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Abstract

In this paper we present a novel dynamic verification ap-
proach to protect the local host confidentiality from mali-
cious Java mobile code. In our approach we use Bytecode
Modification to add the verification function to the Java
mobile code’s class files before the local JVM executes
them. Thus the verification work is done when the host
JVM executes the modified class files. By this way our ap-
proach could achieve higher verification precision because
the verification is done in runtime. Furthermore our ap-
proach can deal with the information flow in exception
handling, which makes our approach more practicable.

Keywords: Bytecode modification, dynamic verification,
host confidentiality, mobile code

1 Introduction

Mobile code computation brings great opportunities as
well as the problems of security. A malicious mobile pro-
gram could try to observe, leak or alter the information it
is not authorized on a host. It has been a general consen-
sus that security is the key to the success of mobile code
computation.

In this paper we try to address the Java mobile code’s
security problems concerning the host confidentiality,
which means that sensitive information should be pro-
tected from leaking through unauthorized channels. Con-
sidering all mobile code as malicious and rejecting them
can give the host the maximum security. But it is the
most useless method. Our objective is to verify the Java
mobile code precisely as much as possible, that is, to let
the mobile code that will not cause any data leaking to
pass our verification as many as possible.

Some protection techniques such like Authentication,
Access Control and Secure Information Flow have been
used to prevent host data from leaking to unauthorized
hosts in mobile code systems. Compared to simply in-
formal endorsement such as Authentication and Access
Control, the Secure Information Flow, a kind of program-
analytic mechanisms, is more precise. Though the ap-

proaches in [1, 2, 3] are based on the Secure Information
Flow theory, they neglect the distinctiveness of security
demand in mobile code systems and assign security-levels
(denoting the clearance) to information carriers (objects,
method’s parameters and return value, etc.) in the mo-
bile code. These works set unnecessary restrictions in the
verification procedure and result in impairment to verifi-
cation precision. In [4, 11] the authors presented security
models fitted for the mobile code system and achieved
better verification precision than those in [1, 2, 3]. But
all those approaches are static approaches. They cannot
achieve satisfying verification precision in implicit infor-
mation transferring because of the inherent limitation of
static verification approaches, which is that it is impos-
sible for them to judge which branch of the implicit in-
formation transferring will be executed in runtime. Fur-
thermore the static approaches cannot trace the informa-
tion flow in the exception handling because exceptions are
thrown dynamically during the execution, which makes
the static approaches lose the practicality.

To improve the verification precision further and re-
solve the security verification problem of exception han-
dling, we meliorate the security model in [11] and bring
forward a dynamic verification approach in this paper. By
bytecode modification, we add the verification function to
the downloaded mobile code before the code is submitted
to the local JVM. Then during the execution of the mod-
ified mobile code, the JVM will execute the verification
function as well as the original functions of the mobile
code. Since the verification is done in runtime, we can
get better verification precision than [4, 11] and resolve
the verification problem of exception handling.

The rest of this paper is organized as follows. At first
we define the security model in Section 2. Then we intro-
duce the bytecode modification method in Section 3 and
analyze the information transferring in exception han-
dling of Java bytecode in Section 4. At last we draw
a conclusion in Section 5.
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2 Security Model

In [6, 7], Dorothy Denning laid the foundation of the Se-
cure Information Flow theory. In the theory, a security
system is composed of a set S of subjects and a disjoint
set O of objects. Each subject s € S is associated with
a fixed security classC/(s), denoting its clearance. Like-
wise, each object o € O is associated with a fixed security
class C(0), denoting its classification level. The security
classes are partially ordered by a relation <, and < forms
a lattice. A subject may only read objects with classi-
fication level no higher than its clearance, but may only
write to objects with classification level not lower than its
clearance.

In mobile code systems, the objects are the files con-
taining sensitive information on the host we need to pro-
tect (we refer to it as the local-host) and the subjects are
all the other hosts trying to get information from the lo-
cal host (we refer to them as observer-hosts). Therefore
security classes denoting classification levels should be as-
signed to the files on the local-host, and security classes
denoting the clearance should be assigned to observer-
hosts. As for the mobile code, it is just the intermediate
between objects and subjects. It is not necessary to assign
any security class to the mobile code or its information
carriers.

Before the mobile code leave the local-host, the infor-
mation being transferred in the mobile code is not leaked
yet. It is when the mobile code tries to send information
to any observer-hosts that data-leaking may be caused.
Therefore it is not necessary to set any restriction or do
any checking when information is being transferred in mo-
bile code. Instead, what we need to do is only tracing and
recording the information flow in the mobile code. By this
way when the mobile code tries to send information to an
observer-host, we can understand the information’s clas-
sification level and check whether the observer-host has
the right to get the information.

The works in [2, 3, 11] assign security levels to the in-
formation carriers in the mobile code, which denote both
the clearance of carriers and the classification levels of the
information in carriers. This mistake leads to a second
mistake that they detect data-leaking when the informa-
tion is still being transferred in the mobile code. These
two mistakes result in unnecessary restrictions in verifica-
tion procedure and reduce the verification precision.

Based on the analysis above, we give the definition of
basic conceptions and the security model as follows.

1) Security-level. In our approach, we refer to the se-
curity class denoting classification level as security-
level. The security-level indicates the host files’ sen-
sitivity. The higher the security-level is, the more
sensitive the file is. All the information stored in a
file get the file’s security-level.

2) Clearance-level. In our approach, we refer to the
security class denoting clearance as clearance-level.
The clearance-level indicates the trust level of an
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observer-host to receive the information on the local-
host. The higher the clearance-level is, the more
trustful the observer-host is.

3) Data-leaking. In our approach the data-leaking is
defined as that the mobile code sends sensitive in-
formation to an unauthorized observer-host, that is,
the security-level of the information is higher than
the clearance-level of the observer-host.

4) Data-leaking channel. We define the way by
which the mobile code may cause data-leaking di-
rectly or indirectly as a data-leaking channel. The
action of detecting data-leaking should be done at
every data leaking channel in the mobile code. In mo-
bile code systems, data-leaking channels have three
types: 1) the mobile code requests an Internet link,
2) the mobile code moves to next destination and
3) the mobile code writes information to a host file.
The former two are direct channels for the malicious
mobile code to leak sensitive information. We should
compare the security level of the information to be
sent with the clearance-level of the observer-host to
receive the information. The latter one is an indirect
channel. If the information’s security-level is higher
than the file’s security-level, such operation will re-
duce the information’s security-level and may cause
a data-leaking later. Therefore we should compare
the security-levels of the information and the file.

Definition 1. Let DLC be a data-leaking channel in
one mobile code. Let I be the information to be sent
at theDLC and D be the information destination (the
observer-host or the file on the local-host) at the DLC.
Denoting by Li the security-level of I and by Lp the
clearance-level or security-level of D, a DLC is secure
if and only if the following property holds:

L; < Lp.

Definition 2. Let MC is a mobile code. MC' is secure
if and only if each DLC'" in the MC' is secure.

3 Bytecode Modification Method

This section outlines the bytecode modification method
implementing our security model dynamically. We first
introduce the general idea of the modification method.
Then we describe the tow main parts of the modification
in detail. In this paper, the bytecode with the multi-
dimension array is not considered. We will extend our
research to cover it in the future work.

3.1 Overview

Why Dynamic Verification. By now the works about
mobile code security are almost static verification ap-
proaches. The static approach verifies the mobile code
before the local JVM executes the code and it will not
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slow the execution. But the static approach could not get
any runtime information (such as which branch of a condi-
tional structure will be executed, where an exception will
happen, and so on). This serious limitation affects the
verification precision badly and may make the static ap-
proach to loose practicality. To prevent the data-leaking,
the static approach has to verify each branch of one im-
plicit transferring respectively, and use the Least Upper
Bounder (LUB) of all results as the final result. Such
operation has a big probability to verify the mobile code
as malicious because of the braches that are not executed
in runtime. Therefore the verification precision of static
approaches is not satisfiable. Considering our object, we
implement the security model by dynamic approach to
get better verification precision. And we use some skills
to reduce the additional overhead in runtime caused by
the dynamic verification.

Why Bytecode Modification. To achieve dynamic
verification, we select bytecode modification to implement
our security model. Although the customable JVM could
achieve the same purpose as the bytecode modification,
the customable JVM looses the portability, which is one
of the most important advantages of Java. To preserve
Java’s promise “Write Once, Run Anywhere”, we use
bytecode modification rather than customable JVM to
achieve dynamic verification. And Java has tow proper-
ties that assist the bytecode modification. Transportable
Java code arrives from the network as class files: these
class files retain a great deal of symbolic information, al-
lowing the receiver to determine the structure of the class
and to modify it on-the-fly. Methods are represented as
JVM bytecode: since JVM bytecode are stack instruc-
tions, it is relatively easy to splice new code into existing
methods.

Load-time Modification. In the program develop-
ment life cycle, we choose the load-time to apply the byte-
code modification. All the mobile code downloaded to
the local host are loaded to the JVM by one class loader.
Load-time modification is precisely late enough that the
modification cannot burden other users, and yet early
enough that the JVM is unaware that any modification
has taken place, and the modified class is still verified
by the JVM before it is accepted. Furthermore, Java is
an ideal environment for load-time modification because
the JVM uses a user-extensible class loader to locate and
load new classes on demand. The class loader could be
used to apply the bytecode modification to every class file
brought into the local environment.

Modification Content. To apply our security model,
we should trace the information transferring and detect
data-leaking in mobile code. We add new data containers
to store the security-levels of the information held by the
information-carriers in mobile code. We insert additional
instructions to calculate the change of the security-levels
caused by information transferring, both the transferring
among information-carriers in one method and the trans-
ferring between methods. At each data-leaking channel
we insert instructions to check whether it is a secure chan-
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nel. So the bytecode modification in our approach is com-
posed of tow main parts, class redefinition and instruction
insertion.

3.2 Class Redefinition

Security-Level Containers Adding. As mentioned
above, we should add new data containers to store
security-levels of the information held by information-
carriers in mobile code at first. We refer to the added
containers as security-level containers. The JVM is a
stack machine manipulating an operand stack and a set
of local registers for each method and a heap containing
object instances. The elementary information-carrier in
JVM bytecode could be the element of operand stack, the
local register or the field of an object instance. Thus we
need to add security-level containers for the information
held by these elementary carriers respectively.

For the local register, we allocate an additional reg-
ister as the security-level container of the information
in the original register. In the attributes table of
the method_info structure, the Code attribute defines
the maximum size of the local registers in the item
max_locals. To allocate more local registers, we reset
the value of the item maz_locals to the twice of the orig-
inal size at first. And we insert a new register behind one
original register as the security-level container for the in-
formation in original register, and recalculat the local reg-
isters’ indices in instructions. By this way it is convenient
to calculate the index of one local register’s security-level
container (the index of the local register plus one). We
give an example of allocating new registers as seceurity-
level containers in Figure 1.

0| Rf |——0| Ry
1 P | —1 P,
1| P, |——2| P
3 L, |—3 ;

Ia
mb_'
L
- | B
by

Figure 1: An example of allocating additional local reg-
isters. Ref is a reference to the method’s instance. P;
and P, are the parameters of the method. V; and V%,
are the local variables in the method. SL; and SLy are
the security-levels of the information in V; and V5 respec-
tively.

For the element on the operand stack, we allocate an
additional stack element as the security-level container of
the information in the original element. Similar to the
local registers, we reset the value of the item max_stack
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defining the maximum size of the stack to the twice of
original size. We store the security-level of the informa-
tion in one stack element to the element just before the
original one. We give an example of allocating new stack
elements as security-level containers in Figure 2.

E, \ SL,
E2 E3
E, SL,
EZ
SL,
E.i'

Figure 2: An example of allocating additional operand
stack. FE7, FE5 and FEj5 are the elements on the operand
stack. SLi, SLy and SL3 are the security-levels of the
information in Ey, Fy and Ej3 respectively.

For the class field, we add an additional filed as the
security-level container of the information in the original
filed of primitive types and type String. No matter what
type original field is, the added field’s type is byte because
all security-levels are integers. The added field’s name is
the original field’s name suffixed with ”_SL”. The added
field has the same access flag as the original one. Since
there are no ordering constraints on the Constant Pool
and Fields structures, any new fields and entries could
be appended rather than inserted in the middle in order
to preserve the indices of existing entries. By this way
we encapsulate the original class’s data and the data’s
security-levels to the modified class. That is why it is not
necessary to add an additional field for the original field
of other class types. As for the field of an array T[n], we
add one additional field of type byte to store the security-
levels of the array itself. (The security-level of an array
itself is the security-level of the variable used to define
the array’s length.) If the element’s type in the array is
primitive type or type String, we add a second field of an
array byte [n] to store the security-levels of the elements
in the array. We give an example of adding new fields as
security-level containers Figure 3.

Method Redefinition. The information could be
transferred not only among the information carriers in
one method, but also between methods by arguments and
return values. Thus it is necessary to add new arguments
and return values to transfer the security-levels of the in-
formation being transferred between methods at the same
time.

419
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Figure 3: An example of adding field

Given one method having one or more arguments, we
add one new argument of type byte for each original ar-
gument of primitive type or type String to transfer the
security-level of the information in the original argument
from the caller method to the callee method. As for the
argument of an array, we add new argument(s) for it just
like we add additional field(s) for the original field of an
array. Because the arguments’ names are not saved in
the class file, we need not name the new arguments. We
insert the new argument as the security-level container of
the information in one original argument just after the
original argument. By this way, each local register stor-
ing sensitive information is flowed by the register storing
the security-level of the information when the arguments
are stored to local registers. For example, considering
a method voidCircle( floatx, floaty, floatr) with the de-
scriptor (FFF)V, we add one argument of type byte af-
ter each original argument. Thus the descriptor of the
modified method Circle is (FBFBFB)V.

Given one method with a return value of primitive type
or type String, we alter the return type to an array of the
original return type, which has two elements: the first one
is the return value and the second one is the security-level
of the return value. (In the caller method, we convert the
security-level to the type byte.) If the return type is an
array T[n], we alter the return type to an newly defined
class. If the type of the element in array is primitive
type or type String, the new class has three fields, whose
types are T[n], byte [n] and byte. Or else the new
class has two fields, whose types are T[n] and byte.
By this way we could transfer the security-level of the
information in the original return value from the callee
method to the caller method. For example, considering
a method floatarea() with the descriptor ()F, we alter
the return type to the array of type float. Thus the
descriptor of the modified method area is ()[F.

As mentioned above, we encapsulate the data and the
data’s security levels of one class to the modified class.
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Therefore the argument or the return value of class types
can transfer the data and the security-levels together, and
it is not necessary to do any modification for them.

3.3 Instruction Insertion

To achieve dynamic verification, we need to insert proper
instructions to calculate the security-levels of the informa-
tion in the mobile code’s data carrier and check whether
every data-leaking channel in the mobile code is secure.
To reduce the additional overhead in runtime caused by
the bytecode modification we make the JVM execute the
inserted instructions and the original instructions in one
frame, that is, the inserted instructions and the origi-
nal instructions share one set of local registers and one
operand stack. (The adding of security-level containers
mentioned above also follows this principle.) Therefore
we should make sure that the inserted instructions would
not do any harm to the original functions of the class.
Another important thing is that the instruction addresses
should be recalculated so that the conditional instructions
could branch to the correct instruction.

Instruction Insertion for Intra-procedural Infor-
mation Transferring. The information transferring can
be divided into explicit transferring and implicit transfer-
ring. By the algorithms given in [10], we can partition the
bytecode of one method into explicit blocks and implicit
blocks. In explicit blocks, the information is transferred
from the used variable(s) to the defined variable. Thus we
should insert proper instruction(s) to assign the security-
level of the used variable or the LUB of the security-levels
of the used variables to the security-level container of
the defined variable. In implicit blocks, the information
is from the conditional variable of the implicit block to
the defined variables in the implicit block additionally.
Thus besides the instructions inserted in explicit blocks,
we should insert proper instructions to assign the LUB
of the conditional variable’ security-level and the defined
variable’s original security-level to the security-level con-
tainer of the defined variable. And we also need to insert
instructions to calculate and store the conditional vari-
able’s security-level at the beginning of one implicit block.

The execution of a method’s bytecode is a procedure
of pushing data to the stack and popping data from the
stack. According to the operation on the stack, the JVM
bytecode instructions could be divided into three kinds:
loading instructions (those pushing data to the stack, such
as iload, faload, bipush), storing instructions (those pop-
ping data from the stack, such as Istore, putfield, pop)
and operating instructions (those popping and operating
two element on the stack top and pushing back the result
to the stack, such as dadd, lrem, ior). In particularly we
consider faload as a loading instruction but not an operat-
ing instruction because the semantics of faload is loading
data to the stack and such classification could reduce the
number of inserted instructions for faload. The similar
cases are putfield, getfield, iastore, etc.

In explicit blocks considering the operand stack in JVM
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is LIFO (last-in-first-out), we insert instruction(s) load-
ing the security-level from proper container to the stack
for each loading instruction after it, and insert instruc-
tion(s) storing the security-level from the stack to proper
container for each storing instruction before it. The op-
erating instruction is a little complicated. One operating
instruction will first pop elements from the stack and then
push back the result to the stack. Therefore we insert the
instructions popping the security-levels of the operands
and calculating the LUB of them before the operating
instruction, and insert instructions loading the result of
LUB calculation to the stack after the operating instruc-
tion. To reduce the number of the inserted instructions,
we make instructions calculating LUB as one subroutine.
We give an example of inserting instructions in Figure 4.
We list the Java source code and the original bytecode
compiled from it at the left. The bytecode at the right
is the modified code. In modified bytecode the green in-
structions (1, 3, 10 and 12), the blue instructions (7 and
16) and red instructions (4, 6, 13, 15 and 30 to 42) are
inserted for loading instructions, storing instructions and
operating instructions in original bytecode respectively.

public void cal(int a, intb){ 0:iload 1 30 istore 10
mte=a+h; liaload 2 31 1store 11
mtd=a*c. 2iiload 3 22 1store 12
return; 3iload 4 33:1lead 11

} 4: qar 20 34 dup2

Jriadd 35:4f icmple 39
6 iload 9 36 1store 9
Toastore 6 3 pop
3 1stere 5 38 goto 42
- 9iload 1 29 pop
P 10 iload 2 40: istore 9
5 ; ‘;‘"li— 1:iload 5 41 iload 12
ke 120 load & 42 ret 10
3 istore 3 :
i = 13: 151 30
4 iload 1 i
; 14: imul
S iload 3 B
; = 15 1store 9
&: imul %
oy 4 16:igtore 8
Ll 17: istore 7
3 return
19: return

Figure 4: An example of inserting instructions

In implicit blocks besides the instructions inserted in
explicit blocks, we should insert additional instructions to
calculate the LUB of the security-level of defined variable
and the conditional security-level of the implicit block,
and assign the result to the defined variable’s security-
level container. For an implicit block the conditional
security-level of is the LUB of all security-levels of its con-
ditional variables. And the current environment security-
level SL. of one implicit block is the LUB of the old SL.
and the conditional security-level of the implicit block.
Thus we allocate an array of type byte to store the en-
vironment security-levels of each layer for nested implicit
blocks. At the beginning of an implicit block in nested
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implicit blocks, we store the old SL. to the array and
calculate the new one. Then at the end of that implicit
block we load back the old SL. from the array. By this
way in each block of nested implicit blocks we could use
the correct current environment security-level to calculate
the defined variable’s security-level. In JVM the operand
stack is just a kind of intermedial information carrier and
all data pushed to the stack could not be transferred
to other carriers until they are popped from the stack.
Considering this characteristic, we calculate the LUB of
the conditional security-level and the defined variable’s
security-level only when the variable is popped from the
stack, that is, we insert the instructions to calculate the
LUB only for storing instructions rather than for all the
loading instructions, operating instructions and storing
instructions. By this way the additional overhead cause
by bytecode modification could be reduced.

Instruction Insertion for Inter-procedural Infor-
mation Transferring. If the type of a method’s return
value is not void, we alter the type of the return value
to an array of original type. Therefore we should insert
instructions into the callee method to encapsulate the re-
turn value and the security-level to an array of proper type
so that a value of the correct type could be returned. The
encapsulation procedure is 1) allocating a new array of the
proper type with two elements, 2) storing the security-
level to the second element and the return value to the
first element, and 3) returning the reference of the array to
the caller method. Furthermore, we should insert instruc-
tions into the caller method to push the elements of the
returned array to the stack. To preserve the consistency
of the arrangement of security-levels and information on
the operand stack, we push the original return value (the
first element) at first and then the security-level (the sec-
ond element) to the stack. We also insert instructions to
convert the security-level to type byte if it is not.

Instruction Insertion for Data-leaking Channel
Checking. As mentioned in Section 2, at each data-
leaking channel we should compare the security-level of
the information to be sent with the clearance-level or
security-level of the destination in order to check whether
the data-leaking channel is secure. We insert the checking
instructions after the instructions loading the information
to be sent to the operand stack, but before the instruc-
tions sending the information. The checking procedure of
is 1) at first reading the clearance-level or security-level of
the destination from the certain local host file and pushing
it to the stack, 2) then comparing the two security-levels
or the security-level and the clearance-level on the stack,
3) if the security-level of the information to be sent is
higher, the data-leaking channel is not secure and a user-
defined exception is thrown out to inform the host user
the mobile code is not secure. Or else the execution of
the mobile code continues.
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4 Information Transferring in Ex-
ception Handling

The Java programming language supports exception-
handling mechanisms to ease the difficulty of developing
robust software system. An exception will cause a non-
local transfer of control and affect the information flow.
In this section we will analyze the information transfer-
ring in the exception handling of Java bytecode and give
the mechanisms to deal with the information flow.

4.1 Exception Handling in Java Bytecode

When a program violates the semantic constraints of the
Java programming language, the Java virtual machine
signals the error to the program as an exception. The
Java programming language specifies that an exception
will cause a non-local transfer of control from the point
where the exception occurred to a point that can be speci-
fied by the programmer. An exception is said to be thrown
from the point where it occurred and is said to be caught
at the point to which control is transferred.

In Java all thrown exceptions are instances of classes
derived from the class java.lang.Throwable and are
raised as results of expression evaluations, statement ex-
ecutions or throw statements. A try statement is the
exception-handling construct and consists of try block
and, optionally, a catch block and a finally block.
The legal constructs for a try statement are try-catch,
try-catch-finally and try-finally. When an excep-
tion is raised in a statement within a try block or in
some method called within a try block, control trans-
fers to the catch block associated with the last try block
in which control entered, but has not yet exited. This
catch block is the nearest dynamically-enclosing catch
block, and can be in the same try statement, in an en-
closing try statement, or in a calling method. If a match-
ing catch handler is found, the handler code is executed
and normal execution resumes at the first statement fol-
lowing the try statement where the exception was han-
dled. If no matching catch handler is found in the nearest
dynamically-enclosing catch block, the search continues
in the catch block of the enclosing try statement and sub-
sequently in some calling method. Before the control exits
a try statement, the finally block of the try statement
is executed, if it exists, regardless of whether control ex-
its the try statement with an unhandled exception. Thus
the exception handling in Java can cause intra-procedural
transfer of control and inter-procedural transfer of control.
We summarize the exception handling process in Figure
5.

Furthermore in Java bytecode, exceptions can only be
thrown explicitly by the instruction athrow or implicitly
by some specific instructions such as those shown in Ta-
ble 1. We define the security-level of one exception as
the LUB of security-levels of the variables determining
whether the exception is raised. For example consider
the exception of type NullPointerException raised by
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the instruction iaload. Since whether the exception is
raised or not depends on the value of the variable arrayref,
the security-level of the exception is the security-level of
the variable arrayref. Considering that exception han-
dling will cause not only intra-procedural control transfer
but also inter-procedural control transfer, we add one new
field SL of type byte to every exception class including
both pre-defined exception classes and user-defined ex-
ception classes, and use it to store the security-level of
the exception instance. By this way when an exception is
thrown from the callee method to the caller method, we
can trace the information flow correctly and understand
the security-level of the exception in the caller method.
As for the presentation format of try statement in Java
bytecode, the exception table is used to indicate the scope
of try blocks, the beginning address of catch blocks
and the exception types that catch blocks can handle.
The compiler generates an exception table entry for each
catch block and one or more entries with type any for
the finally block. In the following we will analysis the
information flow in Java bytecode exception handling in
detail.

4.2 Implicit Information Transferring in
Exception Handling

As mentioned above, in Java bytecode exceptions can be
thrown implicitly by some specific instructions, which are
called as PEIs (Potential Exception-throwing Instruc-
tions). When the execution of Java bytecode encounters
a PEI, where the control flow is transferred depends on
that whether the PEI raises an exception and what ex-
ception the PEI will raise. In other words, the PEI acts
as a branch node and it may have some of the branches
shown in Figure 5. It means that one PEI can cause im-
plicit information transferring just like the if-instructions
and initiates an implicit transferring block. Obviously the
conditional security-level of such one implicit transferring
block is the security-level of the exception that can be
raised by the PEI (or the LUB of the security-levels of all
exceptions that can be raised by the PEI). To distinguish
it from the conditional security-level of if-instructions,
we call those conditional security-level as the exceptional
security-level of the PEIL In Java Virtual Machine specifi-
cation, which instructions can raise exceptions and what
type of exceptions they can raise have been defined clearly.
We can calculate the exceptional security-level of one PEI
just before the PEI is executed. As for the scope of the
implicit transferring block initiated by one PEI, it varies
with the location where the exception(s) raised by the PEI
can be handled, that is, in the same method where the
PEI raises exception(s) or in the caller method. Accord-
ing to the Java Virtual Machine specification, 40 instruc-
tions could throw exceptions implicitly in the total 204
instructions in Java bytecode. And in those 40 PEIs, 7
instructions can only throw one type of exception and the
others can throw two or more types. Thus for the excep-
tions that can be raised by one PEI in those 33 kinds, all of
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them may be handled in the same method where they are
raised (causing only intra-procedural transferring), none
of them may be handled in the same method where they
are raised (causing only inter-procedural transferring), or
some of them may be handled and the others can not
be handled in the same method where they are raised
(causing intra-procedural or inter-procedural information
transferring). Since what type of exceptions that one
PEI can raise has been defined by JVM specification and
what type of exceptions one method can handle has been
defined by the exception table, we can judge that one
PEI may cause intra-procedural information transferring,
inter-procedural transferring or both of them. We discuss
these cases respectively.

Intra-procedural Information Transferring May
be Caused. In this case, all the exception(s) raised by
one PEI can be handled by the proper catch block in the
same method. The branches of the implicit transferring
block caused by the PEI are 1 and 5-7 (no finally block)
or 3 and 5-6 (finally block specified) in Figure 5. The
scope of the normal branch (1 or 3 in Figure 5) is from the
immediate post-dominator of the PEI to the end of the
try block. (This branch will be blank if the PEI is the
last instruction in the try block.) And the scope of the
exceptional branch(es) (5-7 or 5-6 in Figure 5) is the whole
catch block(s) handling the exception(s). Thus when the
execution encounters one PEI that can only raise intra-
procedural implicit information transferring, we should
backup the current environment security-level SL., and
set SL. to the LUB of original SL. and the exceptional
security-level of the PEI. Then at the end of each branch
we should set the SL. back to the original one.

Inter-procedural Information Transferring May
be Caused. In this case, no proper catch block can be
found in the same method for the exception(s) raised by
the PEI, and JVM throws the exception(s) to the caller
method. The branches of the implicit transferring block
caused by the PEI is 1 and 2 (no finally block) or 3
and 4-9 (finally block specified) in Figure 5. The scope
of the normal branch (1 or 3 in Figure 5) is from the
immediate post-dominator of the PEI to the end of the
method exclusive the finally block if it is specified. And
the scope of the exceptional branch(es) (2 or 4-9 in Figure
5) is the whole catch block(s) that can handle the excep-
tion(s). (Such catch block may be in the caller method
or in the further outer caller method, or does not exist
in which case the exceptional branch is blank.) Since the
control may be transferred to the caller method in this
case, we should insert proper instructions to transfer the
exceptional security-level of the PEI raising the excep-
tion(s) to the caller method. As mentioned above, we
add one new field SL to every exception class to trans-
fer the security-level between methods in the case of one
method’s exceptional exiting. Thus we should set the
field SL of the current exception instance to the current
environment security-level before the execution exits the
method. If there is one finally block specified in the
try statement where the exception is raised, we can in-
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method or enclosing try statement
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12, unhandled exception from nested block; no proper cateh Wock; no finally block

Figure 5: Control flow in Java exception-handling constructs

sert the instructions setting the field SL in the finally
block. Or else we should add one finally block that does
nothing but the setting of the filed SL. When the execu-
tion encounters one PEI that may raise inter-procedural
implicit information transferring, we should set the SL,
to the LUB of the SL. and the exceptional security-level
of the PEI If a finally block is specified, we should
backup the current environment security-level SL. before
we change it, then restore the backup SL. at the begin-
ning of the finally block in order to exclude it from the
normal branch, and at the end of the finally block we
set SL. to the one that is calculated just before the PEL
As for the exceptional branch, we should backup the cur-
rent environment security-level SL. (which is the SL. of
the method being executed, not the method where the
exception is raise since at that point the execution has
exited that method), and then set the SL. to the LUB of
the original SL. and the security-level stored in the filed
SL of the exception. At the end of the exceptional branch
we should restore the SL. to the original one.

Both Intra-procedural and Inter-procedural In-

formation Transferring May be Caused. In this
case, some of the exceptions that may be raised by the PEI
can be handled in the same method and the others can
not be. The branches of the implicit transferring block
caused by the PEI are 1, 2 and 5-7 (no finally block) or
3, 4-9 and 5-6 (finally block specified) in Figure 5. The
scope of the normal branch (1 or 3 in Figure 5) is from
the immediate post-dominator of the PEI to the end of
the method exclusive the finally block if it is specified.
The scope of the intra-procedural exceptional branch(es)
(5-7 or 5-6 in Figure 5) is from the beginning of the catch
block that can handle the exception in the same method
to the end of the method exclusive the finally block if it
is specified. The scope of the inter-procedural exceptional
branch is the whole catch block that can handle the ex-
ception, which may be in the caller method or in the fur-
ther outer caller method, or does not exist in which case
the inter-procedural exceptional branch is blank. What
we should do in the normal branch and inter-procedural
exceptional branch is same to what we should do in case of
inter-procedural implicit information transferring. As for
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Table 1: Some instructions that could throw exceptions in Java bytecode
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Instruction | Stack Exceptions Thrown

aaload arrayref,index = v ArrayIndexOutOfBoundsException, NullPointerException
bastore arrayref,indexr,v = ArrayIndexOutOfBoundsException, NullPointerException
iaload arrayref,index = v ArrayIndexOutOfBoundsException, NullPointerException
idiv valuel, value2 = result | ArithmeticException

instanceof objectref = restult Resolution Exceptions

invokestatic | [argy, largs2]]--- Resolution Exceptions

ldc <o = item Resolution Exceptions

newarray count = arrayref NegetiveArraySizeException

putfield objectref,value = Resolution Exceptions, NullPointerException

the intra-procedural exceptional branch, we should only
exclude the finally block from the intra-procedural ex-
ceptional branch with the same way used in the normal
branch if the finally block is specified.

Locating the Scope of try block, catch Block
and finally block. The scope of the try block is indi-
cated by the index pairs [from,to) in the exception table
entries. Each different pair determines one try block.

While the locating of the finally block’s scope is com-
plicate. The exception table entry with handler type any
is generated and could be only generated for the finally
block in the try statement by the complier. Thus if there
are any entries with handler type any in the exception ta-
ble, the finally block is specified. In general the code of
the finally block could be complied in two ways: com-
plied into one subroutine or appended to the code of the
try block and the catch block as shown in b and ¢ of
Figure 6. In the case of subroutine, the instruction imme-
diately following the try block (whose index is indicated
by the value of the to in the exception table entry) should
be the instruction jsr i, which transfer the control to the
subroutine compiled from the finally block. Assuming
the index of the instruction ret in the subroutine is 4, the
scope of the finally block is (i,7').

In the other case, the last instruction in the try block
could not be the instruction jsr. To divide the try block
from the following catch or finally block, the complier
generates instruction return (areturn) or goto between
them. Assuming the index of that dividing instruction is
j’ and the index of the last instruction in the try block
is j, the scope of the finally block appended to the try
block is [4, 7]

The index of the first instruction in the catch block is
indicated by the T'arget’s value in the exception table en-
try. From the first instruction, we search the instruction-
block matching the instructions in [j, '] and the last one
of the found instruction-blocks is the finally block ap-
pended to the catch block. If there are any entries whose
handler types are not type any in the exception table,
the catch block is specified. The locating of the catch
block’s scope is based on the scope of the finally block.
In the case of subroutine, assume the value of the Target

in the exception table entry indicating the catch block
is k and the index of the instruction jsr transferring the
control to the finally block is &’. The scope of the catch
block is [k, k']. In the other case, assume the value of the
Target is k and the scope of the finally block appended
to the catch block is [I,1']. The scope of the catch block
is [k, 1].

For example, in the b of Figure6, the scope of the try
block is [0, 10), the scope of the finally block is (36, 42)
and the scope of the catch block is [16, 22). In the ¢ of
Figure6, the scope of the try block is [0, 12), the scopes
of the finally blocks are [12, 13], [25, 26] and [34, 35]
respectively, and the scope of the catch block is [19, 25).
1

Procedure of Dealing with Implicit Transferring
Block Caused by PEIs. Based on the analysis above,
we could find that the PEIs in Java bytecode act as the
if-instructions in the information transferring. Here we
define the procedure of dealing with the implicit block
caused by PEIs and give an example in the following.

Given a method m, the procedure could be defined as
following.

1) Locate the scopes of all the try blocks, finally
blocks and catch blocks in m.

2) Search for all the PEIs in m and calculate the excep-
tional security-level of each PEI just before it.

3) If all the PEIs in one try block are intra-procedural
PEISs, at the end of the try block and the correspond-
ing catch blocks (if they are specified) restore the
SL. that is backupped before the first PEI in the
try block.

4) If any PEISs in one try block is inter-procedural PEIs,
at beginning of the corresponding finally block
backup the SL. and restore the SL. that is back-
upped before the first PEI in the try block. Then at
the end of the finally block, restore the SL. that
is backupped at the beginning of the finally block.

IThe bytecode in b of Figure6 is generated by JDK 1.4.1 and the
one in ¢ of Figure6 by JDK 1.4.2.
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void testOfCatchimt]] & int b)f

tryl
itit ¢ =alength;
int d =afh];
ranseFxception);
toatchiMullPointerFrception e)f
handleFxception(e);
Hinally
wraptUp(y;
}
a
woid testOfCatchimt], int);
0: aload 1 18: aload 3
larraylength 19: inrok evirtual #8
2 istore 3 22 jar 36
3:aload 1 25 goto 44
4 iload 2 28 astore 5
5 iaload 30 jar 36
f: istore 4 33 aload 5
G aload 0 35 athrow
O involcevirtual #5 38 astore 6
10: jsr 36 38 aload 0
13: goto 44 39: irrvok evirtual #6
1é: astore 3 42 ret 6
17 aload 0 44 return
Exception table:

from to target type
01 1a Class java/lang/
MullPomterException
n 13 25 any
16 25 28 any
28 33 28 any

b
void testOfCatchimt]], int);
0: aload 1 20 aload 0O
larraylength 21: aload 3
2 istore 3 22 involkevirtual #8
3 aload 1 25 aload 0O
4: iload_2 26; invokevirtual #
5 iaload 29: goto 41
f: 1store 4 32 astore 5
& aload 0 34 aload 0
D invokevirtual #5 35 inwoloevirtual #6
1Z:aload O 38aload 5
13 mvolcevitual # 40 athrow
14: goto 41 41 return
19: astore 3
Exception table;

fromm  to target  type
01z 19 Class javalang/
MullPointerExzception
no13 3z any
19 35 32 any
32 34 32 any
C

Figure 6: The finally block in Java bytecode

woid testOfCatchlin[] &, int W{
trl
it c=alength;
it d=aft];
rauseException);
Jeatch(MullPointerException )
handleFxzceptione),
Hinally{
wrap [tpC);

)
woid testOfCatchling[], int);
0: aload 1
l:arraylength
Jstore 3
caload 1
“iload 2
taload
istore 4
caload 0
s involevirtual #5 20
12:aload 0
13: involkevittual #6
16: goto 41 22
19: astore 3
20: aload D
21: aload 3 26
22 involkcevirtual #5
25 aload 0 i
26: invokevirtual #6 52
29 goto 41
32 astore 5
34: aload 0 35
35: invokevirtual #6
3gaload 5 33
40: athrow 1
41: return
Fxception table:
from to target type
no12 19 Clazs javalang/
MullFointerException
no13 3z any
19 25 32 any
32 34 32 atuy

Figure 7: An example of implicit transferring caused by
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woid testOfCatchling[], byte[], byte, int, byte);
47

0: aload 1 23:aload 0 - getfield #9
l:iload 3 24 invokevirtual #5448 ifne 52
2 dup 25 aload 0 42 aload 10
3 istore 13 26 invokevirtual # 50: 1load 12
4 istore 7 27 goto 54 31 putfield #9
5 arraylength  30: astore 6 52:aload 0
fi: istore A 31:aload 6 53 mvokesrtual #5
& aload 1 32: getfield #0 54: aload 10
9: aload 2 33: dup 55 athrow
10: iload 4 34 ifne 36 56: return
11: iload 5 35 iload 13
12: iload_3 36: istore 12 80: istore 14
14: jsr &0 37 aload 0 81 dup2
15: istore 13 38 aload 6 82:1f icmple 86
16 zwap 39 involkevirtual #8  83: istore 15
17 iload 4 40: aload 0 &4 pop
18: iaload 41: inwokcevirtual #6850 goto 63
19: istore @ 42 goto 56 56 pop
20: iaload 45 astore 10 87 istore 15
21 istore 8 46: aload 10 35 ret 14
Esxception table:
from to target type
0 25 30 Clazs javadangMullPointerFxzception
n 25 45 any
30 49 45 aty
45 52 45 any

Figure 8: The modified bytecode

5) At the beginning of each catch block, check the value
of the field SL in the exception instance caught. If it
is not 0, set the SL. to the LUB of the SL and SL..

6) If there are any inter-procedural PEIs and the
finally block is specified, set the field SL of the
exception instance caught in the finally block to
the SL..

7) If there are any inter-procedural PEIs and the
finally block is not specified, add one finally
block to m and set the field SL of the exception in-
stance caught in that finally block to the SL..

Consider the section of Java program whose bytecode
and CFG are shown in Figure7. Using the procedure
above we could deal with implicit transferring caused by
PEIls in that Java bytecode. We give the modified byte-
code in Figure8. Referring to the exception table, we can
find the scope of the try block is [0, 12), the scopes of
the finally blocks are [12, 16], [25, 26] and [34, 35] re-
spectively, and the scope of the catch block is [19, 25) in
Figure7. The PEIs are arraylength at index 1 and <aload
at the index 5 in Figure7. (Here to simplify the example
we assume that the instruction invokevirtual itself will
not raise any exception.) We insert instructions of [2,
3] and [11, 15] in Figure8 to calculate the exceptional
security-level of the two PEIs. By checking the handler
type of the catch block, we can find that the arraylength
is intra-procedural PEI and the iaload is inter-procedural
PEIL Thus we insert instructions of [46, 51] in Figure8 to
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the finally blocks to set the correct current environment
security-level. At the beginning of the catch block we in-
sert instructions of [31, 36] in Figure8 to check whether
the field SL of the caught exception instance is 0 and
set the current environment security-level to the correct
value.

4.3 Explicit Information Transferring in
Exception Handling

In Java bytecode the exception can be thrown by the in-
struction athrow explicitly. Thus the instruction athrow
can cause explicit information transferring. Similar to the
implicit information transferring caused by PEIs, the ex-
plicit information transferring caused by athrow can also
be divided into the intra-procedural and inter-procedural
transferring. But different from the implicit one, the ex-
plicit information transferring caused by athrow acts as
unconditional branch instruction goto in the information
flow. To deal with the explicit information transferring
caused by athrow is quite simple. What we should do is
to set the field SL of the exception instance that will be
thrown by athrow to the current environment security-
level SL..

5 Conclusion

In this paper, we put forward a dynamic verification ap-
proach based on the Secure Information Flow to protect
the host confidentiality in mobile code systems. The se-
cure information flow property of programs was first for-
mulated in [6, 7].

In [1, 2, 3, 4, 11], the authors adopted the Secure Infor-
mation Flow to address the security problems in mobile
programs. But all the verification approaches of mobile
code security in these works are static approaches and
could not achieve satisfying verification precision in im-
plicit transferring. Our approach presented in this pa-
per is a dynamic approach and improve the verification
precision greatly especially in implicit information trans-
ferring. We adopted bytecode modification to implement
our security model dynamically in order to preserve the
portability of JAVA mobile code. To reduce the addi-
tional overhead caused by inserted instruction, we make
the JVM execute the inserted instructions and original
instructions in the same frame.

And in this paper we also analyze the information flow
in the Java bytecode exception handling, which has not
been done in [1, 2, 3, 4, 11]. We add a new field to all ex-
ception classes to transfer the security-level of the excep-
tions raised. We give the mechanism to locate the scope
of try, catch and finally blocks in Java bytecode and the
procedure to deal with information flow in exception han-
dling, which is almost impossible for static approaches.

As future work, we will extend our research to the Java
bytecode concerned with the multi-dimension array and
local methods. We will also improve our mechanism of
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inserting instructions to reduce the additional execution
overhead caused by the inserted instruction. And we will
complete the prototype of the verification tool based on
the approach in this paper.
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