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Abstract

Deniable encryption is an important notion that allows
a user (a sender and/or a receiver) to escape a coercion
attempted by a coercive adversary. Such an adversary ap-
proaches the coerced user after transmission forcing him
to reveal all his random inputs used during encryption
or decryption. Since traditional encryption schemes com-
mits the user to his random inputs, the user is forced
to reveal the true values of all his random inputs (in-
cluding the encrypted/decrypted messages and the en-
cryption/decryption keys) which are verifiable by this co-
ercer using the intercepted ciphertext. In this scenario,
a coercer may force the user to perform actions against
his wish. In this paper we present a scheme for sender-
deniable public-key encryption, by which, the sender is
able to lie about the encrypted message to a coercer and
hence, escape a coercion. While the receiver is able to
decrypt for the true message, the sender has the abil-
ity to open a fake message of his choice to the coercer
which when verified gives the same ciphertext as the true
message. Our schemes rely on quadratic residuosity of a
two-prime modulus. Deniability improvements to these
schemes considering the sender’s local randomness are
also presented. We also show how to build an efficient
deniable public-key encryption from any trapdoor per-
mutation. Compared to the schemes proposed in [5], our
schemes require much less bandwidth, provide stronger
deniability and no decryption errors.

Keywords: Blum primes, coercive adversary, deniable en-
cryption, factoring attacks, public key, quadratic residu-
osity, trapdoor permutation

1 Introduction

While standard encryption schemes protect the privacy of
the sender and the receiver against passive eavesdroppers
(semantic security), they fail to provide protection against
coercers. A coercive adversary has the power (weaker
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than corruptive adversary) to approach the sender (or the
receiver or both) after the ciphertext has been transmit-
ted and of course recorded by this adversary. Assume
for an instant that this adversary approaches the sender.
She commands the sender to reveal all his random in-
puts used to produce this particular ciphertext. Since the
ciphertext produced using standard encryption schemes
(specially, public-key encryption) commits the sender to
his random inputs, he cannot lie about his true plaintext.
Such commitments allow the coercive adversary to ensure
that the sender will do as she wishes.

In situations where the coercer accepts the sender’s
claim that he erased his plaintext and all the local ran-
domness involved during encryption, then deniable en-
cryption is not needed. However, there are cases where
the coercer knows that the sender will be prosecuted if
he erased his data and that his data is still there. Con-
sequently, the sender’s claim will not be accepted to a
coercer. In this later case, deniable encryption comes to
play.

Deniable encryption allows a party to escape a coer-
cion. Namely, it allows the sender to produce a ciphertext
C that looks like an encryption of a true message Mt and
as an encryption of a fake message Mf . Both messages
are chosen by the sender. While the receiver is able to
decrypt C for Mt, the sender is able to open either Mf or
Mt to a coercer which when verified, produces the same
ciphertext C.

Deniable encryption maybe classified according to
which party is coerced: A sender-deniable encryption
schemes are resilient against coercing the sender. The def-
initions for receiver-deniable and sender-receiver-deniable
follow analogously. When the sender and the receiver ini-
tially share a common secret key, this is spoken off as
shared-key deniable encryption. In deniable public-key
encryption, no pre-shared information and no communi-
cations are assumed prior to the encryption process. This
follows from the assumptions of standard public-key en-
cryption schemes. Yet, deniable public-key encryption
is more challenging than deniable shared-key encryption
since the public key of the receiver is already known to
everyone including the coercer, consequently, the sender
cannot lie about the receivers public key.
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The work in [5] showed that it is possible to trans-
form any sender-deniable encryption scheme to a receiver-
deniable encryption scheme and vice-versa. Also, they
showed that, with the help of other parties with at least
one of them remains un-attacked, it is possible to trans-
form a sender-deniable encryption scheme to a sender-
receiver-deniable encryption scheme. Hence, in this pa-
per, we focus on building an efficient and secure sender-
deniable public-key encryption scheme.

Deniable encryption is very useful in the protocols
where coercive adversaries come to play as a potential
threat. For example, deniable encryption protects voters
from being coerced during electronic elections [7, 8]. It is
also very useful to protect bidders in electronic auctions.
Generally, deniable encryption is very important when a
party is forced to act with a gun pointing at his/her head.

We distinguish two types of deniability according to the
time of coercion: plan-ahead-deniability and unplanned-
deniability. In plan-ahead deniability, the sender chooses
his fake message during encryption based on what the
coercive adversary previously commanded him to do. In
unplanned-deniability, the sender must be able to gener-
ate the fake message after transmission whenever a co-
ercive adversary approaches him. Our proposed method
is of the later type i.e. we assume that the coercer ap-
proaches the sender after transmission and the sender
must be able to open any message satisfactory to the co-
ercer.

We reduce the required bandwidth (ciphertext bit-
length) to be in the order of lg N +2` bits in case of single
bit encryption and in the order of m lg lg N + lg N + 2m`
bits in case of multi-bit message encryption, where m > 1
is the plaintext bit-length, N is a two-prime modulus and
` is the output bit-length of a strong hash function (e.g.
SHA-256). At the same time, our method provides strong
deniability (i.e. undetectable cheating) equivalent to the
infeasibility to factor a sufficiently large two-prime mod-
ulus. Unlike the schemes of [5], our methods produce no
decryption errors and hence, more reliable.

In the scheme of [5], a one bit plaintext requires tn
bits of ciphertext where t is the bit-length of elements in
a translucent set St and t = s+ k for security parameters
n, s and k. The scheme provides deniability of 4/n and
decryption error of n2−k. Hence, to achieve a high level
of deniability and a sufficiently low decryption error, the
ciphertext is super-polynomial and almost impractical.

The rest of this paper is organized as follows: Section
2 presents the related work in the field. Our motivations
and contributions are given in Section 3. Section 4 de-
scribes the notion of deniability, the quadratic residuosity
of a composite as an underlying primitive and the main
idea. Section 5 describes our schemes for single bit en-
cryption. The schemes for multiple bits encryption are
presented in Section 6. Section 7 discusses the problem
of the sender’s local randomness and gives a solution for
the problem. Deniability transformation techniques are
discussed in Section 8. Finally, the conclusions are given
in Section 9.

2 Related Work

The work in [5] constructed a sender-deniable public-
key encryption scheme based on trapdoor permutations.
However, the scheme (as stated in [5]) falls short of achiev-
ing an appropriate level of deniability, that is, to achieve
a high deniability, the size of the ciphertext correspond-
ing to a one bit encryption is super-polynomial and hence
inefficient. They constructed two deniable public-key en-
cryption schemes based on translucent sets, the first rep-
resents the building block for the second which they have
called, the ”Parity Scheme”. The work in [5] also notified
that in order to build one-round schemes, different ap-
proaches are required. Also, [5] introduced techniques for
the less challenging, deniable shared-key encryption and
showed that the one-time-pad is a perfect deniable shared-
key encryption. Based on the sender-deniable public-key
encryption, the work in [4] described a general multiparty
computations allowing a set of players to compute a com-
mon function of their inputs with the ability to escape a
coercion.

In our recent work [9], we devised a scheme for a
one-move receiver-deniable public-key encryption which
is built over any mediated PKI. Yet, when the scheme
is transformed to a sender-deniable scheme, it is no more
a one-move scheme.

3 Motivations and Contributions

3.1 Motivations

Deniable public-key encryption is a strong primitive, es-
sential in all cryptographic protocols where a coercive
adversary comes to play with high potential. Deniable
public-key encryption realizes the Receipt-freeness at-
tribute which is a very important attribute in electronic
voting, electronic bidding and auctions. The schemes
proposed in [5] fall short of achieving the desired level
of deniability and correctness unless the size of the ci-
phertext corresponding to a one bit encryption is super-
polynomial.

Deniable encryption has an impact on the design of
adaptively secure multiparty computations [3] since, the
notion of deniability is stronger than the notion of non-
committing encryption.

3.2 Contributions

The contributions of this paper is to introduce an effi-
cient sender-deniable public-key encryption scheme. We
introduce three versions of our scheme, all rely on the
quadratic residuosity of a two-prime modulus. We intro-
duce three versions of our scheme. Scheme I and II are for
single bit encryption while the third scheme is for multi-
bit message encryption. Scheme I is efficient in the case
of single bit encryption and loses efficiency in the case of
multi-bit message encryption. Scheme II is an introduc-
tory scheme to our third scheme and is less efficient than
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Scheme I in the case of single bit encryption. We also in-
troduce Scheme I* to improve the deniability of Scheme I
considering the sender’s local randomness. We show how
to build an efficient deniable public-key encryption from
any trapdoor permutation. Our proposed schemes enjoy
the following properties:

• They are one-move schemes without any pre-
encryption information required to be sent from the
receiver to the sender prior to encryption.

• No pre-shared secret information is required between
the sender and the receiver.

• Achieve a high level of deniability equivalent to the
factorization of a large two-prime modulus.

• No deciphering errors.

• The bandwidth (ciphertext bit-length) is signifi-
cantly improved compared to previous constructions.

We introduce our schemes in the weakest notion of se-
mantic security, namely, probabilistic encryption or equiv-
alently, indistinguishable chosen plaintext attack (IND-
CPA) model. Since we focus on the deniability notion, we
do not consider CCA security models or non-malleability
in this paper although one may realize security against
such attacks by applying the generic constructions from
[1].

4 Preliminaries

In this section we first describe the notion of deniability
and then we introduce the quadratic residuosity of a com-
posite in some details as it represents the basic primitive
of the schemes presented in this paper.

4.1 Notion of Deniability

While a standard encryption scheme for encrypting a sin-
gle bit b can be generally viewed as a scheme having two
distributions on ciphertexts: A distribution T0 for b = 0
and a distribution T1 for b = 1; deniable encryption has
four distributions [5], T0, T1, F0 and F1. The distribu-
tion Tb is used by the sender as long as he is not willing
to open the encryption dishonestly. The distribution Fb

allows the sender to open either honestly or dishonestly
when coerced. An important property in the deniable
encryption scheme is that whenever the sender opens an
encryption dishonestly, it must appear as belonging to Tb.

A protocol π is a sender-deniable public-key encryption
if:

• Correctness: The probability that the receiver out-
put is different from the sender input is negligible.

• Security: For any two different messages Mt and Mf ,
the communications for transmitting Mt are com-
putationally indistinguishable from the communica-
tions for transmitting Mf .

• Deniability: The adversary’s view of an honest en-
cryption of Mt according to protocol π is indistin-
guishable from the adversary’s view when the cipher-
text was generated while transmitting Mt and the
sender falsely claims that it is an encryption of Mf .

The above concepts must be kept in mind while designing
a sender-deniable public-key encryption scheme.

4.2 Quadratic Residuosity

The deniability of our proposed scheme relies mainly on
the quadratic residuosity problem [2, 6, 10, 11], specially
for a two-prime modulus. In this subsection, we show the
mathematical idea we rely on in building our scheme.

Basic definitions:

• For any integer N > 1, an integer a ∈ Z∗
N , is a

quadratic residue (QR) modulo N if there exists some
x ∈ Z∗

N such that a = x2 modN , and a is a quadratic
nonresidue (QNR) modulo N otherwise.

• The set of all quadratic residues in Z∗
N is denoted

by QN , while the set of all quadratic non-residues in
Z∗

N is denoted by QN . We have φ(N) = |QN |+ |QN |
where φ(N) = |Z∗

N | is the Euler totient.

• Quadratic Residue Problem (QR) - given integers
(a, N), where N > 1 and a ∈ Z∗

N , determine if
a ∈ QN , i.e., if there exists x ∈ Z∗

N , such that a = x2

modN .

• Quadratic Nonresidue Problem (QNR) - the comple-
mentary problem of determining if a ∈ QN .

• Define J+
N ⊂ Z∗

N to be the subset of all integers such
that for any a ∈ J+

N , the jacobi symbol ( a
N

) = +1 and

define J−
N ⊂ Z∗

N to be the subset of all integers such
that for any a ∈ J−

N , the jacobi symbol ( a
N

) = −1.

We have QN ⊂ J+
N .

Lemma 1. Let a ∈R Z∗
N , for a sufficiently large two-

prime modulus N with unknown odd prime factors. If
a ∈ J+

N (i.e. ( a
N

) = +1) then deciding whether a ∈ QN is

hard. Whereas, if a ∈ J−
N (i.e. ( a

N
) = −1) then a ∈ QN .

Although Lemma 1 has no proof, it is widely believed
that determining a quadratic residue modulo N is equiv-
alent to factoring N . Also, note that, while the Jacobi
symbol can be efficiently calculated without knowing the
factors of N , it is infeasible to compute a square root
modulo N without knowing the factors of N [6, 10, 11].

Blum primes. Now, let N = pq where p and q are
sufficiently large primes subject to the condition that p
and q are Blum primes (i.e. both are congruent to 3 mod
4). In our method, N represents the public key of the
receiver while p and q represent his secret parameters.
Since ( a

N
) = (a

p
)(a

q
); for any integer a ∈ J+

N (i.e. ( a
N

) =

+1), we have, (a
p
) = (a

q
) and either (only one) of the

following two cases must be true [6]:
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1) a is a QR modulo both p and q and hence is a QR
modulo N .

2) −a is a QR modulo p and q and hence is a QR modulo
N .

The second case arises because by construction p and q
are both congruent to 3 mod 4, thus, (−1

p
) = (−1

q
) = −1.

So, either a or −a is a QR modulo p and q. It is also
important to notice that both a and −a are in J+

N .

Lemma 2. Let N = pq be the product of two Blum
primes. Let a ∈ QN , then a has exactly four square roots,
exactly one of which is in QN itself.

Proof. The reader refers to [10] for a complete proof of
Lemma 2.

Since N is a composite of two Blum primes p and q,
it follows that (−1

p
) = (−1

q
) = −1. For any square root

s of a, the possible combinations of (( s
p
), ( s

q
)) are (+, +),

(+,−), (−, +), (−,−). For s to be a QR modulo N then
(+, +) must be the case for s. It is important to notice
that among the three other QNR roots, only one root is in
J+

N and it has the combination (−,−) which is −s. Since
we are concerned only with the integers in J+

N , we have
two roots in J+

N , one is a QR and the other is a QNR
modulo N .

4.3 Our Triggering Idea

In our proposed schemes in Sections 5 and 6, the sender
is required to choose blindly (i.e. without the help of the
receiver and without knowledge of the factors of N) some
random integer y ∈ J+

N , hopping that y is a quadratic non-
residue modulo N . His way to do so is to pick s ∈R Z∗

N

and computes a = s2 modN , then computes y = −a
modN . Since a is a QR modulo N then it must be that
y is a QNR modulo N given that N is a composite of
two Blum primes. We refer this idea (although used for
different purpose) to the pioneer work of Clifford Cocks
[6]. Actually, using this idea, Cocks was able to estab-
lish the first practical identity-based encryption scheme.
We must emphasize that s is generated and used on the
fly to reach a QNR value in J+

N . The program does not
store s anywhere on the system since it is not part of the
encryption pattern (neither the plaintext nor the cipher-
text). Therefore, a coercer will not ask for the disclosure
of s.

The reader may argue that denying the knowledge of
s as the sender’s local randomness maybe unacceptable
to a coercer, in this scenario, the schemes described in
Sections 5 and 6 are not deniable, therefore, in Section 7,
we introduce Scheme I* as an improvement to Scheme I to
satisfy this argument by allowing the sender to safely lie
about his local randomness. Until Section 7, we assume
that the coercer accepts the sender’s claim of not knowing
s.

5 Single Bit Encryption

In this section we introduce our sender-deniable public-
key encryption schemes allowing one bit encryption at a
time. We introduce two schemes. The first scheme is effi-
cient (from the point of view of bandwidth) as a single bit
encryption but loses efficiency for multi-bit message en-
cryption. The second scheme represents an introductory
to our multi-bit message encryption, yet, as a single bit
encryption, it requires a larger bandwidth than the first
scheme. Both schemes have almost the same computation
complexity.

Let bt be the true bit to be encrypted while bf be the

fake bit. By (b
(x)
k−1...b

(x)
0 ) we denote the binary represen-

tation of x ∈ {0, 1}k.
The receiver picks two large Blum primes p and q. He

publishes N = pq as his public key while keeping p and q
secret.

5.1 Scheme I

This scheme is suitable for one bit encryption.

Encryption: The sender proceeds as follows:

• Honest encryption (bt = bf ).

– Picks s ∈R Z∗
N and computes a = s2 modN .

– Computes y0 = −a modN . It is clear that y0

is a QNR and y0 ∈ J+
N . Assume for an instant

that the receiver knows how to identify y0. Soon
we will show how this is done.

– Computes the bit b =
⊕k−1

i=0 b
(y0)
i ⊕ bt.

– Picks a small integer r > 0. He computes X =
2r.

– Computes C = yX
0 modN and sends (b, C) to

the receiver.

• Dishonest encryption (bt = bf ).

– Picks s ∈R Z∗
N and computes a = s2 mod N .

– Computes y0 = −a modN . We still assume that
the receiver somehow knows how to identify y0.

– Computes the bit b =
⊕k−1

i=0 b
(y0)
i ⊕ bt.

– Keeps on squaring, that is, to compute yj =

y2j

j−1, j = 1, 2, ... until there exists some
yj with its binary representation satisfying:
⊕k−1

i=0 b
(yj)
i = bf ⊕ b.

– Performs at least one more squaring to compute
C = y2r

0 mod N . He sends (b, C) to the receiver.

Decryption: On the reception of b and C, the re-
ceiver keeps on computing square roots modulo N
until he reaches y0 as a QNR. He simply computes

bt =
⊕k−1

i=0 b
(y0)
i ⊕ b as the encrypted bit.
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How to distinguish y0 at the receiver. The reader
now argue how the receiver will know when to stop
computing square roots. We did not mention this during
the description of the scheme for not disturbing the flow
of the scheme. For any x ∈ J+

N , we benefit from the
fact that only the receiver is able to distinguish whether
x ∈ QN or x ∈ QN . As the receiver receives C he will
start by computing

√
C which results in four roots. Since

p and q are Blum primes, Only one root is a QR which
is of course in J+

N and only one root is a QNR in J+
N .

The other two roots are out of the receiver’s concern and
are discarded. For the two roots in J+

N we are done with
the fact that the receiver is able to distinguish which
of them is a QR and which is a QNR. To allow the
receiver to stop at the correct QNR which is y0 in our
scheme, all we need is a strong hash function H with
an output bit-length say ` and a simple trick described
next. The sender defines two `-bit values R0 and R1 and
a random bit e ∈R {0, 1}. In case of honest encryption,
the sender sets Re = H(y0) and R1−e ∈R {0, 1}`. In case
of dishonest encryption, the sender sets Re = H(y0) and
R1−e = H(yj). He sends R0 and R1 in some order to the
receiver. We emphasize that y0 is a QNR while yj is a
QR.

Opening an encryption: To open an encryption
honestly, the sender reveals y0. To open dishonestly, the
sender reveals yj , claims that yj is a QNR and Re is
random.

Correctness. In the decryption process, on the recep-
tion of (b, C, R0, R1), the receiver (starting from C) keeps
on computing square roots. After each computation, he,
(i) discards the two roots in J−

N , (ii) hashes the QNR
root in J+

N to see whether it matches either R0 or R1.
If a match is found he stops and takes this QNR as y0,
else, he continue computing the square roots of the QR
in J+

N and repeats (i) and (ii). Hence, correctness follows
immediately.

Security. For any bt, bf ∈ {0, 1}, the communications
between the sender and the receiver for transmitting bt

is indistinguishable from that for transmitting bf . Also,
semantic security is immediate.

Deniability. When the sender reveals yj and falsely
claims that yj is a QNR and bf is the encrypted bit,
the coercer (without knowing the factors of N) cannot
prove the contradiction of this claim, i.e, he cannot
prove that yj is a QR and that Re is not random. The
coercer will not ask the sender for

√−yj since as we
mentioned before, s is picked on the fly. The deniability
of our scheme is equivalent to the inability of a coercer
to factorize N .

Bandwidth. It is required, one bit to encode b, lg N bits
to encode C and 2` bits for the pair (R0, R1) totalling
1 + lg N + 2` bits of ciphertext.

Remark. We remark that it is possible to remove b from

the ciphertext and pick y0 such that bt =
⊕k−1

i=0 b
(y0)
i and

then search for yj such that bf =
⊕k−1

i=0 b
(yj)
i , however,

including b allows picking y0 without any trials.

5.2 Scheme II

We present this scheme as an introductory to our
multi-bit message sender-deniable public-key encryption
scheme.

Encryption: The sender proceeds as follows:

• Honest encryption (bt = bf ).

– Picks s ∈R Z∗
N and computes a = s2 modN .

– Computes y0 = −a modN .

– Scans the binary representation of y0 for an in-

dex i such that b
(y0)
i = bt = bf .

– Picks a small integer r > 0. He computes X =
2r and C = yX

0 modN .

– Picks e ∈R {0, 1}, sets Re = H(y0) and
R1−e ∈R {0, 1}`.

– Sends (i, C, R0, R1) to the receiver.

• Dishonest encryption (bt = bf ).

– Picks s ∈R Z∗
N and computes a = s2 modN .

– Computes y0 = −a modN .

– Picks two random small integers (r1, r2) > 0.
He computes X1 = 2r1 and X2 = 2r2 .

– Computes y1 = yX1

0 modN .

– Scans the binary representations of both y0 and

y1 for an index i such that b
(y0)
i = bt and b

(y1)
i =

bf .

– Computes C = yX2

1 modN .

– Picks e ∈R {0, 1}, sets Re = H(y0) and R1−e =
H(y1).

– Sends (i, C, R0, R1) to the receiver.

Decryption: On the reception of (i, C, R0, R1), starting
with C, the receiver keeps on computing square roots
modulo N until he reaches y0 as a QNR in J+

N satisfying

either R0 = H(y0) or R1 = H(y0). He takes b
(y0)
i as the

encrypted bit.

Opening an encryption: To open an encryption
honestly, the sender reveals y0. To open dishonestly, the
sender reveals y1 and claims that Re is a random string.

Correctness. Immediate.

Security. For any bt, bf ∈ {0, 1}, the communications
between the sender and the receiver for transmitting bt
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is indistinguishable from that for transmitting bf . Also,
semantic security is immediate.

Deniability. When the sender reveals y1 and falsely

claims that y1 is a QNR and b
(y1)
i is the encrypted bit,

the coercer (without knowing the factors of N) has
nothing to do but accepting this claim since he cannot
prove the contradiction, i.e, he cannot prove that y1 is
a QR and that Re is not random. The deniability of
our scheme is equivalent to the infeasibility to factorize N .

Bandwidth. For one bit encryption it is required, lg lg N
bits to encode the index i, lg N bits to encode C and 2`
bits to encode R0 and R1 totalling, lg lg N +lg N +2` bits
of ciphertext.

6 Multiple Bits Encryption

It is possible by trivial extension to perform multi-bit
message encryption by repeating Scheme I or Scheme II
for each encrypted bit. However in this case the size of
the ciphertext will blowup inefficiently. With a slight
increase in computation complexity, Scheme II may allow
m-bit message encryption while reducing bandwidth to
m(lg lg N) + lg N + 2m` bits. Scheme I fails to achieve
such reduction, although it is more suitable in case of
single bit encryption. Let Mt be the true message to
be encrypted. Let Mf be the set of all possible fake
binary messages of m bits (excluding Mt). Obviously,
|Mf | = 2m − 1. It is required that the sender is able to
open any message Mf ∈Mf which looks like an honest
encryption to a coercer. We assume that m is no more
than several bits. The receiver picks two large Blum
primes p and q. He publishes N = pq as his public key
while keeping p and q secret. The scheme is described
next.

Encryption: To encrypt a message, the sender
proceeds as follows:

• Honest Encryption.

– Picks s ∈R Z∗
N and computes a = s2 modN .

– Computes y0 = −a modN .

– Picks a small integer r > 0 and computes X =
2r.

– ∀j = 0, ..., m − 1, the sender scans the binary
representation of y0 for an index ij such that

b
(y0)
ij

= b
(Mt)
j .

– Computes C = yX
0 modN .

– Let n = 2m − 1. Defines the n + 1 strings
R0, ..., Rn, selects a random i ≤ n and sets
Ri = H(y0). Sets each other Rj 6=i ∈R {0, 1}`.

– He sends (im−1, ..., i0, C, R0, ..., Rn) to the re-
ceiver.

• Dishonest Encryption.

– Picks s ∈R Z∗
N and computes a = s2 modN .

– Computes y0 = −a modN .

– The sender keeps on squaring, that is, to com-
pute yj = y2

j−1 = y2j

0 modN , j = 1, 2, ..., until
there exist distinct and fixed indices im−1, ..., i0
satisfying the following conditions:

1) b
(y0)
im−1

= b
(Mt)
m−1, ..., b

(y0)
i0

= b
(Mt)
0 .

2) For each Mf ∈Mf there exists a square yj

such that b
(yj)
im−1

= b
(Mf )
m−1 , ..., b

(yj)
i0

= b
(Mf )
0 .

– Performs at least one more squaring to compute
C = y2r

0 .Obviously, r ≥ 2m.

– Let n = 2m − 1 be the number of strings yj’s
(each yj corresponds to a one fake Mf). Defines
the n + 1 strings R0, ..., Rn, selects a random
i ≤ n and sets Ri = H(y0). Assigns each other
Rk 6=i a value H(yj).

– Sends (im−1, ..., i0, C, R0, ..., Rn) to the receiver.

Decryption: On the reception of the ciphertext
(im−1, ..., i0, C, R0, ..., Rn), the receiver keeps on comput-
ing square roots modulo N until he finds y0 as a QNR
with H(y0) matches Ri for any i = 0, ..., n. He takes the

bits b
(y0)
im−1

, ..., b
(y0)
i0

as the cleartext bits.

Opening an encryption: To open the encryption
honestly the sender reveals y0. To open dishonestly,
whenever the coercer approaches the sender, the sender
chooses a fake message Mf satisfactory to the coercer and
opens the corresponding yj, he claims that yj is a QNR
and that all values H(y0), ..., H(yj−1) are random. Notice
that the coercer is able to find matches H(yj+1), ..., H(yn)
by squaring yj , we emphasize that this attempt does
not threaten deniability since the sender’s claim is
that yj is QNR and what is important is that the co-
ercer cannot detect matched values with index less than j.

Bandwidth. The scheme provides a bandwidth of
m(lg lg N) + lg N + 2m`. For small values of m > 1, the
scheme is more efficient than Scheme I and II. Larger
messages could be partitioned into blocks of m bits
each, then performing the encryption for each block
independently. Numerically, for ` = 256, lg N = 1024
and m = 4, Scheme I provides a ciphertext of 6148 bits,
Scheme II provides a ciphertext of 6184 bits while the
multiple bits scheme provides a ciphertext of 5160 bits.

The correctness, security and deniability of the scheme
follow from Scheme II.

7 The Sender’s Local Randomness

As we mentioned earlier, our schemes are unplanned-
deniable, that is, we assume that the coercer approaches
the sender after transmission. If the coercer approaches
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the sender before encryption, our schemes fall short of
achieving the desired deniability since in this case, the
coercer is able to plan with the sender for the sender’s
local randomness, more precisely, in our method, if the
coercer forces the sender to use some y0 the sender will
not be able to escape the coercion. However, if the sender
claims that he has no control of his local randomness and
this claim is convincing to the coercer, then our method
is still deniable.

7.1 Scheme I*: Full Deniability

Now we turn our attention to the problem where the
sender – when opening some yj and claims that yj is a
QNR – is asked to reveal one of the roots of (−yj), which
is supposed to be known to the sender. It is obvious
that in this scenario, since (−yj) is a QNR, the sender
is trapped and fails to satisfy the coercer. We modify
Scheme I to overcome this problem. In our modification,
the sender is able to lie about his local randomness, s.
The modifications to Scheme II follow in a similar way.

In our solution, the receiver is required to publish a
small integer (say d), where d is the maximum number
of square roots computations that he will perform during
decryption (e.g. d = 10). Notice that d is required to be
a little larger in case of multiple bits message encryption
depending on the bit length of the message. The receiver
picks two large Blum primes p and q, he publishes the
pair (N = pq, d) as his public key while keeping p and q
secret. Let bt be the true bit to be encrypted while bf is
the fake bit. All the computations are performed in QN .
Scheme I* is a modification of Scheme I and is described
next:

Encryption: The sender proceeds as follows:

• Honest encryption (bt = bf ).

– Picks s ∈R ZN and computes y0 = s2 modN .

– Computes the bit b =
⊕k−1

i=0 b
(y0)
i ⊕ bt.

– Picks a small integer 0 < r < d. He computes
X = 2r.

– Computes C = yX
0 modN .

– Picks e ∈R {0, 1}, sets Re = H(y0) and
R1−e ∈R {0, 1}`.

– Sends (b, C, R0, R1) to the receiver.

• Dishonest encryption (bt = bf ).

– Picks s ∈R ZN and computes y0 = s2 mod N .

– Computes the bit b =
⊕k−1

i=0 b
(y0)
i ⊕ bt.

– Keeps on squaring, that is, to compute yj =

y2j

j−1, (j = 1, 2, ...) < d until there exists
some yj with its binary representation satisfy-

ing:
⊕k−1

i=0 b
(yj)
i = bf ⊕ b.

– Performs at least one more squaring to compute
C = y2r

0 mod N , r ≤ d.

– Picks e ∈R {0, 1}, sets Re = H(y0) and R1−e =
H(yj).

– Sends (b, C, R0, R1) to the receiver.

Decryption: On the reception of b, C, R0 and R1, the
receiver starts computing square roots of C, after each
computation he:

• Discards the three QNR roots.

• Hashes the QR root to see whether it matches either
R0 or R1. If a match is found (say Rw), he records
this root (say W , where Rw = H(W )) and continue
computing square roots until one of the following two
situations occurs:

– The receiver reaches d square roots computa-
tions. In this case, he takes W as y0.

– The receiver finds another QR root that
matches R1−w. He takes this new root as y0

and discards W .

• Finally, he computes bt =
⊕k−1

i=0 b
(y0)
i ⊕ b.

Opening the encryption: To open the encryption
honestly, the sender reveals y0 and s. To open dishon-
estly, the sender reveals yj , claims that yj−1 is s and that
Re is random.

Deniability. To a coercer, yj is totally indistin-
guishable from y0 and yj−1 is totally indistinguishable
from s.

Correctness is immediate, security and bandwidth
follow from Scheme I.

7.2 Generic Constructions

By investigating Scheme I*, we notice that the scheme
could be built given any trapdoor permutation (f, f−1),
where, f is the receiver’s public function and f−1 is
its trapdoor inverse known only to the receiver. Let
f (j)(y0) = f(f(...f(f(y0))...)) be the process of encrypt-
ing y0 (i.e. applying f to y0) j times. Again, let d be the
maximum number of decryptions that will be performed
by the receiver (i.e. the receiver will apply f−1 no more
than d times). The pair (f, d) is the receiver’s public key.
The scheme is described next.

Encryption: The sender proceeds as follows:

• Honest encryption (bt = bf ).

– Picks y0 at random from the domain of f .

– Computes the bit b =
⊕k−1

i=0 b
(y0)
i ⊕ bt.

– Picks a small integer 0 < r < d.

– Computes C = f (r)(y0).

– Picks e ∈R {0, 1}, sets Re = H(y0) and
R1−e ∈R {0, 1}`.
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– Sends (b, C, R0, R1) to the receiver.

• Dishonest encryption (bt = bf ).

– Picks y0 at random from the domain of f .

– Computes the bit b =
⊕k−1

i=0 b
(y0)
i ⊕ bt.

– Keeps on applying f to y0, that is, to compute
yj = f (j)(y0), (j = 1, 2, ...) < d until there exists
some yj with its binary representation satisfy-

ing:
⊕k−1

i=0 b
(yj)
i = bf ⊕ b.

– Applies f at least one more time to compute
C = f (r)(y0), j < r ≤ d.

– Picks e ∈R {0, 1}, sets Re = H(y0) and R1−e =
H(yj).

– Sends (b, C, R0, R1) to the receiver.

Decryption: On the reception of b, C, R0 and R1, the
receiver starts decrypting by applying f−1 to C a maxi-
mum of d times, after each computation of f−1, he hashes
the output to see whether it matches either R0 or R1. If
a match is found (say Rw), he records this output (say
W , where Rw = H(W )) and continue applying f−1 until
one of the following two situations occurs:

• The receiver reaches d decryptions. In this case, he
takes W as y0.

• The receiver finds another output that matches
R1−w. He takes this new output as y0 and discards
W .

Finally, the receiver computes bt =
⊕k−1

i=0 b
(y0)
i ⊕ b.

Opening the encryption: To open the encryp-
tion honestly, the sender reveals y0. To open dishonestly,
the sender reveals yj , claims that yj is picked at random
from the domain of f and that Re is random.

8 Deniability Transformation

Of course, our proposed scheme cannot withstand coer-
cion of the receiver, since a coerced receiver is forced to
reveal the prime factors of his public key N . Following
the results of [5], a sender-deniable encryption is easily
transformed to a receiver-deniable encryption as follows:
Let A be our sender-deniable public-key scheme. Let b be
the bit to be encrypted and transmitted from the sender
to the receiver. The receiver chooses a random bit r and
invokes scheme A to encrypt and send r to the sender
(as if the sender and the receiver have exchanged places).
The sender replies by r⊕ b in the clear. A sender-receiver
deniable scheme requires n intermediaries, I1, ..., In, with
at least one of them remains honest (un-attacked). The
sender chooses n bits b1, ..., bn such that

⊕
i bi = b and

sends bi to each Ii using the sender-deniable public-key
encryption. Each Ii transmits bi to the receiver using
the receiver-deniable public-key encryption. Finally, the
receiver computes b =

⊕
i bi.

9 Conclusions

We proposed schemes for sender-deniable public-key en-
cryption. Our schemes prove efficiency over that pro-
posed in [1] in the sense of bandwidth, deniability and
decipherability. Scheme I and II for single bit encryption
while the third scheme is for multi-bit message encryp-
tion. Scheme I is efficient in the case of single bit encryp-
tion and loses efficiency in the case of multi-bit message
encryption. Scheme II is an introductory scheme to our
third scheme and is less efficient than Scheme I in the case
of single bit encryption. Our schemes are one-move and
do not require any pre-shared secret information between
the sender and the receiver. The schemes are unplanned-
deniable and are not secure as plan-ahead-deniable unless
the coercer has no control on the sender’s local random-
ness.

We introduced Scheme I* to improve the deniability
of our schemes considering the sender’s local randomness.
We showed how to efficiently build a deniable public-key
encryption from any trapdoor permutation.

One final thing worth noting is that, when our schemes
are transformed to receiver-deniable schemes, they are no
more one-move schemes. For one-move receiver-deniable
public-key encryption, the reader may refer to [9].
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