparison at group manager be-
tween the proposed protocol and KM-BFM protocol
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Figure 6: Key storage comparison at group member be-
tween the proposed protocol and KM-BFM protocol

• Both OFT and KM-BFM protocols have the same
computation overhead. The main advantage of OFT
compared to KM-BFM is that it can resist collusion
attacks. On the other hand, the main advantage of
KM-BFM is that it has a lower communication over-
head and it requires lower storage requirements at
SM.

In the following, a comparison of the proposed protocol
with KM-BFM protocol is undertaken. The comparison
is made according to:

• Storage requirements at both group manager and
group members.

• Number of updates in case of a single leave or worst
case of multiple leaves.

In order to deduce the comparison, the following pa-
rameters are assumed:
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Figure 7: Update messages comparison between the pro-
posed protocol KM-BFM protocol, single leave

�

�

�

�

�

�

�

�

	

� � � � � � � � 	

����������	
��
	��������
�����������

�
�
�
��
��
�
�
�
�
��
��
��
�
�
�
�
	�
��
�


�
�
�

��

�
�
�	

�
��
��
��
�
��

�
�
��
�
��
��
�
�
��
�
�

������������	�
�� �
���


�

Figure 8: Update messages comparison between the pro-
posed protocol KM-BFM protocol, multiple leave
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Table 12: Comparison of the proposed protocol with KM-BFM protocol

LKH OFT KM-BFM

Forward secrecy Yes Yes Yes
Backward secrecy Yes Yes Yes
Secure against col-

lusion attacks

Yes Yes No

Member join: SM en-
cryption operations

2h keys 3h
2 + 2 keys 3h

2 + 2 keys

Requesting member’s
encryption operations

h keys h keys h keys

Non- requesting mem-
ber’s encryption opera-
tions

2 key h
4 +1 keys h

4 +1 keys

Re-key message length 2h + 1 keys 2h + 1 keys h + 2 keys

Member leave: SM
encryption Operations

h(h + 1)/2
keys

3h
2 keys 3h

2 keys

Non- requesting mem-
ber’s encryption opera-
tions

2 h
4 +1 keys h

4 +1 keys

Re-key message length h(h + 1)/2
keys

h keys h keys

Storage require-

ments: At SM
2Ng − 1 keys 2Ng -1 keys 2h keys

At each user h + 1 keys h + 1 keys h + 1 keys

• GM = total number of group members.

• KS = total number of key pairs at the group man-
ager.

• KM = total number of keys at each group member.

• M = total number of update messages.

• m = number of key pairs hold by the group manager
in KM-BFM protocol.

• n = number of key pairs hold by the group manager
in the proposed protocol.

Figures 5 and 6 represent the storage requirements at
both the group manager (KS) and group members (KM)
against the total number of group members (GM). While,
Figure 5 shows the shared key pairs at the group man-
ager, Figure 6 illustrates the stored keys at each group
member. The total number of group members ‘GM ’ is
calculated using Equation (1) for the proposed protocol
and equals to 2m members for KM-BFM protocol. The
number of stored key pairs at the group manager equals
‘n’ in the proposed protocol, while in KM-BFM protocol,
the stored key pairs at the group manager equals ‘m’. The
storage at each member in the proposed protocol equals
‘y’ keys as shown in Table 1, while in KM-BFM protocol,
the number of stored keys at each member is ‘m’. Fig-
ure 5 On the other hand, Figure 7 and Figure 8 represent
the number of update messages (M) in case of a single
leave or in the worst case against GM . While, Figure 7

shows the number of update messages in case of a single
leave, Figure 8 illustrates the number of update messages
in the worst case. For the proposed protocol, in case of
a single leave, the number of update messages equals to
(2n−−y). On the other hand, for KM-BFM protocol, the
number of update messages is m. Concerning the worst
case in case of multiple members leave, for the proposed
protocol, the total number of update messages is given by
Equation (4). On the other hand, for KM-BFM proto-
col, the total number of update messages equals 2m−1 [4].
Figure 5, Figure 6 and Figure 8 are based on a log10 scale
for the two axes. From Figure 5 to Figure 8, the following
facts could be deduced:

• The proposed protocol has a lower storage at both
the group manager and group members as shown in
Figure 5 and Figure 6. Therefore, this satisfies the
requirements of multicast key distribution protocol
as mentioned in [14].

• For the case of a single member leave, the proposed
protocol has a number of update messages that is
less than that of KM-BFM protocol, which leads to
a better bandwidth utilization as shown in Figure 7.

• Figure 8 shows that the proposed protocol has a com-
parable number of update messages as in KM-BFM
protocol in the worst case.

In conclusion, the proposed protocol achieves lower
storage requirements at both the group manager and the
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group members for the same number of group members.
On the other hand, it has a lower communication over-
head in case of a single member leave and a comparable
communication overhead in case of multiple leaves.

4 Conclusions

In the present paper, the problem of securing multicast
communication is discussed. Many solutions have been
proposed to solve the problem of distributing a symmetric
key between the whole group members. A nave solution
is to include a group manager that shares a different sym-
metric key with each group member. Any change in the
group membership will lead to the change of the group
key. The group manager generates a new group key and
encrypts it using the symmetric keys shared between it
and the group members. This solution is not scalable and
its computation and communication overheads increase
linearly with the number of group members. Other pro-
tocols achieve a lower communication and computation
overheads, which are of O(log N), where N represents
the group member. These protocols are based on con-
structing a tree of keys and known as LKH protocols.
KM-BFM protocol is considered an enhancement to LKH
protocols, it achieves lower communication and computa-
tion overheads, which are half those of LKH protocols. In
the present paper, a scalable protocol for securing multi-
cast communication is proposed. The proposed protocol
is based on KM-BFM protocol. Instead of using one tree
as in KM-BFM, the members are divided into a number
of subgroup trees. A comparison between the proposed
protocol and KM-BFM protocol is undertaken according
to storage requirements at both group manager and group
members and the number of updates in case of a single
leave or worst case multiple leaves. The comparison shows
that the proposed protocol achieves lower storage require-
ments at both the group manager and the group members
for the same number of group members. On the other
hand, it has a lower communication overhead in case of
a single member leave and a comparable communication
overhead in case of multiple leaves.
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