
International Journal of Network Security, Vol.7, No.3, PP.428–435, Nov. 2008 428

Generalized Anomaly Detection Model for

Windows-based Malicious Program Behavior

Xin Tang, Constantine N. Manikopoulos, and Sotirios G. Ziavras

(Corresponding author: Sotirios G. Ziavras)

Electrical and Computer Engineering Dept, New Jersey Institute of Technology

Newark, NJ 07102, USA. (Email: ziavras@adm.njit.edu)

(Received June 24, 2007; revised and accepted Apr. 9, 2008)

Abstract

In this paper we demonstrate that it is possible in gen-
eral to detect Windows-based malicious program behav-
ior. Since S. Forrest et al. used the N-grams method to
classify system call trace data, dynamic learning has be-
come a promising research area. However, most research
works have been done in the UNIX environment and have
limited scope. In Forrest’s original model, “Self” is de-
fined based on a normal process whereas “Non-Self” cor-
responds to one or two malicious processes. We extend
this technique into the Windows environment. In our
model, “Self” is defined to represent the general pattern
of hundreds of Windows program behaviors; “Non-Self” is
defined to represent all program behaviors that fall out of
norm. Because of the difficulty in collecting program be-
havior, insufficient research results are available. We col-
lected around 1000 system call traces of various normal
and malicious programs in the Windows OS. A normal
profile was built using a Hidden Markov Model (HMM).
The evaluation was based on the entire trace. Our classi-
fication results are promising.

Keywords: Intrusion detection, Markov process, mali-
cious codes, program behavior

1 Introduction

1.1 Motivations and Objectives

Intrusion detection techniques focus on two schemes: the
misuse and anomaly schemes. In misuse detection, the In-
trusion Detection System (IDS) gathers information and
compares with known attack (malicious code) signatures.
For example, the signature for the Chernobyl/CIH virus
used by one Anti-virus vendor is the hexadecimal segment
[7]:

E800 0000 005B 8D4B 4251 5050

0F01 4C24 FE5B 83C3 1CFA 8B2B

In anomaly detection, the IDS defines a profile for nor-
mal (legal) activities; any deviation from this profile is
considered as a potential attack (malicious activity). By
information collecting, there are two detection approaches
for malicious code. One is static analysis that collects pro-
gram information regarding the code or the binary with-
out actually executing the code. Another is dynamic anal-
ysis that collects program information by actually execut-
ing the code. The information that is collected by execut-
ing the code is collectively known as program behavior.
The objective of this paper is to show that it is possible to
detect malicious program behavior and to present a gen-
eralized anomaly detection model for Windows-based ma-
licious program behavior. With the universal use of com-
puter infrastructure in the government, army, financial
institutions, educational institutions and other organiza-
tions, ever increasing important information is stored and
exchanged between computer systems. Therefore com-
puter security has become a critical issue. A broad cate-
gory of security threats represents malicious code (or ma-
licious executables; either term is used in the paper based
on context). Therefore containing the damage caused by
malicious code is of great value to computer infrastructure
and our society. To achieve this goal, two aspects must
be considered. One is currently known malicious codes
that are usually targeted by misuse detection systems,
like current Anti-Virus systems. The second aspect is the
capability to predict and prevent new malicious code.

1.2 Problem Statement

Since S. Forrest et al. [2, 4] pioneered relevant re-
search with UNIX sequential system call traces, research
on run-time program behavior has become a promising
area. However, due to difficulties in data collection, re-
sults are limited. They proposed the N-grams method,
where a profile of normal behavior is built by enumerat-
ing all unique, contiguous, length-N sequences that oc-
cur in training data. In the classification process, un-
matched sequences are labeled as anomalous. They em-
ployed the “Self” concept from biology. Matched N-grams

International Journal of Network Security, Vol.7, No.3, PP.428–435, Nov. 2008 429

are classified as “Self”; unmatched N-grams are “Non-
Self”. They formed normal data by repeatedly collecting
identical normal processes/programs; abnormal data by
repeatedly collecting abnormal processes/programs. Es-
sentially, one detection model was built for each normal
and corresponding malicious program. Because in normal
data there are basically similar (identical or almost iden-
tical) traces, it is easy to learn “Self” from similar traces.
On the other hand, if we get a new instance to classify,
we need to know what it is and which reference model to
compare it to. In biology, objects and subjects could be
healthy liver cell and liver cancer, or healthy lung cell and
lung cancer, etc. If a new instance comes in, we usually
know where it is from, and which model we should refer
to. In the computer world, things may be more compli-
cated. We do not know what a new instance is and which
model we should refer to. So a problem is raised. Can
we identify whether a program activity is benign or ma-
licious? We think it is possible. Not only the specific
but also the overall characteristics of individual benign
program activities and malicious program activities are
different. Also, in most cases we just need to know if it
is benign or malicious, not necessarily its exact kind of
program activity (cell).

Malicious attacks vary. Most attacks are initialed by
remote systems through the network. However, for most
of the malicious attacks, especially those that cause se-
vere damage to computer systems, damage eventually is
inflicted to a target system by executing binaries. So mon-
itoring execution profiles could be an effective approach
to predict and prevent malicious attacks. The program
behavior data which is collected from execution profiles
could be a better source in distinguishing between benign
and malicious codes. Besides that, we make here some
reasonable conclusions about the general characteristics
of benign and malicious codes. Normal programs used
by ordinary users are usually well written (by software
vendors), whereas malicious programs are usually written
by individuals and usually have more errors. But things
may not always keep the same. It is reported that more
and more European malicious code writers hold a gradu-
ate degree. These could be well trained and sophisticated
writers.

An attacker trying to access a computer system is simi-
lar with a thief trying to break into a house, whilst a legal
user trying to access a computer system is similar with
the owner entering his own house. Thieves usually are
not familiar with the environment. Malicious programs
will query more system and user information. Malicious
programs may focus more on registry access, file system
access, backdoor attempts and other anomalous attempts
than normal ones.

We extended S. Forrest’s work to generalized models
based on the Windows environment. Instead of repeat-
edly collecting identical process/program data, we col-
lected data from different programs. We built a normal
profile based on a group of these programs. We collected
data from 493 normal Windows programs and 525 abnor-

mal Windows programs. To the best of our knowledge,
our data is by far the largest collection of program behav-
ior traces of both benign and malicious codes.

1.3 System Architecture

A large set of executables were obtained from commonly
available sources to provide the data to our approach.
Program behavior data was collected by executing the
programs under the Windows OS. This is a novel re-
search that no one has done before. Currently, there is
no suitable dataset available. No real world malicious
data was collected, because malicious executables may in-
fect or crash the computer system. So a special testbed,
Microsoft Virtual PC, was implemented to limit the dam-
age of malicious executables. Malicious program behavior
data was collected in the Microsoft Virtual PC, whereas
normal program behavior data was collected in the regu-
lar Windows OS. After statistical pre-processing, features
were selected and extracted. The dataset was further split
into training and test sets. The training set was used to
generate the normal profile based on the Hidden Markov
Model. The test set was used to do validation. The fi-
nal step was to feed test data into a classifier and get
detection results.

1.4 Roadmap of this Paper

This paper is organized in the following manner. Section 2
discusses related research works on program behavior de-
tection. Section 3 discusses malicious executables and also
presents the data collection process. Section 4 presents
a forward detection model: Hidden Markov Model. We
conclude the paper in Section 5.

2 Related Work

D. E. Denning [1] established the theoretical foundation
for anomaly detection by proposing a general-purpose
model for anomaly IDS in 1986. The model is based on
the assumption that malicious activities are different from
normal activities and could be detected by monitoring
system audit information. The model built a framework
to implement anomaly detection. It is independent of any
particular system, application environment, system vul-
nerability, or type of intrusion. In 1994, J. O. Kephart
[6] first designed the framework for a computer immune
system which is alike vertebrate immune systems; it was
expected to have the abilities of recognition of known in-
truders, to learn about previously unknown intruders.

S. Forrest et al. [2, 4] first brought intrusion detection
research interest into program behavior data for UNIX
privileged processes. Processes/programs are viewed as
black boxes; observables can be monitored as the run time
characteristics of processes/programs. System calls are
good observables because they involve system resources
accessed by processes/programs. The authors also intro-
duced the “Self” and “Non self” concepts from immune

International Journal of Network Security, Vol.7, No.3, PP.428–435, Nov. 2008 430

systems. In an immune system, discrimination is based
on a characteristic structure called peptide, a short pro-
tein fragment. So they proposed the N-grams method,
where a profile of normal behavior is built by enumerat-
ing all unique, contiguous, length-N sequences that occur
in training data. In the classification process, unmatched
sequences are labeled as anomalous. Forrest et al brought
anomaly detection into a new realm. Because data from
system calls display sequential and ordered behavior, this
data contains rich information for anomaly detection.

Later on, researchers extended the N-grams approach
by applying machine learning algorithms, such as neural
networks or rule-based classifiers. C. Warrender et al.
[8] used Hidden Markov Model (HMM) to model sequen-
tial system call traces. They took advantage of HMM to
classify the entire trace instead of dividing the trace into
N-grams, so they could capture the long range depen-
dencies in traces. C. Zou [10] tried HMM to model the
user’s behavior. The results were not good for the fol-
lowing reasons: (1) user behavior data that he used was
collected from a company giving too little information to
distinguish between normal and anomaly behaviors. (2)
Anomaly intrusion detection is a very hard topic. By
now, it is still primarily an academic research area in its
infancy. (3) HMM is suitable for sequence classification in
one-dimensional data, like voice wave or spectrum. Some
anomaly detection data are multi-dimensional sequences
with continuous and discrete variables intertwined. In
such cases, it seems that using HMM alone is not quite
suitable for the anomaly intrusion detection task. N. Ye
et al. [9] used first order and high order stochastic models
to classify sequential audit event data. They captured the
transition of events for intrusion detection. They calcu-
lated the event transition probabilities and evaluated the
joint probability of sequences to classify intrusive events.

3 Data Collection

3.1 Malicious Codes and Data Collection

1) Malicious codes

A comprehensive and well classified data set of mali-
cious codes was integral to our study of analyzing and
detecting malicious binaries in Microsoft Windows
systems. We were greatly helped by the availability
of such data on the Internet. Several categories of
malicious code were collected from a mirror website
of VX Heavens [3]. The current malicious codes are
typically named as follows:

TopLevelCategory.SubCategory.MalwareName.Variant

For example, backdoor.win32.darkftp.14 is a mali-
cious file. The Top level category is backdoor; the
Sub-Category field is win32; the malicious name field
is darkftp; the Variant field is 14. The Top level cate-
gory field describes the type of malicious code and is
useful in determining the intended effect of the ma-
licious code. For example, Email-flooder would send

Table 1: Count of malicious codes by file type

Malicious codes by target Count of malicious
platform or application codes
BAT 1521
Java 60
VBS 896
IIS 55
MS Excel 311
MS Word 2723
DOS 18733
Win32 10135
Win16 484
Linux 188
Unix 95

out a large number of emails. A Backdoor would
most likely provide a secret open-port or an access
authentication which only the attacker is aware of.
The Sub-Category field represents the target pro-
gram or platform which the malicious code is attack-
ing or exploiting. The malicious name field is what
that program is most popularly known as on the In-
ternet. The Variant field is usually a small modifica-
tion to the original malicious code and is represented
with either a number or a letter in the alphabet de-
pending on the number of variants available.

We focus here only on Win32 malicious executables.
Table 1 shows the distribution of malicious codes
based on their file type. DOS malicious codes are
the most frequent; they have been steadily on the
decline while the number of Win32 malicious codes
has risen sharply in recent years. The Win32 plat-
form is currently the dominant operating system in
the personal computer arena. These are the reasons
for focusing exclusively on the Win32 file types in
this study.

As intrusion detection techniques evolve, the Win-
dows operating system evolves as well. We have al-
ready experienced the DOS, Win16, and Win32 op-
erating systems, and the next generation will be a
Win64 platform. In this study, the benign executa-
bles, malicious executables and data collection com-
ponents are related to the Win32 platform. However,
the profile generation and detection models are plat-
form independent. So we can apply our approach to
other platforms without significant modification.

Malicious codes can also be classified by the file in-
fection techniques that they implement. Each file in-
fection technique specifies what malicious activity is
to be performed. For example, an overwriting mali-
cious code simply locates a critical file and overwrites
it completely with its own code. One obvious effect
of such viruses is that the system may then be in-
capable to perform its basic functions. If we knew

International Journal of Network Security, Vol.7, No.3, PP.428–435, Nov. 2008 431

the file infection techniques used by malicious codes,
it could help us understand their program behavior
pattern by comparing with their intended activities.
But such information is not readily available. Thus,
we stick to the first taxonomy of malicious codes.

2) Safe Execution Environment and Malicious Data
Collection

One major difficulty of malicious data collection is
that we do not know how much damage the system
is exposed to when critical executables are run. The
bottom line is that we cannot allow the malicious
executables infect or crash the physical machine. A
safe execution environment is needed for running un-
trusted programs. Our solution is to build a virtual
environment and run the malicious executables on
the virtual platform. Therefore, we could contain
any potential damage to the physical machine.

The virtual platform was set up by using Microsoft
Virtual PC 2004, which is a powerful software vir-
tualization solution that allows us to run multiple
PC-based operating systems simultaneously on one
workstation, providing a safety net to maintain com-
patibility with legacy applications while migrating
to a new operating system. It also saves reconfig-
uration time, so support, development, and training
assignments can be done more efficiently. The Vir-
tual PC technology serves a variety of purposes. Key
applications for Microsoft Virtual PC 2004 include
legacy application support, tech support, training,
and consolidation of physical computers; it provides
a safety net for OS migration, execution of critical
programs/applications, and rapid reconfiguration.

The Virtual PC provides a running time environment
which is not much different than the one on the real
system. In addition, the Virtual PC platform pro-
vides a two-way isolation environment from the host
operating system. Programs running on the Virtual
PC are not given read-access and write-access to the
host environment. Read-access and write–access are
restricted within the virtual environment. So even
under severe consequences of malicious code execu-
tion, only the virtual environment will be infected,
aborted, or crashed. Under careful operation, we
fully contain any damages caused by malicious ex-
ecutables inside the virtual platform without affect-
ing the host machine. Similarly, W. Sun et al. [3]
proposed a safe execution environment tool called
Alkatraz which provides a one-way isolation for the
host system. Programs running within the safe exe-
cution environment are given read-access to the host
system, whilst write access is restricted within the
safe execution environment.

3.2 Data Types

In contrast to static analysis, dynamic analysis involves
the actual execution of a file to collect run-time data. This

technique has certain advantages over static analysis, such
as the availability of de-obfuscated data, real-time execu-
tion sequence data, actual values for operating system call
parameters, etc. In our approach we collect data for the
following:

• System calls.

• Registry accesses.

• File system accesses.

System call data provide comprehensive information
on system call sequences. Registry access data contain
information for registry calls made by a program/process
at run-time. File system access data contain information
for file system calls made by a program/process at run-
time. Both of the last two types of data are a special
subset of system calls.

A system call is a software interrupt used by an ap-
plication program to request service from the operating
system. System calls often use a special machine code
instruction which causes the processor to change mode or
context (e.g. from the “user mode” to the “protected
mode”). As with the Hexdump utility, a tool called
‘Strace’ is available on UNIX or Windows operating sys-
tems; it is a popular tool used to print the trace of system
calls made by a process/program.

4 Forward Detection Model

4.1 Introduction

In anomaly detection systems, the critical component
is normal profile generation. The normal profile forms
the foundation for anomaly detection. A poorly estab-
lished profile cannot serve reliable prediction and detec-
tion of malicious attacks. A good profile includes proper
data, feature selection, physical logic, and a mathemati-
cal model. We will briefly explain these components. Our
preliminary investigation found out that registry access
data and file system access data are basically subsets of
the system call trace data. So we focus on system call
traces to build profiles. System call trace data look like:

1 133 139 NtOpenKey (0x80000000, {24, 0, 0x40, 0, 0,
“\Registry\Machine [...]

2 133 139 NtCreateEvent (0x100003, 0x0, 1, 0, ...
(0x71951000), 4096, 4,)) == 0x0

3 133 139 NtAllocateVirtualMemory (-1, 1243984, 0,
1244028, 8192, 4, ...) == 0x0

4 133 139 NtAllocateVirtualMemory (-1, 1243980, 0,
1244032, 4096, 4, ...) == 0x0

5 133 139 NtAllocateVirtualMemory (-1, 1243584, 0,
1243644, 4096, 4, ...) == 0x0

.

International Journal of Network Security, Vol.7, No.3, PP.428–435, Nov. 2008 432

The first column is an identity, which lets you match up
calls that do not complete immediately (and are broken
into two lines). The second and third columns are the IDs
of the process and thread making the call. Next is the
name of the system call, the input parameters, three dots
(...), then output parameters, and the return code. The
useful information is the system call, input parameter and
output parameter. However, we will only use the system
call information. First, the input parameters and output
parameters could be highly environment dependent. For
example, one system call is:

NtOpenFile (0x100020, {24, 0, 0x40, 0, 0,
“C:\Program Files\MATLAB\Man.Manifest”}, 5,
96, ... 56 == 0x0

Even under the same operating system, the path pa-
rameter could be varied. What we want is a profile that
is independent of any particular system or application en-
vironment. If we stick to specific parameters related to
individual programs, then we will have trouble identifying
the general patterns of normal and malicious programs.
This, in turn, will defeat our purpose of anomaly detec-
tion for new threats. Also, there may be millions of input
and output parameters that could require extraordinary
computing resources, if they were to be accounted for.
Windows 32 systems have more frequently used system
calls than UNIX systems, but their total number is still
in the hundreds.

By carefully investigating the data, we also found some
“physical reasoning” for anomaly detection. Normal pro-
grams used by ordinary users are usually well written
(by software vendors), whereas malicious programs are
usually written by individuals and usually have more er-
rors. For example, normal programs usually call multi-
ple objects, whereas malicious programs usually call only
one object; malicious programs also raise more exceptions
than normal programs. From our collected statistics, we
found out that “NtWaitForMultipleObjects” has higher
frequency in normal program behavior, and “NtWaitForS-
ingleObjects” has higher frequency in malicious program
behavior. A hacker trying to access a computer system
is similar to a thief trying to break into a house, whilst
a legal user trying to access a computer system is similar
to the owner entering his own house. Thieves usually are
not familiar with the environment, so malicious programs
will query more system and user information. Malicious
programs also have more registry accesses, file system ac-
cesses, backdoor attempts and other anomalous attempts
than normal ones. Table 2 shows data for some system
calls that support the above reasoning.

System call trace data is sequential data. We can view
the system call trace as a discrete-time stochastic pro-
cess. A discrete-time stochastic process is a sequence
X1, X2, X3, ... of random variables. The range of these
variables, i.e. the set of their possible values, is called
the state space. The value of Xi is the state of the

Table 2: Some system call counts for normal and mali-
cious programs
System call name Count in all Count in

normal malicious

programs programs

NtWaitForMultipleObjects 101317 6571

NtWaitForSingleObject 14872 118724

NtQueryVirtualMemory 17497 3681

NtDelayExecution 14503 234143

NtRaiseException 519 27911

NtUserSystemParametersInfo 581 7030

NtQuerySystemInformation 6235 22355

.

Total number of system calls 1028600 2507000

process at time i. The conditional probability distribu-
tion of Xi+1 on past states is shown as the function:
Pr(Xi+1 = x|X1, X2, X3, ..., Xi).

In most circumstances, the conditional probability dis-
tribution of Xi+1 on past states is a function on Xi alone:

Pr(Xi+1 = x|X1, X2, X3, ..., Xi) = Pr(Xi+1 = x|Xi)

The identity above identifies a Markov chain, and the
conditional distribution is called the transition probabil-
ity of the process. The Markov chain serves as a pow-
erful mathematical tool to deal with a random process;
it has many applications in physics, biology, statistics,
geostatistics, etc. Since Forrest et al. used N-grams for
sequential system call trace data, most of the researchers
have explicitly or implicitly assumed Markov chains or
state transitions in program behavior analysis. Basically,
they built the normal profile by explicitly or implicitly
computing the state transition probabilities, then evalu-
ated the conditional probability of an incoming instance
(trace or segments) based on the built profile. We name
such attempts forward models. We implemented forward
models in our solution.

We extended “Self” into a more general concept. In our
context, the family of all good cells (all normal program
behaviors) are defined as “Self”, while all other cells (be-
haviors) falling out of the boundary of “Self” are defined
as “Non-self”. Instead of repeatedly collecting identical
process/program data, we collected data from different,
unique programs. We collected data from 493 unique, nor-
mal Windows programs and 525 unique, malicious Win-
dows programs. Basically, we built a normal profile based
on system call traces collected from different normal pro-
grams, and used this profile to detect anomalies due to
malicious program behavior.

4.2 Hidden Markov Model

HMM is a doubly stochastic process that has been widely
used in speech recognition and DNA sequence model-
ing. Each HMM contains a finite number of observable
and hidden states. From the normal data, we train the
HMM to maximize the likelihood of training sequences.
Then we use the trained HMM to calculate the likeli-

International Journal of Network Security, Vol.7, No.3, PP.428–435, Nov. 2008 433

Si — States of the Markov model.
aij — Transition probabilities.
bj — Output probabilities.
vi — Observable outputs.

Figure 1: An illustration of the hidden Markov model

hood (log-likelihood) of testing traces. If the likelihood
(log-likelihood) is low, it is likely to be a malicious trace;
otherwise, it is probably a normal trace.

In the Hidden Markov Model [5], a sequence is modeled
as λ = (A, B, π) where:

A = {aij} is the state transition probability from state
Si to state Sj , aij = P (Xt+1 = Sj |Xt = Si), 1 ≤
i, j ≤ N ;

S = {S1, S2, ..., SN} is the finite set of possible states;

B = {bj(k)} is the set of observation symbol probabili-
ties at state Sj of time t, bj(k) = P (vk|Xt = Sj), 1 ≤
j ≤ N, 1 ≤ k ≤ M ;

V = {v1, v2, ..., vM} is the finite set of possible observa-
tions;

π = {πi} is the initial state distribution, πi = P (Xi =
Si), 1 ≤ i ≤ N .

HMM learning can be conducted by the Baum-Welch
or forward-backward algorithm [5], an example of a gen-
eralized Expectation-Maximization algorithm. An esti-
mation of parameters λ = (A, B, π) is first initialed. Af-
ter the learning process is applied with the training set,
the normal profile can be modeled with the HMM of
λ = (A, B, π).

In our problem, the normal traces are basically differ-
ent from each other, so “Self” is difficult to learn from
normal traces, because “Self” needs some repetitions to
be reinforced. So we broke the normal traces into N-
grams; this way we get some repetitions from the list of
N-grams. Also, by utilizing N-grams, we do not need to
consider the varied length of the training traces.

The standard HMM requires a fixed number of states,
so we must decide on their number before training. Clas-
sic theory shows that a good choice for the application is
to choose a number of states roughly corresponding to the
number of observation states, i.e. the number of unique
system calls used by the programs. Therefore, choosing
the number of states depends on the dataset used in the
experiments. The Windows OS has more system calls
than the UNIX OS. And we model hundreds of different
normal program traces, instead of one program/process
trace. In the original data, we have more than 400 ob-
servable states. The dimensionality is too large. It will
cause problems in training and increase the computational
cost. Previous works have used 20-60 observable states.
So we selected some system calls (around 30) based on
the frequency of appearance and difference in frequency
between normal and malicious traces; we combine all the
other low frequency system calls into one observable state.
The reasons are: (1) if we consider these very low fre-
quency system calls, they will bring certain oscillation
into the performance of the model; (2) If there is an un-
seen observable state in the evaluation data, it will be
very difficult for the HMM to handle; this situation is
pretty normal in malicious activities; (3) finally, we have
to consider the computation cost, even if we lose slightly
on accuracy. Most of the time, a trade off is required for
a good balance.

Given a testing system call trace, most efforts use a
sliding window of length N to move along the trace to get
short sequences; then they evaluate those N-grams. By
this process, they avoid considering the effect of varied
length of traces. However, we modified the evaluation and
the detection components. Instead of short sequences, we
evaluate the whole sequence of each trace. By this, we
can learn some overall characteristics for each trace. But
traces are of different length. As we know, generally the
longer the trace, the less the likelihood (or probability) of
this trace, based on the learning HMM. So we identified
a relationship between the length and the likelihood of
traces.

The evaluation is based on the normal profile λ =
(A, B, π) from the learning process. The likelihood
P (OS|λ) (or probability) of a given output observable
sequence OS = {OS1, OS2, OS3, ..., OSN} was evaluated
by the forward algorithm. For scaling purposes, instead
of the likelihood, we use log-likelihood log(P (OS|λ)) of
the sequence.

We used the proposition that there is roughly a linear
relationship between the length and the log-likelihood of
normal traces. We give a simple proof here. Let’s say we
have two homogeneous sequences: X = {X1, X2, ..., XN},

and Y = {Y1, Y2, ..., YM}, with log(P (X|λ))
Length(X) ≈ k,

log(P (Y |λ))
Length(Y) ≈ k, and k is a constant, then for the com-

bined sequence Z = {X1, X2, ..., XN , Y1, Y2, ..., YM}, we

International Journal of Network Security, Vol.7, No.3, PP.428–435, Nov. 2008 434

Table 3: Classification result (experiment 1): number of
states = 30, number of observations = 31

525 abnormal 156 normal
files files

Correctly classified 456 (86.9%) 139 (89.1%)
(rate)

Misclassified 69 (13.1%) 17 (10.9%)
(rate)

have

log(P (Z|λ))

= log(P (X |λ) ∗ P (Y1|XN) ∗ P (Y |λ))

= log(P (X |λ)) + log(P (Y1|XN)) + log(P (Y |λ)).

log(P (Z|λ))

Length(Z)

=
log(P (X |λ)) + log(P (Y1|XN)) + log(P (Y |λ))

N + M

≈
k ∗ N + O(1) + k ∗ M

N + M

= k +
O(1)

N + M
≈ k.

This could be viewed as a special case of the large num-
ber theorem. A large data set (here a long sequence) will
show some average statistical pattern. This conclusion
was also empirically verified by the data we collected. In
a testing data set of 101 normal traces, the correlation co-
efficient of their length and their log-likelihood (based on
the normal profile) is -0.996. It is quite close to -1, which
means that k is a negative constant. The normal traces
share some homogeneous characteristics. In a testing data
set of 525 malicious traces, the correlation coefficient of
their length and their log-likelihood (based on the nor-
mal profile) is -0.876, which means that they are not so
homogeneous.

Once the normal profile was built, it is obvious that
normal traces are more similar to the normal profile than
malicious traces. In general, normal traces may require
likely transitions, and malicious traces may need more
unusual transitions. So normal traces will give higher
log-likelihood (likelihood) values, and malicious ones will
give lower log-likelihood (likelihood) values relatively to
their length. So we define the anomaly index for trace T

as:

AI(T) = −
log(likelihood(T))

Length(T)
.

The negative sign just makes the anomaly index posi-
tive. A threshold was determined. If the anomaly index
was larger than the threshold, then the trace will be con-
sidered as anomalous.

Table 4: Classification result (experiment 2): number of
states = 20, number of observations = 33

525 abnormal 156 normal
files files

Correctly classified 327 (62.3%) 136 (87.2%)
(rate)

Misclassified 198 (37.7%) 20 (12.8%)
(rate)

Table 5: Classification result (experiment 3): number of
states = 33, number of observations = 33

525 abnormal 156 normal
files files

Correctly classified 438 (83.4%) 136 (87.2%)
(rate)

Misclassified 87 (16.6%) 20 (12.8%)
(rate)

4.3 Experimental Results

Some experimental results are shown in Tables 3, 4, 5.
From the experiments we found out that when the num-
ber of states is close to the number of observations in
HMM, a better classification result will be derived, which
has already been asserted by others. If we focus on exper-
iments 1 and 3, we observe 85-88% overall accuracy on all
testing traces, and 83-87% accuracy on testing malicious
traces.

5 Conclusion

We presented an anomaly detection model based on pro-
gram behavior in the Windows environment. To the best
of our knowledge, this is the first effort focusing on dy-
namic analysis. We built a profile for normal behavior
based on Hidden Markov Model. The results are very
promising. Our analysis could benefit from additional
real world data. In the near future, we hope that we can
collect more real scenario data to implement our frame-
work in real time, and also to improve its execution per-
formance.

References

[1] D. E. Dening, “An intrusion detection model,” Pro-
ceedings of IEEE Symposium on Security and Pri-
vacy, pp. 118–133, 1986.

[2] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A.
Longstaff, “A sense of self for unix processes,” Pro-
ceedings IEEE Symposium on Computer Security and
Privacy, pp. 120–128, 1996.

[3] VX Heavens, accessed May 11, 2007. (http://vx.
netlux.org/)

International Journal of Network Security, Vol.7, No.3, PP.428–435, Nov. 2008 435

[4] S. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion
detection using sequences of system calls,” Journal
of Computer Security, vol. 6, pp. 151-180, 1998.

[5] K. Jain, and R. Sekar, “User-level infrastructure for
system call interposition: A platform for intrusion
detection and confinement,” Proceedings of Network
and Distributed Systems Security Symposium, 2000.

[6] J. O. Kephart, “A biologically inspired immune sys-
tem for computers,” Artificial Life IV: Proceedings of
the 4th Int’l Workshop on Synthesis and Simulation
of Living Systems, pp. 130-139, MIT Press, 1994.

[7] R. Wang, Flash in the pan?, Virus Bulletin, Virus
Analysis Library, July 1998.

[8] C. Warrender, S. Forrest, and B. Pearlmutter, “De-
tecting intrusions using system calls: Alternative
data models,” Proceedings of IEEE Symposium on
Security and Privacy, pp. 133-145, 1999.

[9] N. Ye, T. Ehiabor, and Y. Zhang, “First-order versus
high-order stochastic models for computer cntrusion
detection,” Quality and Reliability Engineering In-
ternational, vol. 18, pp. 243-250, 2002.

[10] C. Zou, Using Hidden Markov Model in Anomaly
Intrusion Detection, University of Central Florida,
Accessed Oct. 6, 2006. (http://www.cs.ucf.edu/czou
/research.htm)

Xin Tang received his B.S. degree in pure mathematics
from Peking University, China, in 1992, M.S. degree in
applied mathematics from New Jersey Institute of Tech-
nology, U.S.A., in 2000, and the Ph.D. degree in computer
engineering from New Jersey Institute of Technology
in 2007. His research interests include intrusion detec-
tion, pattern recognition and program behavior detection.

Constantine M. Manikopoulos received his Ph.D.
degree from Princeton University. He was an Associate
Professor in the ECE Department at NJIT until 2007.

Sotirios G. Ziavras received the Diploma in EE from
the National Technical University of Athens, Greece, in
1984, the M.Sc. in Computer Engineering from Ohio Uni-
versity in 1985, and the D.Sc. degree in Computer Science
from George Washington University in 1990. He was a
Distinguished Graduate Teaching Assistant at GWU. He
was also with the Center for Automation Research at the
University of Maryland, College Park, from 1988 to 1989.
He is a Professor in the ECE Department at NJIT. He
is an author of about 140 research papers. He is listed,
among others, in Who’s Who in Science and Engineer-
ing, Who’s Who in America, Who’s Who in the World,
and Who’s Who in the East. His main research interests
are computer architecture, reconfigurable computing, em-
bedded computing systems, parallel and distributed com-
puter architectures and algorithms, and network router
design. He is a senior member of the IEEE.

