
International Journal of Network Security, Vol.7, No.3, PP.436–447, Nov. 2008 436

Performance Analysis of Soft Computing Based

Anomaly Detectors

N. Srinivasan1 and V. Vaidehi2

(Corresponding author: N. Srinivasan)

Department of Information Technology, Madras Institute of Technology1

Anna University, Chennai, India 600044 (Email: sreeeni@gmail.com)

Department of Electronics Engineering, Madras Institute of Technology2

Anna University, Chennai, India 600044

(Received June 27, 2007; revised Nov. 7, 2007; and accepted Mar. 3, 2008)

Abstract

Anomaly detectors have become a necessary component of
the computer and information security framework. Some
of the numerous drawbacks experienced by the current
Anomaly detectors are large number of false positive and
false negative alarms, difficulty in processing huge amount
of traffic in real time, inadequacy in novel attack recog-
nition and non-scalability. Consequently their efficacy
in protecting against anomalies is limited. The use of
soft computing techniques like Genetic algorithms, Neu-
ral networks and Fuzzy logic in implementing Anomaly
detection is perused in this paper. Additionally, a few
novel approaches for the detection of anomalies by iden-
tifying user actions and network traffic that might com-
promise a system’s secure state, is also proposed. A po-
tential solution to the problem has been contemplated,
by comparing the performance of these systems based on
various criteria. Characterization of the behavior of a sin-
gle user (Host based) or a network (Network based) and
recognition of anomalies through observation of deviation
from normal behavior patterns are conducted to arrive
at the solution. The implementations of Genetic algo-
rithm based Anomaly detection system (GAAD), Neural
network based Anomaly detection system (NNAD) and
Fuzzy Logic based system (FLAD) are reported. Inter-
esting conclusions are deduced from an exhaustive evalu-
ation and comparison of the performance of these systems
enabling an administrator to choose the best solution for
a given scenario.

Keywords: Anomaly detection, false alarm rate, fuzzy
logic, genetic algorithm, neural network, soft computing

1 Introduction

With the massive expansion of computer networks, secu-
rity in computing environments has assumed an imper-
ative cause for concern. Many modern systems are im-

paired by a diverse set of vulnerabilities due to lack of
properly implemented security services and are therefore
compromised easily. Anomaly is defined as a set of ac-
tions, which guide the transition of a computing system
from a normal (secured) state to a compromised state.
The definition of anomaly detection as proposed by Bace
[4] is, “the process of intelligently monitoring the events
occurring in a computer system or network, and analyz-
ing them for signs of violations of the security policy”.
Activities that compromise the integrity, confidentiality
and availability of, or assist in the evasion of a security
mechanism in a host or network are monitored.

Anomaly detectors can be classified based on the func-
tional characteristics of the detection methods as Knowl-
edge based and Behavior based [3]. Storage of previously
observed attack patterns in a knowledge base is essential
for Knowledge based intrusion detection or misuse detec-
tion. A misuse is reported if any of the users’ behavior
matches the stored patterns. One of the main disadvan-
tages of this system is its incapability to detect new vul-
nerabilities. On encountering a new attack, difficulty in
updating the stored patterns is experienced. A record
of the normal behavior of a system or the user is main-
tained in case of Behavior based anomaly detection, and
an anomaly is reported if there is a deviation from the
normal behavior. According to Ryan [25], an anomaly
has occurred if the observed activity of the user deviates
from the expected behavior. False alarms, i.e., indict-
ing legitimate users of anomalous behavior, is the chief
drawback of anomaly detection. On the basis of archi-
tecture it is broadly classified in to two categories, Host
based anomaly detectors [13, 18, 25] and Network based
anomaly detectors [10].

Soft Computing is an innovative approach to construct
computationally intelligent systems consisting of artificial
Neural networks [15, 25], fuzzy inference systems [11, 14],
approximate reasoning and derivative free optimization
methods such as Genetic algorithms [9, 10, 24] etc. In
contrast to the conventional artificial intelligence tech-

International Journal of Network Security, Vol.7, No.3, PP.436–447, Nov. 2008 437

niques that focus solely on precision, certainty and rigor,
the guiding principle of soft computing is the exploitation
of the tolerance for imprecision and uncertainty, in addi-
tion to low solution cost, robustness and a better rapport
with reality [1, 11, 22]. Soft Computing techniques can
be enlisted when 1. an algorithmic solution cannot be
formulated, 2. huge amounts of data must be obtained
for processing, 3. a need to pick a structure from existing
data arises.

A potential solution to the problem of detecting
anomalies both in an individual system (host) and in a
network is explored and elucidated in this paper. To han-
dle large amount of data implicated in this solution, soft
computing techniques are used to characterize the user
and network behavior, and to facilitate their comprehen-
sive training and production of accurate results respec-
tively. Analysis of the user command sets is required for
the Host based anomaly detection, while the network us-
ing the network traffic data is characterized by the Net-
work based detection. Statistical techniques are employed
in the analysis of System event streams to find patterns of
activities that appear to be abnormal. The soft comput-
ing techniques used are Genetic algorithm, Neural net-
works and Fuzzy Logic. Finally, on comparing the per-
formance and complexities of these systems, the one best
suited for a given scenario is singled out. Time and space
complexity, detection rate, detection accuracy, false alarm
rate, effect of history size on detection accuracy, time re-
quired for training, number of runs, command sample size
etc, are the indices for evaluation.

The paper is organized into the following sections. The
basics of Genetic algorithm and its use in implementing
Host based and Network based anomaly detectors is ex-
plicated in Section 2. The basic concepts of Apriori algo-
rithm have also been incorporated. A detailed description
of the implementation of a Neural network based system
is furnished in Section 3. The foundations of Fuzzy logic
and design of a Fuzzy Logic based Network anomaly de-
tection is explained in Section 4. Experimentation and
their results are discussed in Section 5. The conclusion of
the work along with future enhancements is conveyed in
Section 6.

2 Genetic Algorithm Based

Anomaly Detection

Genetic algorithms (GA) is one of the upcoming fields in
computer security and especially in anomaly detection.
GA is based on the axiom of Darwin’s theory: “Survival
of the fittest” [9, 10]. They are capitalized in autonomous
learning and decision making, which aid anomaly detec-
tion. A simple chromosome-like data-structure is em-
ployed by these algorithms and, recombination operators
are applied to these structures so as to preserve critical
information that provides potential solution to a specific
problem [20]. In Genetic algorithms, the properties of the
environment are represented by genes (the atomic units).

Fit

Random population

of a behavior gene

User behavior gene

Reproduction

Crossover

Mutation

Fitness function
Not fit

Fitter behavior genes

Figure 1: Genetic algorithm in behavior

Processes like mutation and crossover engender the evo-
lution of new genes. The process of evolution continues
until genes with the required fitness are found. Genetic
algorithm implementation is initiated by the generation
of a population of chromosomes. These are subsequently
evaluated for reproductive chances, favoring the repro-
duction of those chromosomes offering a better solution
to the objective over the others. In this current genera-
tion, fitter behavior genes are generated by applying three
genetic operators to the behavior genes. The genetic op-
erators are 1. Reproduction, that selects behavior-genes
of relatively higher fitness value from the initial random
population and subsequently from the current generation
to generate new behavior genes for applying Crossover
and Mutation, 2. Crossover, which concatenates parts of
two different classes of behavior-gene in the current gener-
ation to form new behavior-genes and 3. Mutation, that
changes some symbols in the behavior-genes randomly to
evolve newer ones. The steps are as shown in Figure 1.

2.1 Host Based GAAD

Genetic Algorithms has been in the literature of Intru-
sion detection for about half a decade and in the recent
past [17, 23], it has been used for classification in other
soft computing models. In this work, the robustness and
adaptability to changes in the environment of the Ge-
netic algorithms assist in comprehending user behavior in
a computing system. Command samples of each user are
obtained to characterize the user behavior using a fitness
function defined by a 3-tuple <match index, entropy in-
dex, newness index>. A block of user commands of size
‘n’, where ‘n’ is a multiple of chromosome size, is adverted
in the above mentioned user command sample.

Parameters: Three parameters are considered for char-
acterizing an intruder, as discussed below.

1) Match index: Match index of a command sample is
defined as the ratio of the number of commands that
are predicted correctly to its length. The match in-
dex parameter is a measure of the regularity in user
behavior.

Matchindex =
N1

l
,

International Journal of Network Security, Vol.7, No.3, PP.436–447, Nov. 2008 438

Threshold values

[Probability of the user

being anomalous]

Collect [Test]

commands

Map
commands to

alphabets

Form

chromosomes

Calculate

index values

Train

Command list

[Threshold

index values]

Figure 2: Host based GAAD - Training [Testing]

where, N1 is the number of commands predicted cor-
rectly in the command sample and l is the length of
the command sample.

2) Entropy index: Entropy index is a measure of user
behavior dynamics (distribution of commands) in the
command sample. Entropy index is given by,

Entropyindex =
p(i) × log(p(i))

log(N2)
,

where p(i) is the probability of occurrence of com-
mand i in the command sample and N2 is the number
of unique commands in command sample.

3) Newness index: Newness index of a command sample
is defined as the ratio of the count of commands that
are not listed in the history of user commands to the
cardinality of command sample. The newness index
is a measure of the number of commands, which have
not occurred earlier.

Newnessindex =
N3

l
,

where N3 is the number of commands in the com-
mand sample and in history and l is the length of
the command sample.

The procedure involved is as shown in Figure 2.
Training: In the training phase, either the user com-

mands traced in real time or binaries from a data set can
be applied. The DARPA Dataset has proven valuable for
this purpose. Index values are calculated for every user by
training the system and with each user’s data assigned to
a node. A command list of size 100 is maintained, which
is updated as the training is performed with user specific
commands. Each command is considered as a gene and
these genes together form a chromosome. The training
procedure is as follows:

1) Collecting the audit data, the commands are exe-
cuted by a specific user.

2) Mapping the commands to the corresponding alpha-
bets.

3) Formation of chromosomes.

4) Calculation of the fitness function using the 3 tuple
value <entropy index, match index, newness index>.
These values are calculated for each chromosome ac-
cording to the above formula.

5) Calculating the average value of the indices for the
entire user command set.

Testing: In the testing phase, the index values for the
test data are calculated and are matched with the trained
using the following steps:

1) Mapping the commands to the corresponding alpha-
bets.

2) Formation of chromosomes.

3) Calculating the indices for each chromosome.

4) Comparing the indices with the threshold values and
removing the unfit (normal) samples.

The testing algorithm is as follows:

1) Mo = mu; Eo = eu; No = nu;

2) Sa = S;

3) Repeat

a. Mi = Mi−1 −α; Ei = Ei−1 +β; Ni = Ni−1 + γ;

b. Mi > xjm → Sm = S − Sxj;

c. Ei < xje → Se = S − Sxj;

d. Ni < xjn → Sn = S − Sxj ;

e. Sa = Sm ∩ Se ∩ Sn;

Until y is not element of S.

4) z = 1 − (|Sa|−|S|)×commandsamplesize

totalnumberofcommands
,

where,
S Set of suspicious user command

samples.
SA Set of suspicious user command

samples in previous iteration.
|S| Cardinality of set S.
|SA| Cardinality of set SA.
x Typical command sample from S.
i Index for cycles in the loop where

0 < i ≤ total number of cycles.
j Index for cmd samples where 0 <

j ≤ total number of cmd samples.
Sxj jth command sample in user session.
mu, eu, nu Initial Match, Entropy, Newness in-

dex threshold value for user u.
Mu, Eu, Nu Match, Entropy, Newness index fac-

tor for user u.
y Current command sample of user u.
xjm, xje, xjn Match, Entropy, Newness index for

jth command sample.
Mi, Ei, Ni Threshold value of Match, Entropy,

Newness Index for ith time.
z Probability of command sample be-

ing intrusive.
α, β, γ Tolerance factors.

International Journal of Network Security, Vol.7, No.3, PP.436–447, Nov. 2008 439

Figure 3: Entropy index of command samples

This algorithm is a modification of the one proposed
by Balajinath et al. [5]. The anomalies are detected more
accurately by this modification than the one referred to.
According to Balajinath, samples get filtered at three lev-
els vis-a-vis., match index, entropy index and newness in-
dex, and the samples that do not pass each of the layers
will fail the test of the next layer. For example, samples
satisfying the criteria of match index will be tested for
neither newness index nor entropy index. Contrastingly,
in our scheme, whole command sample set is received as
input at all three steps. This results in an extensive train-
ing of the command history effecting a better accuracy.
The testing continues until the last chromosome is re-
moved. Each time as the testing progresses, the indices
are altered with tolerance factors α, β and γ.

Samples lying below a match index threshold of 0.05
as illustrated in Figure 4, are considered to be intrusive.
Similarly those samples having an entropy and newness
index above the threshold of 0.8 and 0.2 as shown in Fig-
ures 3 and 5 respectively are intrusive. For instance, sam-
ple 97 with match index less than 0.05, entropy index
greater than 0.8 is regarded as intrusive by both Steps 3b
and 3c.

2.2 Network Based GAAD

The design for building a Network Anomaly detection sys-
tem using Genetic algorithm is demonstrated in Figure
6. TCPDUMP, a tool for the extraction of the packets
transmitted in the network is used for audit collection.
Utilizing this, the required header information of all the
packets is extracted to characterize the network behav-
ior. Association rules are then formulated using Apriori
Algorithm as in [2].

Training: In the training phase, the association rules
are formulated from the necessary parameters of the net-
work traffic. A few unwanted sets of parameters are in-
cluded in the Normal network traffic, resulting in addi-

Figure 4: Match index of command samples

Figure 5: Newness index of command samples Detection
of anomalies in a typical user command history using
GAAD

International Journal of Network Security, Vol.7, No.3, PP.436–447, Nov. 2008 440

Train data

testing high

Non Anomalous

selected

traffic

raw

traffic

Test data

rules

test traffic

TCPDUMP

output

Similarity

Calculation

Provide the test data

Refining of rules using

fitness function

Formation of rules using

Apriori algorithm

(cross over)

Extraction of features

Anomalous

Train results
low

Similarity

?

Figure 6: Network based GAAD training [Testing]

tional rules. Hence, the computations become tedious,
thereby abating its performance. Hence only a lim-
ited number of attributes (axis attributes) [24] includ-
ing source and destination address, source and destina-
tion ports are considered. These parameters are crossed
with each other, creating a new set of rules. Each rule is
endowed with a minimum support value and confidence
value.

The steps involved in training is as summarized below:

1) Collect network traffic.

2) Reduce the traffic to get the required parameters
- Protocol, Source address, Destination address,
Source and Destination port numbers.

3) Choose protocol as the axis attribute and form fre-
quent association rules.

4) Refine the rules using the fitness function. i.e., if
support value ≥ minimum support value.

5) NewMinSup = (1 − minsup)(1 − CurrentFeatures
NumberofFeatures

)K
+minsup.

6) Rules having support value below the minimum sup-
port value are removed. K is a user factor decided
upon experimental analysis.

7) Store the rules.

Testing: In the testing phase, the rules are postulated
in the same manner as in the training phase. These
rules are compared with those formed during the train-
ing phase, and their similarity is determined using the
formula below [7]:

For rules R1 : X → Y , c, s and R2 : X ′ → Y ′, c′, s′

Similarity(R1, R2)

=

0 if(X 6= X ′&Y 6= Y ′)

max
(

0, 1 − max
(

|c−c′|
max(c,c′) ,

|s−s′|
max(s,s′)

))

if(X = X ′&Y = Y ′)

s =
∑

∀R1∈S1

∀R2∈S2

similarity(R1, R2).

Figure 7: Impact of K on the number of rules generated

The Total similarity is

similarity(S1, S2) =
s

[|s1|]
×

s

[|s2|]
,

where, c, c′: confidence, the ratio of the number of trans-
actions that contain both X and Y to the number of trans-
actions that contain only X ; s, s′: support, the percentage
of the transactions in which both X and Y appear in the
same transaction.

The steps involved in testing for anomalies are:

1) Network traffic is collected, aided by TCPDUMP.

2) Output is reduced to the required parameters - Pro-
tocol, Source - Destination addresses and port num-
bers.

3) The protocol is chosen as the axis attribute and fre-
quency association rules are formed.

4) The rules are refined with the fitness function as the
guidelines i.e., if support value ≥ minimum support
value.

5) The similarity between the current rule set and the
reference rule set is computed as per the above for-
mula.

6) The test data is declared as intrusive if the similarity
is below a threshold.

The variation in the number of rules generated with the
variation in the factor K of the fitness function is given in
the graph (Figure 7). A K value near 0.5 gives the best
accuracy.

3 Neural Network Based

Anomaly Detection

Neural networks are parallel architectures, which resem-
ble the animal nervous system. A gamut of inputs is pro-
cessed by a biological neuron. Artificial Neural networks
(ANN) have been developed as generalizations of math-
ematical models of human cognition or neural biology

International Journal of Network Security, Vol.7, No.3, PP.436–447, Nov. 2008 441

Output layer
Input layer

Hidden layer

Figure 8: Neural network

[22], based on a few assumptions vis-a-vis, 1. Information
processing is achieved by simple elements called neuron,
2. Signals are exchanged by neurons through connection
links, 3. The transmitted signal is multiplied by each
link, which is associated with its corresponding weight,
4. The net input is converted by an activation function
to a corresponding output signal of every neuron. An in-
put layer, one or more hidden layer and an output layer
are the components of an ANN. Performance of a neural
net is proportional to the number of hidden layers and the
number of neurons per layer. The structure is represented
in the Figure 8.

The links at all the nodes (as shown in Figure 8) are
assigned weights, which are the results of the activation
function on sum of the inputs. A sigmoidal activation
function used for this purpose is given by,

F =
1

(1 + e−w)

3.1 Host Based NNAD

It is assumed that an anomalous behavior differs consider-
ably from a normal one. This difference can be measured
and used to detect an intruder [8, 25]. Neural networks
have proved to be valuable in the effective detection of
intruders [26, 27]. Being a supervised learning method
and, equipped with a provision for optimal weight upda-
tion and due to the feedback of error, Back propagation
model is preferred than other models [16]. Thus, the in-
puts can be tuned to the desired output. The procedure
is as explained in Figure 9.

The Neural Algorithm: Analysis of the user behav-
ior and maintenance of a basic list of 100 most fre-
quently occurring commands in Linux environment are
the pre-requisites here. The steps involved in implement-
ing Anomaly detection using a Neural network are as fol-
lows.

1) Audit collection: This pertains to the tracking of sys-
tem calls from user commands.

[Identifying the user]

Collect user

command samples

[Test data]

Calculate the

normalized value for

each command

Neural network

Write the weights

in to a file

[Read weights

from the file]

Figure 9: Host based NNAD - Training

2) Audit pre-processing: The commands are segregated
according to the user id. Command frequency details
of each user are calculated.

3) Normalization is done.

4) A pattern of the No. of commands x 1 for each user
is computed.

5) Train/Test
If new network

Perform <Neural algorithm>;

else

Train/Test Neural network.

6) If value < threshold

Declare anomalous;

else

Perform <Neural algorithm>.

Neural Algorithm:

1) Initialize system variables.

2) If new network
Initialize all the nodes;

else

Read the weights from the file.

3) Train the network.

4) Get the number of patterns.

5) For each epoch

a. Get all user patterns (command vector).

b. For each hidden and output neuron, append the
weights and apply the activation function.

c. For each hidden and output neuron calculate
the error.

d. Gather the calculated errors from all the nodes.

e. Broadcast the error to all the nodes.

f. Update the weights based on the broadcasted
error.

6) Write the trained network to the file.

International Journal of Network Security, Vol.7, No.3, PP.436–447, Nov. 2008 442

 Ext ract parameters

from TCPDUMP

O/P

Neural network

Write the weights

in to a file

[Test data]

[Read weights

from the file]
[Identifying

anomalies]

Calculate the

normalized value for

each connection

Figure 10: Network based NNAD - Training [Testing]

3.2 Network Based NNAD

Similar to Network based GAAD, TCPDUMP data is an-
alyzed to characterize windowed traffic intensity behavior.
At any given point of time, there can be many sources of
communication with the victim. Prior to collecting and
monitoring the network traffic purportedly holding infor-
mation that reveals the anomalies, the Neural network’s
structure is built. Input to the Neural network is sup-
plied by the current intensity of network traffic [6]. All
the resources are monitored with ease by supervising the
available ports. Due to the practical difficulty in monitor-
ing all the ports, five most important and frequently used
ports depending upon the network usage, such as HTTP,
FTP, SMTP etc are selected. The Neural network struc-
ture is established to contain (N ×M) input nodes, where
N is the number of workstations in use and M is the num-
ber of ports that are monitored. Two neurons vis-a-vis.,
intrusive and non-intrusive are the constituents of Output
of the Neural network. The procedure is depicted in the
Figure 10.

The above process necessitates analyzing the TCP-
DUMP output, extracting and reducing the necessary pa-
rameters. Similar to GAAD, DARPA dataset is used for
this purpose. The procedure involved is as explained be-
low.

1) The IP addresses and the port numbers are extracted
from the dataset.

2) Most frequently accessed ports are determined.

3) The number of times a source is accessed through
the monitored port is determined. The frequency of
access of the monitored port on a particular source
is calculated.

4) The normalized value is written in to a file.

5) Test or Train.

6) If new network
Perform <Neural algorithm>;

else

Test Neural network.

7) If value < threshold

Declare anomalous;

Figure 11: Representation of fuzzy membership

else

Perform <Neural algorithm>.

Neural algorithm analogous to the one expounded in
Section 3 is employed. Once the Neural network is cre-
ated, it is trained and tested with the network traffic col-
lected for 10 seconds. An exponential increase in the time
taken for training the network with the number of runs is
reported, the results of which are discussed exhaustively
in Section 5. Results obtained on testing the same Neural
network for incoming traffic are also presented.

4 Fuzzy Logic Based Anomaly De-

tection

For more complex systems with sparse, imprecise and
ambiguous numerical data, the observed input and out-
put situations are approximately correlated by, and the
system behavior modeled on fuzzy reasoning [14, 28].
Anomaly detection problem can be tackled by Fuzzy logic
because security itself implicates fuzziness. Anomaly
is mapped onto fuzzy set variables HIGH, LOW and
MEDIUM [31]. The fuzzy membership graph is illus-
trated in Figure 11.

The fuzzy membership functions are calculated as fol-
lows:

high(µ, a, c) =

0 µ ≤ a

2
(

(µ−a)
c−a

)2

a < µ ≤
(a+c)

2

1 − 2
(

(µ−a)
c−a

)2
(a+c)

2
< µ ≤ c

1 c < µ

low(µ, a, c) = 1 − high(µ, a, c)

medium(µ, a, c) =

{

high(µ, b − d, b) if(µ ≤ b)
low(µ, b, b + d) if(b < µ)

Qualities are to be scrutinized in the anomaly detection
domain. For example, the number of different destination
IP addresses in the last 2 seconds is considered. A typical
rule that may read like “IF the variation of destination
addresses during the last 2 seconds was high THEN an un-
usual situation exists” is applied to this example. Associa-
tion rules are indited using Apriori algorithm, as discussed
in Section 2. Fuzzy logic is employed to build a generic

International Journal of Network Security, Vol.7, No.3, PP.436–447, Nov. 2008 443

medium

Output from

TCPDUMP

Extraction of

required

attributes

Calculate the similarity with

respect to the reference rules

Refine the rules

using GA

Formation of

association rules

using Apriori

algorithm

Calculate

fuzziness

low high

Anomalous Non -anomalous

Figure 12: Network based FLAD - Testing

Anomaly detector. To detect anomaly, fuzzy association
rule sets are mined from the TCPDUMP data and a sim-
ilarity is arrived at, on comparison with the sets mined
from the normal data [12]. An alarm is raised on encoun-
tering a relatively low similarity value when mapped onto
fuzzy sets. Training is consummated by forming associa-
tion rules using the Apriori algorithm (as in Section 2),
which are further refined using Genetic algorithm.

The process of mapping the similarity distance into
fuzzy sets is assisted by Fuzzy logic, facilitating an un-
ambiguous classification of the nature of Input samples.
It has been observed that Genetic algorithms can be suc-
cessfully applied to tune the membership functions of the
fuzzy sets used by our anomaly detector [29]. The control
flow of the Fuzzy logic based Network anomaly detection
system is exemplified in Figure 12. The steps involved
are:

1) Network traffic is collected, aided by TCPDUMP.

2) Output is reduced to obtain the required parameters
- Protocol, Source and Destination addresses, Source
and Destination port numbers.

3) Choose protocol as the axis attribute and form fre-
quent association rules. (The axis attribute is se-
lected as the protocol and frequency association rules
are compiled.)

4) The rules are refined with the fitness function as
guidelines i.e., support value ≥ minimum support
value.

5) The similarity between the current rule set and the
reference rule set is computed as per the above for-
mula.

6) Fuzziness is calculated. If it maps to

High- Declare non intrusive

Medium- Declare intrusive

Low- Declare intrusive

For the experiments reported here, the minimum sup-
port and confidence values considered are 0.0 and 0.3 re-
spectively. This can be varied for experimental conve-
nience. The discussion and comparison are in Section 5.

5 Experiments and Results

5.1 Host Based Anomaly Detection

Command histories of 26 users collected from the Pur-
due University Laboratories, are used for the experimen-
tal analysis. Several novel approaches that are indepen-
dent of the command histories and operating environment
have been initiated [30]. In order to benchmark the ap-
proach, the conventional way of maintaining a basic list of
most frequently used commands is executed in the Linux
environment. Since the system is trained with each user
command sample, the user specific commands are added
to the basic list. The consequent enhancement of the user
behavior characterization process further accentuates the
performance of the Anomaly detection system. The fre-
quency of occurrence of these commands in the user com-
mands’ sample is subsequently determined.

The system is trained with the command histories of
each user. On testing another user’s command sample,
the occurrence of an anomaly is denoted. The perfor-
mance of the system is shown in the Figures 13 and 14.
Parallel to the increasing command history size, a concur-
rent increase in the detection rate along with a decrease in
false alarm rate has been validated. The negligible time
taken for training and testing is regarded as the principal
advantage of applying Genetic algorithms to the Anomaly
detection domain. From the above plots it can be inferred
that the detection rate and the false positive rates are sat-
urated beyond a threshold of the command history size.
The detection capacity cannot be improved after a certain
level. This is because sporadically employed commands
with minimal contribution to the detection process also
populate the command history.

The following features of the GAAD based detection
model has been deduced from the results:

1) Knowledge of new attacks and system vulnerabilities
is superfluous, since detection is achieved by observ-
ing deviation in user behavior patterns.

2) Anomaly detection can be performed in real-time.
Amount of log data processed to detect anomalies is
low.

3) A low false alarm rate.

4) A drift in the user’s behavior is identified and cap-
tured by continuously learning the user behavior.

5) A decentralized manner is adopted in the operation
of GADD, wherein the algorithm is run in each node
independently.

International Journal of Network Security, Vol.7, No.3, PP.436–447, Nov. 2008 444

Figure 13: Host based GAAD - Detection rate

Figure 14: Host based GAAD - Performance evaluation

A host based Neural network anomaly detector
(NNAD), with a neural network structure consisting of
100 input neurons, 100 hidden neurons (single layer) and
10 output neurons was designed. Command samples sim-
ilar to those for the GADD system, are given as input to
the system. The time taken for training, detection and
false alarm rate with respect to variations in the number
of input and hidden neurons are plotted in Figure 15. In
Neural network based anomaly detector, a decline in per-
formance due to the enormous amount of time taken to
train the system is perceived to be the main disadvantage,
construed from the above plots. However, in comparison
to the system based on Genetic algorithms, more accurate
results and lesser false alarms are obtained.

It can be inferred from plot 16 that the detection ac-

Figure 15: Host based NNAD - Time vs. number of input
neurons

Figure 16: Detection accuracy

curacy reaches almost unity for 50,000 runs. Thus, at
the cost of training time, accuracy can be enhanced by
extensive training. From the above graphs, it can be un-
derstood that a plot of the time taken for training is a
parabolic curve y = kx2. Thus for applications where
time is not a constraint and offline training is possible,
the advantages of Neural network can be exploited. It
was noted that the pre-processing time amounts to be
the same for both GAAD and NNAD systems. With the
number of training epochs, a corroborative increase in
the accuracy of detection using Neural networks has been
detected. The exhibited high false alarm rate of GAAD
system can be reduced by training the system with a large
set of command sample, thereby equaling its performance
to that of NNAD system, with a concomitant reduction
in processing time.

5.2 Network Based Anomaly Detection

The evaluation of this approach will be based on data
sets provided by the Defense Advanced Research Projects
Agency (DARPA) IDS evaluation in 1999 [19], obtained
as TCPDUMP binaries, and collected from MIT Lincoln
Laboratories. The experiments’ requirements are not met
by the 1999 DARPA data sets, with respect to hostile
traffic because the range of vulnerabilities has evolved
substantially since 1999. Experimentation based exclu-
sively on such relatively old attacks could lead to unprac-
tical results in current environments, which are exposed
to more sophisticated threats. Moreover, controversial
comments on these datasets have been listed in the lit-
erature [21]. Nevertheless, abandoning the idea of using
the DARPA data sets is inexpedient, because variations in
the accuracy of anomaly detection is profound only when
there a considerable deviation from the existing traffic
patterns, and these can be easily found in the DARPA
datasets. This accuracy is relatively immutable in case
of new classes of attacks. The value of these datasets is
amplified by its popular acceptance and their extensive
usage by the research community. Furthermore, compa-
rability and reproducibility of the experiments is ensured
by the use of these data sets, whereas the use of intrinsic
synthetic data fails.

The system is trained by collecting network traffic

International Journal of Network Security, Vol.7, No.3, PP.436–447, Nov. 2008 445

Figure 17: Network based GAAD - Similarity calculation

pumped from the TCPDUMP output of the DARPA
dataset for every 10 and 20 seconds. Pre-processing of
input is accomplished by extracting the necessary parame-
ters such as protocol type, source & destination addresses,
and source & destination port. The time exhausted for
the training and testing of GAAD system is negligible,
when compared to that of the NNAD system as depicted
in Figure 18. The detection and false alarm rates are
depicted in Figure 17, above by comparing intrusive and
non-intrusive samples with respect to the trained data.
Intrusive samples of 10 and 20 seconds are generated ran-
domly and are tested against the trained data. Samples
below the threshold value of 0.5 (similarity) are considered
intrusive. Those samples between 1 and 20 whose similar-
ity is 0 are denoted as false negatives. Despite requiring
relatively longer time for training in a network NNADS,
an accuracy of 100% with very minimum false alarms has
been confirmed. NNADS proves to be efficient in appli-
cations where time is not critical with no false positives.

In Fuzzy based anomaly detection, similarity is calcu-
lated based on the Genetic algorithm system and the val-
ues are mapped onto fuzzy sets. The same network traffic
is provided as input for the testing and training phase.
While a crisp value of anomalies is presented by GA, its
fuzziness is mapped by FLAD. Even though anomalies
are detected more accurately with negligible false posi-
tives, the false negatives purported by this system are
higher than the other systems. The samples from 31 to
40 are intrusive as the fuzzy values remain at 0. From
Figure 19, it can be inferred that numerous false negative
alarms generated by the system. This can be reduced by
extensive training.

To summarize, Table 1 proves that anomaly detection
using Neural network exhibit more complexity in terms
of space and time as compared to Genetic algorithms &
Fuzzy logic. However, the performance in terms of de-
tection and false alarm rate is better in Neural networks
and hence proves to be a better pick in accuracy specific
scenarios.

Figure 18: Network based NNAD - Time taken for train-
ing

Figure 19: Network based FLAD - Fuzzy mapping

6 Conclusion and Future Work

Various financial transactions that occur as a direct conse-
quence of Electronic Commerce have made anomaly de-
tection a crucial issue in computing systems. The in-
adequacies of Misuse detection in detecting all types of
anomalies due to the advent of new attacks and system
vulnerabilities has been indubitably established, and con-
sequently the development of Anomaly detection has as-
sumed paramount importance. However, high false alarm
rate in anomaly detection due to the vagaries in a user’s
behaviour has to be addressed before implementing it
commercially. False alarm rates are greatly reduced by
soft computing, thus improving the detection rate due to
extensive training. For the same input, different behavior
is exhibited by various techniques of soft computing. A
trade off between time taken for training & testing and
the accuracy of detection is professed by the results of the
work.

Host based GAAD system is implemented by regard-
ing commands as the basic units (genes), which consume
less time and space. However, the accuracy of the NNAD
system is found lacking in them, apropos of detection. A
back propagation model is used for implementing NNAD,
since it provides optimum weight updation due to the
back propagation of error. Nevertheless a greater time
complexity is evident, in comparison to its counterparts.

International Journal of Network Security, Vol.7, No.3, PP.436–447, Nov. 2008 446

Table 1: Comparison of Performance of anomaly detection using various soft computing techniques

Time Space Detection False
Type complexity complexity rate (in %) alarm rate (in %)

Host NNADS O(nm) O(iho) 100 Negligible
based GAADS O(c) O(1) 88 12

Network NNADS O(nm) O(iho) 99.14 1.86
based GAADS O(r) O(r) 93.05 6.95

FLADS O(r) O(r) 91.75 8.25

n: number of neurons; m: number of runs; c: number of input commands; i: input neurons; h: hidden neurons; o:
output neurons

Network based GAAD system is designed by forming rules
based on network traffic. During the testing phase, new
rules are formulated. Anomaly is detected by comparing
these two rule sets, and determining similarities if present.
More space is required to store these rules. Since, only
10 seconds of the network traffic is considered, the pro-
cessing time is negligible. Contrarily, in NNADS time
increases parabolically to the increase in number of runs,
although a greater accuracy is offered by the system. In
fuzzy based system, the space and time complexities are
the same as in GAAD system, but the detection accuracy
is less. It is also constructed by forming rules using the
Apriori algorithm and testing for similarity. Similarity
values are then mapped onto fuzzy sets. Establishing the
pros and cons of these soft computing techniques, it could
be concluded that depending upon the requirement, any
of the methods discussed in this work can be exploited.

The work could be further improved as stated below.
The system has a known fallacy; it was ported on Linux
environment, which could characterize users’ Command
samples or Network packets. This could possibly be ex-
tended to other environments to support GUI behav-
ior characteristics of the users. As some of the meth-
ods present slightly higher false positives rate, methods
involving support vector machines and rough sets can
be investigated upon for reduction of these false alarms.
Anomaly detection system can be coupled with misuse
detection to achieve better detection rate. The recent
approaches of evolutionary algorithms could replace soft
computing and its advantages could be exploited.

References

[1] A. Abraham, and R. Jain, “Soft computing models
for network intrusion detection system,” Soft Com-
puting in Knowledge Discovery: Methods and Appli-
cations, ch.16, Studies in Fuzziness and Soft Com-
puting, Springer-Verlag, May 2004.

[2] R. Agrawal, and R. Srikant, “Fast algorithms for
mining association rules,” Proceedings of The 20th
International Conference on Very large Databases,
pp. 487-499, Santiago, Chile, Sep. 1994.

[3] J. Allen, A. Christie, W. Fithen, J. McHugh, J.
Pickel, and E. Stoner, State of the Practice of Intru-

sion Detection Technologies, Carnegie Mellon Soft-
ware Engineering Institute, SEI Technical Report,
CMU/SEI-99-TR-028, 2000.

[4] R. G. Bace, Intrusion Detection, Macmillan Techni-
cal Publishing, 2000.

[5] B. Balajinath and S.V. Raghavan, “Intrusion detec-
tion through learning behavioral model,” Computer
Communications, vol. 24, no. 12, pp. 1202-1212, July
15, 2001.

[6] A. Bivens, M. Embrechts, C. Palagiri, R. Smith, and
B. Szymanski, “Network-based intrusion detection
using neural networks,” Proceedins of Artificial Neu-
ral networks In Engineering, vol. 12, pp. 10-13, St.
Louis, Missouri, Nov. 2002.

[7] S. M. Bridges, and R. B. Vaughn, “Fuzzy Data min-
ing and Genetic algorithms applied to Intrusion De-
tection,” Proceedings of the 23rd National Informa-
tion Systems Security Conference, Baltimore, MD,
Oct. 2000.

[8] Y. Chen, A. Abraham, and B. Yang, “Hybrid flex-
ible neural-tree-based intrusion detection systems,”
International Journal of Intelligent Systems, vol. 22,
no. 4, pp. 337-352, Apr. 2007.

[9] A. Chittur, Model Generation for Intrusion Detec-
tion System using Genetic Algorithms, High School
Honors Thesis, Ossining High School, Ossining, NY,
Nov. 27, 2001.

[10] M. Crosbie, and E. Spafford, “Applying genetic pro-
gramming to intrusion detection,” Proceedings of
AAAI Fall Symposium, pp. 1-8, AAAI Press, Nov.
1995.

[11] D. B. Fogel, Evolutionary Computation: Toward
a New Philosophy of Machine Intelligence, Wiley-
IEEE Press, 3rd ed., Dec. 2005.

[12] F. German, S. Bridges, and R. Vaughn, “An im-
proved algorithm for fuzzy data mining for intru-
sion detection,” Proceedings of the North Ameri-
can Fuzzy Information Processing Society Conference
(NAFIPS 2002), New Orleans, LA, June 27-29, 2002.

[13] A. K. Ghosh, A. Schwartzbard, and M. Schatz,
“Learning Program Behavior Profiles for Intrusion
Detection,” USENIX Workshop on Intrusion Detec-
tion and Network Monitoring, pp. 51-62, California,
USA, 1999.

International Journal of Network Security, Vol.7, No.3, PP.436–447, Nov. 2008 447

[14] J. Gomez, F. Gonzalez, and D. Dasgupta, “An
immuno-fuzzy approach to anomaly detection,” Pro-
ceedings of the 12th IEEE International Conference
on Fuzzy Systems, vol. 2, pp 1219-1224, Memphis,
TN, USA, May 2003.

[15] F. Karray, and C. W. D. Silva, Soft Computing and
Intelligent Systems Design, Theory, Tools and Appli-
cations, pp. 560, Addison Wesley, Pearson Education
Limited, Essex, England, Sep. 2004.

[16] H. G. Kayacik, A. N. Z. Heywood, and M. I. Hey-
wood, “A hierarchical SOM-based intrusion detec-
tion system,” Engineering Applications of Artificial
Intelligence, vol. 20, no. 4, pp. 439-451, June 2007.

[17] D. S. Kim, H. N. Nguyen, and J. S. Park, “Ge-
netic algorithm to improve SVM based network in-
trusion detection system,” Proceedings of the 19th
International Conference on Advanced Information
Networking and Applications, vol. 2, pp. 155-158,
2005.

[18] W. Lee, S. J. Stolfo, and K. W. Mok, “A data mining
framework for building intrusion detection models,”
IEEE Security and Privacy Symposium, pp. 120-132,
Oakland, Canada, 1999.

[19] R. P. Lippmann, et al., “Evaluating intrusion detec-
tion systems: The 1998 DARPA off-line intrusion de-
tection evaluation,” Proceedings of the DARPA In-
formation Survivability Conference and Exposition,
IEEE Computer Society Press, 2000.

[20] W. Lu, and I. Traore, “Detecting new forms of net-
work intrusion using genetic programming,” IEEE
Evolutionary Computing, vol. 3. pp. 2165- 2172, Dec.
8-12, 2003.

[21] M. V. Mahoney, and P. K. Chan, “An analysis of the
1999 DARPA/Lincoln laboratory evaluation data for
network anomaly detection,” Proceedings of Recent
Advances in Intrusion Detection (RAID), pp. 220-
237, 2003.

[22] S. Mukkamala, and A. H. Sung, Soft Comput-
ing Techniques for Intrusion Detection, Workshop
on Statistical and Machine Learning Techniques in
Computer Intrusion Detection, George Mason Uni-
versity, ONR and AFSOR Sponsored Workshop on
Intrusion Detection, Fair Fax, 2003.

[23] T. Ozyer, R. Alhajj, and K. Barker, “Intrusion de-
tection by integrating boosting genetic fuzzy classi-
fier and data mining criteria for rule pre-screening,”
Journal of Network and Computer Applications, vol.
30, no. 1, pp. 99 - 113, Jan. 2007.

[24] M. M. Pillai, J. H. P. Eloff, and H. S. Venter, “An
approach to implement network Intrusion detection
using Genetic algorithm,” Proceedings of the an-
nual South African Institute of Computer Scientists
and Information Technologists conference (SAIC-
SIT), pp. 221-228, Stellenbosch, SA, Unisa Press, 1-
58113-982-9, Oct. 2004.

[25] J. Ryan, M. J. Lin, and R. Miikkulainen, “Intrusion
detection with neural networks,” Advances in Neural
Information Processing Systems, vol. 10, pp. 943-949,
The MIT Press, Denver, CO, 1998.

[26] S. T. Sarasamma, Q. A. Zhu, and J Huff, “Hierarchi-
cal kohonenen net for anomaly detection in network
security,” IEEE Transactions on Systems, Man and
Cybernetics, Part B, vol. 35, no. 2, pp. 302-312, Apr.
2005.

[27] N. Srinivasan, and V. Vaidehi, “Anomaly detection
in a distributed environment using neural networks
on a cluster,” IASTED International Conference on
Communication, Network, and Information Security
(CNIS 2005), Phoenix, USA, Nov. 2005.

[28] C. H. Tsang, S. Kwong, and H. Wang, “Genetic-
fuzzy rule mining approach and evaluation of fea-
ture selection techniques for anomaly intrusion detec-
tion,” Pattern Recognition, vol. 40, no. 9, pp. 2373-
2391, Sep. 2007.

[29] W. Wang, and S. M. Bridges, “Genetic algorithm op-
timization of membership functions for mining fuzzy
association rules,” Proceedings of the 7th Interna-
tional Conference on Fuzzy Theory & Technology,
pp.131-134, Atlantic City, NJ, Feb. 27-Mar. 3, 2000.

[30] M. Wang, C. Zhang, and J. Yu, “Native API based
windows anomaly intrusion detection method using
SVM,” Proceedings of IEEE International Confer-
ence on Sensor Networks, Ubiquitous, and Trustwor-
thy Computing, vol. 1, pp. 514- 5191, Xi’an Jiaotong
University, China, June 05-07, 2006.

[31] L. A. Zadeh, “Outline of a new approach to the
analysis of complex systems and decision processes,”
IEEE Transactions on Systems, Man, and Cybernet-
ics, vol. SMC-3, pp. 28-44, 1973.

N. Srinivasan received a BE in Electrical and Electron-
ics Engineering in 2000 and ME in Computer Science
and Engineering in 2002 from the University of Madras.
He is a PhD candidate at the Department of Information
Technology of the Madras Institute of Technology, Anna
University, India. Since 2002, he has been involved in
several research projects focusing on Data and Network
security, Theoretical Computer science.

V. Vaidehi received her BE in Electronics and Com-
munication Engineering from College of Engineering,
Guindy, ME in Applied Electronics and PhD from Madras
Institute of Technology, Chennai. She was a recipient of
academic exchange fellowship of Association of Common
wealth Universities. She has carried out funded projects
on Tracking Algorithm for ship borne RADARS ?funded
by LRDE; GPS signal simulator funded by Ministry of In-
formation Technology; University Micro satellite funded
by ISRO; Semantic Intrusion Detection System funded by
Xambala Inc. Currently she is a Professor and Head of
Department of Electronics Engineering, Madras Institute
of Technology, Chennai. Her areas of interests are Net-
work security, Parallel processing and Embedded systems.

