
International Journal of Network Security, Vol.7, No.3, PP.404–415, Nov. 2008 404

On Cipher Design Based on Switchable

Controlled Operations

Nikolay A. Moldovyan

Specialized Center of Program Systems “SPECTR”

Kantemirovskaya, 10, St-Petersburg 197342, Russia (Email: nmold@cobra.ru)

(Received Jan. 23, 2007; revised and accepted Oct. 23, 2007)

Abstract

This paper concerns the problem of reducing the imple-
mentation cost of the switchable data-dependent opera-
tions (SDDOs) that are a new cryptographic primitive
oriented to the design of fast ciphers suitable to applica-
tions in constrained environments. The SDDOs are per-
formed with the controlled substitution-permutation net-
works that transforms binary vectors depending on some
controlling data subblock. Three new desings of the SD-
DOs are proposed. The first one is characterized by di-
viding the controlling data subblock into two subvectors
that are extended in correspondence with mirror symme-
try. Reversing the operation mode is defind by swapping
the subvectors. The second one is characterized by us-
ing the inversion of the controlling bits as the switching
mechanism. The third one is characterized by using two
mutual inverse controlled operational boxes and provides
construction of the SDDOs of different orders. The last
design supplements the known particular constructions of
SDDOs having symmetric topology. A new SDDO-based
block cipher is presented and estimated.

Keywords: Data-dependent operations, fast encryption,
hardware-oriented cipher, switchable operations, variable
operations

1 Introduction

Encryption is an efficient way to provide secure com-
munications. Successful deployment of ad hoc and sen-
sor networks is connected with the problem of embed-
ding security mechanisms in constrained environments.
Therefore designing ciphers suitable to cheap hardware
implementation represents practical importance. Re-
cently [7, 13, 14] the data-dependent (DD) permutations
(DDPs) have been proposed to provide high performance
while constrained hardware resources are used. Security
analysis of the DDP-based ciphers [5] demonstrates effi-
ciency of DDP. A new class of the DD operations (DDOs)
is proposed in [9] for designing fast harwdare-suitable ci-
phers. Different types of the DDOs can be implemented
using the controlled operations (Definition 1) and defining

dependence of the controlling vector on the transformed
data.

Definition 1. Let {F1,F2, ...,F2m} be some set
of the single-type operations defined by formula
Y = Fi(X1, X2, ..., Xq), where i = 1, 2, ..., 2m and
X1, X2, ..., Xq are input n-dimensional binary vectors
(operands) and Y is the output n-dimensional binary
vector. Then the V -dependent operation F(V) defined by
formula Y = F(V)(X1, X2, ..., Xq) = FV (X1, X2, ..., Xq),
where V is the m-dimensional controlling vector, we
call the controlled q-place operation. The operations
F1,F2, ...,F2m are called modifications of the controlled
operation F(V).

Many network applications of the encryption require
development of the ciphers that are fast in the case of
frequent change of keys. Such ciphers should use no time
consuming key preprocessing, i.e. they should use very
simple key scheduling. An attempt to simplify the key
scheduling is the use of the DD transformation of the
subkeys, which is called internal key scheduling [7]. To
implement data-driven processing of the subkeys different
variants of the so called controlled operations (COs) are
suitable [10]. Switchable DDOs (SDDOs) [8] have been
also proposed as a primitive suitable to designing efficient
ciphers with simple key scheduling. Implementation re-
sults of the SDDO-based ciphers shows they provide high
performance while implemented in cheap hardware [12].
The SDDOs are performed with switchable controlled op-
erations (SCO) defined below.

Definition 2. Let {F1,F2, ...,F2m} be the set of the mod-
ifications of the controlled operation F(V). The opera-
tion (F−1)(V) containing modifications F−1

1 ,F−1
2 , ...,F−1

2m

is called inverse of F(V), if F−1
V and FV for all V are

mutual inverses.

Definition 3. Let F(e), where e ∈ {0, 1}, be some e-
dependent operation containing two modifications F(0) =
F1 and F(1) = F2, where F2 = F−1

1 . Then the operation
F(e) is called switchable.

Definition 4. Let two modifications of the switchable op-
eration F(e) be mutual inverses F(0) = F(V) and F(1) =

International Journal of Network Security, Vol.7, No.3, PP.404–415, Nov. 2008 405

(F−1)(V). Then F(e) is called switchable controlled oper-
ation F(V,e).

In this paper we consider new designs of the SDDOs
providing cheaper implementation. We propose also a
new fast SDDO-based cipher suitable to implementation
while constrained hardware resources. In Section 2 we
consider three designs of the SDDOs based on controlled
substitution-permutation networks (CSPNs). The feature
of the first design is the symmetric distribution of the
controlling bits over controlled elements (CEs) of some
CSPN having symmetric topology. In the second design
the inversion of the controlling bits is used to reverse the
transformation performed with SDDOs. The third design
is oriented to construction of the SDDOs of different or-
ders. Section 3 introduces a new SDDO-based cipher us-
ing extremely simple key scheduling. Section 4 presents
discussion and conclusion.

2 New Designs of Switchable Con-

trolled Operations

Throughout the paper we use the following notations:
� {0, 1}n denotes the set of all n-bit binary vectors

X = (x1, ..., xn), where xi ∈ {0, 1}, i = 1, ..., n;
� X⊕Y denotes the bit-wise XOR operation performed

on X and Y : X, Y ∈{0, 1}n;
� (A, B, ..., Z) denotes the concatenation of the binary

vectors A, B,..., Z;
� “+n” (“−n”) denotes the addition (subtraction)

modulo 2n; [s/2] denotes the integer part of s/2.
� Y = X<<<k denote the to-left rotation of the word

X by k bits, where ∀i∈{1, ..., n − k} we have yi = xi+k

and ∀i∈{n − k + 1, ..., n} we have yi = xi+k−n.
� The binary vector (f(0, 0, 0), f(0, 0, 1), ..., f(1, 1, 1))

denotes the truth table (TT) of Boolean function (BF)
f = (x1, x2, x3).

2.1 Networks Based on Minimum Size

Controlled Elements

The known controlled operations are implemented as uni-
form CSPNs constructed using the minimum size CEs as
standard building blocks. Figure 1a shows general topol-
ogy of CSPN. Let CSPN with n-bit input and n-bit output
be controlled with m-bit vector V . Then we shall denote
such CSPN as controlled operation (CO) Fn;m. Selecting
a set of the fixed permutations connecting active layers we
define some particular topology of CO. Each active layer
represents n/2 parallel CEs. In present paper dotted lines
corresponding to CO boxes indicate the controlling bits.
A minimum size CE (Figure 1b) is denoted as the F2;1

box. It transforms the two-bit input vector (x1, x2) into
the two-bit output (y1, y2) depending on some controlling
bit v. The F2;1 element can be described with a pair of
BFs in three variables (Figure 1b): y1 = f1(x1, x2, v) and
y2 = f2(x1, x2, v).

A CE can be also represented as a pair of the 2×2
substitutions (elementary S-boxes) selected depending on
bit v (Figure 1c). Such subsitutions are denoted as

F
(0)
2;1 and F

(1)
2;1 and CE implements the transformation

(y1, y2) = F
(v)
2;1 (x1, x2). There exist only 24 different S-

boxes of the 2×2 type (Figure 2), all of them being liner
transformations. Different pairs of the 2×2 boxes de-
fine different variants of CE. An elementary S-box can
be described as a pair of BFs in two variables x1 and

x2. If the substitution F
(0)
2;1 is described with two BFs

y′
1 = f ′

1(x1, x2) and y′
2 = f ′

2(x1, x2), F
(1)
2;1 is described

with BFs y′′
1 = f ′′

1 (x1, x2) and y′′
2 = f ′′

1 (x1, x2), then CE

F
(v)
2;1 is described with two BFs in three variables x1, x2,

and v:

y1 = (v ⊕ 1)f ′

1(x1, x2) ⊕ vf ′′

1 (x1, x2),

y2 = (v ⊕ 1)f ′

2(x1, x2) ⊕ vf ′′

2 (x1, x2).

One of important cases of CEs is the switching element
P2;1 that performs controlled swapping of two input bits
x1 and x2. The output bits are y1 = x2 and y2 = x1, if
v = 1, or y1 = x1 and y2 = x2, if v = 0. The P2;1 element
is described with non-linear BFs y1 = vx1 ⊕ vx2 ⊕ x1 and
y2 = vx1 ⊕ vx2 ⊕ x2. It can be alternatively described
as the (a,e) pair of the 2×2 substitutions. The P2;1 ele-
ment is a linear cryptographic primitive, since the sum of
output is linear BF: y1 ⊕ y2 = x1 ⊕ x2. Networks based
on the P2;1 elements are used to perform DDPs that are
also linear primitive. For block cipher synthesis the non-
linear DDOs are more interesting. They can be designed
using the non-linear CEs. Among non-linear CEs, only 24
of them are involutions (see Table 1, where BFs f1 and
f2 are described with TTs). For elementary controlled

involutions F
(v)
2;1 we have:

(y1, y2) = F
(v)
2;1(x1, x2) ⇔ (x1, x2) = F

(v)
2;1(y1, y2),

where v ∈ {0, 1}.
The Fn;m box can be represented as a superposition

of the operations (see Figure 3a) performed on binary
vectors:

Fn;m = L(V1) ◦ π1 ◦ L(V2) ◦ π2 ◦ ... ◦ πs−1 ◦ L(Vs),

where πj , j = 1, 2, ..., s − 1, are fixed permutations,
V = (V1, V2, ..., Vs), Vj is the component of V , which con-
trols the jth active layer, and s = 2m/n is the number of
active layers L(Vj). Design of the CO boxes with required
properties consists in selecting respective topology and
CEs. Controlled permutation (CP) boxes of different or-
ders can be constructed using the switching element P2;1.

Definition 5. [7]. The CP box Pn;m is called a CP box
of the order h (1 ≤ h ≤ n), if for arbitrary index set
i1, i2, ..., ih and arbitrary index set j1, j2, ..., jh (iα 6= iβ
and jα 6= jβ for α 6= β) there is at least one vector V
which specifies a permutation PV moving xiα

to yjα
for

all α = 1, 2, ..., h.

International Journal of Network Security, Vol.7, No.3, PP.404–415, Nov. 2008 406

Fixed permutation k-1

xn-1 xnx1 x2 x3 x4

vm-n/2+1

vn/2+1
vnvn/2+2

yn-1 yny1 y2 y3 y4

vm

Fixed permutation 1

vm-n/2+2

vn/2v1 v2
F2;1 F2;1 F2;1

F2;1F2;1F2;1

F2;1F2;1 F2;1

b)
x1 x2

f1 f2

v

y1 y2

c)

S′

x1 x2

S′′

x1 x2
v = 0

v = 1

y′1 y′2 y′′2y′′1

a)

Figure 1: General structure of the Fn;m boxes (a) and representation of the F2;1 element as a pair of BFs in three
variables (b) and as switchable 2×2 substitution (c)

a

on

b c d e f

g h i j k l

rqpm

ts u v w x

x y = x= x 1 a to j involutions

Figure 2: All existing 2×2 substitutions represented as elementary transformations

The CP boxes of different orders are described in [10].
For n = 2k, where k ≥ 1 is a natural number, the
implementation of the box Pn;m of the first, second,
..., (n/4)th, and nth order require the use of log2n,
log2n + 1,...,2log2n − 2, and 2log2n − 1 active layers, re-
spectively (the last figure corresponds also to implement-
ing the CP box of the order n/2). The notion of the order
be extended as follows:

Definition 6. A CO box Fn;m is called the CO box of the
order h (1 ≤ h ≤ n), if replacement of all CEs of the CO
box by the switching elements produces the CP box of the
order h.

Suppose a CO box is constructed using CEs that are

involutions. Then one can easy construct the layered box
F−1

n;m which is inverse of Fn;m-box:

F−1
n;m = L(Vs) ◦ π−1

s−1 ◦ L(Vs−1) ◦ π−1
s−2 ◦ ... ◦ π−1

1 ◦ L(V1).

In accordance with the structure of the CO boxes Fn;m

and F−1
n;m we shall assume that in the direct CO boxes

the F2;1 elements are consecutively numbered from left to
right and from top to bottom and in the inverse CO boxes
the CEs are numbered from left to right and from bottom
to top. Thus, for all i ∈ {1, 2, ..., m} the ith bit of the
controlling vector V controls the ith box F2;1 in both the
Fn;m and F−1

n;m boxes. For j = 1, 2, ..., s the Vj component
of V controls the j-th active layer in the box Fn;m and
the (s−j+1)-th layer in F−1

n;m. For example, the mutual

International Journal of Network Security, Vol.7, No.3, PP.404–415, Nov. 2008 407

Table 1: Full set of the F2;1 nonlinear boxes that are involutions

f1

f2
(S′,S′′) pair # f1

f2
(S′,S′′) pair # f1

f2
(S′,S′′) pair

1 00011011
00101101 (g,e) 9 00011011

10000111 (j,e) 17 00011110
00111001 (g,h)

2 00011110
10010011 (j,h) 10 00100111

00011110 (e,g) 18 00100111
01001011 (e,j)

3 00101101
00110110 (h,g) 11 00101101

01100011 (h,j) 19 00110110
00011011 (e,h)

4 00111001
00100111 (h,e) 12 01001011

00111001 (g,i) 20 01001011
10010011 (j,i)

5 01001110
01111000 (g,f) 13 01001110

11010010 (j,f) 21 01100011
00011011 (e,i)

6 01101100
01110010 (h,f) 14 10000111

00110110 (i,g) 22 10000111
01100011 (i,j)

7 10001101
10110100 (f,g) 15 10001101

11100001 (f,j) 23 10010011
00100111 (i,e)

8 10011100
10110001 (f,h) 16 11000110

01110010 (i,f) 24 11001001
10110001 (f,i)

inverses F8;12 and F−1
8;12 are shown in Figure 3c,d. Note

that the box F−1
n;m is of the order h, if the box Fn;m is of

the order h, and the implementation of the CO boxes Fn;m

and F−1
n;m of the given order requires the use of the same

minimum number of the active layers. Below we will use
the following definition (Lj denotes the jth active layer):

Definition 7. Suppose a CO box Fn;m contains s active
layers. The CO box Fn;m is called symmetric if ∀j =
1, ..., s−1 the following relation holds: Lj = L−1

s−j+1 (or

Lj = Ls−j+1, if Lj is involution) and πj = π−1
s−j .

2.2 Switchable Data-dependent Opera-

tions

Earlier [8] the symmetric SCOs F
(V,e)
32;96 and F

(V,e)
64;192 have

been considered as new primitive suitable to the design of
the 64- and 128-bit ciphers, correspondingly. Such SCOs

are based on i) the use of the six-layer CSPNs F
(V)
32;96 (Fig-

ure 4a) and F
(V)
64;192 (Figure 4c) having mirror-symmetry

topology and ii) swapping the Vj and V7−j components of
the controlling vector V for j = 1, ..., 6. Due to symmetric
structure of the CO boxes the modifications F(V), where
V = (V1, V2, ...V6), and F(V ′), where V ′ = (V6, V5..., V1)

are mutually inverses. In the F
(V,e)
32;96 box swapping the

Vj and V7−j components is performed with very simple

transposition box P
(e)
96;1 that is implemented as some sin-

gle layer CP box consisting of three parallel single-layer

boxes P
(e)
16×2;1 (Figure 5a). Input of each P

(e)
16×2;1-box is

divided into 16-bit left and 16-bit right inputs. The box

P
(e)
16×2;1 represents 16 parallel P

(e)
2;1 -boxes controlled with

the same bit e. The right (left) input (output) of 16 par-

allel boxes P
(e)
2;1 compose the right (left) 16-bit input (out-

put) of the box P
(e)
16×2;1. Thus, each of three boxes P

(e)
16×2;1

performs the e-dependent swapping of the respective pair
of the 16-bit components of the controlling vector V .

For example, P
(0)
16×2;1(V1, V6) = (V1, V6) and

P
(1)
16×2;1(V1, V6) = (V6, V1). If the input vector of the box

P
(e)
96;1 is (V1, V2, ...V6), then at the output of P

(e)
96;1 we have

V ′ = (V1, V2, ..., V6) (if e = 0) or V ′ = (V6, V5, ..., V1)

(if e = 1). Structure of the SCO box F
(V,e)
32;96 is shown in

Figure 5b.

The F
(V,e)
64;192 box can be constructed with the use of

transposition box P
(e)
192;1 that represents three parallel

single-layer boxes P
(e)
32×2;1 (Figure 5c). Each P

(e)
32×2;1-box

is a set of 32 parallel P
(e)
2;1 -boxes all of which are controlled

with the bit e. The structure of the F
(V,e)
64;192-box is shown

in Figure 5d.
The SCO design considered above imposes no restric-

tions on the distribution of the controlling bits, however in
the DDO-based ciphers usually the m-bit controlling vec-
tor V depends on some n-bit controlling data subblock
L. The V vector is formed as output of the extension
operation E performed on L. In the case s = 6 we have
m = 3n and using the properly designed extension box E

it is possible to swap the vectors Vj and V7−j for j = 1, 2, 3
performing the transposition of the two halves of the con-
trolling data subblock. This provides possibility to reduce
significantly the implementation cost of the SCO boxes

F
(e)
32;96 and F

(e)
64;192. We propose the following design.

Let L1 and L2 be two halves of L = (l1, l2, ..., ln), i. e.
L = (L1, L2). The L1 and L2 components are extended
using two symmetric extension boxes E1 and E2. The
outputs of E1 and E2 are V ′ = (V1, V2, V3) and V ′′ =
(V4, V5, V6), respectively. Thus, the boxes E1 and E2 rep-
resent a single extention box E with symmetric structure,
which produces the controlling vector V = (V ′, V ′′) cor-
responding to symmetric distribution of the bits of the
L1 = (l1, l2, ..., ln/2) and L2 = (ln/2+1, ln/2+2, ..., ln) com-
ponents. In this case swapping the L1 and L2 components
defines swapping components Vj and V7−j for j = 1, 2, 3.

For the F
(L,e)
32;96 operation we propose the E box having the

following structure:

V1 = L1; V2 = L<<<6
1 ; V2 = L<<<12

1 ;

V4 = L<<<12
2 ; V5 = L<<<6

2 ; V6 = L2.

For the F
(L,e)
64;192 operation we propose the E box de-

scribed as follows:

V1 = L1; V2 = L<<<14
1 ; V3 = L<<<28

1 ;

International Journal of Network Security, Vol.7, No.3, PP.404–415, Nov. 2008 408

b)

L

L

L

n

n

1

s-1

L

L

L

n

n

-1
s-1

1
-1

X

XY

Y

a)

Vs

VsV1

V1

V2
Vs-1

c)

F2;1F2;1

F2;1F2;1

F2;1F2;1 F2;1F2;1 V1

V2

V3

F2;1F2;1

F2;1F2;1

F2;1F2;1 F2;1F2;1

d)

V3

V2

V1

F2;1F2;1

F2;1F2;1

F2;1F2;1

F2;1F2;1

Figure 3: General structure of the direct (a) and inverse (b) COs and the F8;12 (c) and F−1
8;12 (d) boxes

F8;12

V6

V5

V4

F
-1 V3

V2

V1

F8;12

F
-1

F8;12

F
-1

F8;12

F
-1

V1

V2

V3

V4

V5

V6

a) b)1 8 9 16 17.24 25.32

1 8 9 16 17.24 25.32

I1

F8;12 F8;12

 F8;12

V1

V2

V3

 F -1 F -1

 F -1

V4

V5

V6
…

…

…

x1 x8 x9 x16 x64x49……

y1 y8 y9 y16 y64y49…… … …

1

2

1

2

2

8

8

1 8

8
2

1

V3

V2

V1

V6

V5

V4

c) d)

I2

…

…

…

…

… …

…

8;12 8;12 8;12

8;12 8;12 8;12 8;12

Figure 4: Structure of the F32;96 (a), F−1
32;96 (b), F64;192 (c), and F−1

64;192 (d) boxes

V4 = L<<<28
2 ; V5 = L<<<14

2 ; V6 = L2.

The described desing of the SCO boxes F
(L,e)
32;96 and

F
(L,e)
64;192 is shown in Figure 6a,b. The proposed method

allows one to embed the switchability mechanism in the

F32;96 and F64;192 boxes using only 96 and 192 extra nand
gates, correspondingly, versus 288 and 576 extra nand
gates for the design proposed in [8].

International Journal of Network Security, Vol.7, No.3, PP.404–415, Nov. 2008 409

X

1

e

(e)

P2x k;1

(e)

P2x k;1

(e)

P2x k;1

(e)

P6k;1

(V,e)

Fn;m

(e)

Pm;1
Fn;m

n

m

m

Y

V3V1

V’2 V’3V’1 V’4 V’5 V’6

V’
V

V2 V4 V5 V6 b,d) a,c)

e

1

k

a): k = 16 c): k = 32

n

b): n =32; m = 96

d): n =64; m = 192

Figure 5: Structure of the boxes P
(e)
96;1 (a), F

(V,e)
32;96 (b), P

(e)
192;1 (c), and F

(V,e)
64;192 (d)

(L, e)

Fn;m

X

(e)

Pk x2;1
Fn;m

n

Y

V3

L1 L2

V4

V5

V6

e

a, c): k = 16; n =32; m = 96 b, d): k = 32; n =64; m = 192

E1

E2

V1

V2

E

n

X

Fn;m

n

Y

V3

L

V4

V5

V6

E(e)

E3

V1

V2

E

n

2k

2k

1

k k

a, b) c, d)

Figure 6: The F
(L,e)
32;96 (a,c) and F

(L,e)
64;192 (b,d) boxes with reduced implementation cost: a,b) - switching by swapping

the left and right halves of the controlling data subblock; c,d) - switching by inverting the controlling bits

2.3 Design Based on CE with Mutual In-

verse Modifications F
(0)
2;1 and F

(1)
2;1

Other hardware efficient design of the SCO boxes is
based on the use of CEs that implements mutually in-

verse modifications F
(0)
2;1 and F

(1)
2;1 for which we have

F
(0)
2;1 =

(

F
(1)
2;1

)−1

. In this design the symmetric topology

of the CO boxes combined with symmetric distribution
of the controlling bits (see Definition 8) is used. Fig-
ure 6c,d, where E = {e}2k is concatenation of 2k bits all
of which are equal to e, illustrates the construction of the

SCO boxes F
(L,e)
32;96 (c) and F

(L,e)
64;192 (d), where the F32;96 and

F64;192 boxes have the topology shown in Figure 4. It is
easy to show that this construction provides the relation

F
(L,e)
n;m =

(

F
(L,e⊕1)
n;m

)−1

.

Definition 8. Distribution of the controlling bits of the
V = V1, ..., V[s/2] vector is called symmetric if ∀j =
1, ..., [s/2], the following relation is hold: Vj = Vs−j+1.

Table 2 lists all non-linear CEs having mutual inverse

modifications F
(0)
2;1 and F

(1)
2;1 . Note that for these CEs the

sum y1 ⊕ y2 is a non-linear BF.

2.4 Design of the SCO Boxes of different

Orders

For odd values s the symmetrical topologies of the Fn;m

boxes are not typical (in the case h = n we have odd val-

International Journal of Network Security, Vol.7, No.3, PP.404–415, Nov. 2008 410

Table 2: Full set of the F2;1 nonlinear boxes with mutual inverse modifications F
(0)
2;1 and F

(1)
2;1

(S′,S′′) y1 = f1(x1, x2, v) y2 = f2(x1, x2, v) y1 ⊕ y2

(q,u) vx1 ⊕ x2 vx2 ⊕ x1 ⊕ x2 vx1 ⊕ vx2 ⊕ x1

(u,q) vx1 ⊕ x1 ⊕ x2 vx2 ⊕ x1 vx1 ⊕ vx2 ⊕ x2

(s,v) vx1 ⊕ v ⊕ x2 vx2 ⊕ v ⊕ x1 ⊕ x2 ⊕ 1 vx1 ⊕ vx2 ⊕ x1 ⊕ 1
(v,s) vx1 ⊕ v ⊕ x1 ⊕ x2 ⊕ 1 vx2 ⊕ v ⊕ x1 vx1 ⊕ vx2 ⊕ x2 ⊕ 1
(t,w) vx1 ⊕ x2 ⊕ 1 vx2 ⊕ v ⊕ x1 ⊕ x2 vx1 ⊕ vx2 ⊕ v ⊕ x1 ⊕ 1
(w,t) vx1 ⊕ x1 ⊕ x2 ⊕ 1 vx2 ⊕ v ⊕ x1 ⊕ 1 vx1 ⊕ vx2 ⊕ v ⊕ x2

(r,x) vx1 ⊕ v ⊕ x2 ⊕ 1 vx2 ⊕ x1 ⊕ x2 ⊕ 1 vx1 ⊕ vx2 ⊕ v ⊕ x1

(x,r) vx1 ⊕ v ⊕ x1 ⊕ x2 vx2 ⊕ x1 ⊕ 1 vx1 ⊕ vx2 ⊕ v ⊕ x2 ⊕ 1

ues s for minimum number of active layers and simmetri-
cal topology), therefore it is interesting to develop a more
general method to synthesize the SCO boxes than that
considered in Subsections 2.2 and 2.3. Below we present
a new method that allows one to construct the SCO boxes
of the orders h = 1, 2, ..., n/4 using minimum number
of active layers. The method is illustrated in Figure 7,
where Fn;m and F−1

n;m are the CO boxes of order h and
the fixed permutation π0 is described as follows:

(

1 2 ... 2k − 1 2k ... 2n − 1 2n
1 n + 1 ... k n + k ... n 2n

)

.

Due to the use of such permutation and its inverse π−1
0

each elementary box F2;1 of the top and bottom active
layers L is connected with both the Fn;m-box and the
F−1

n;m-box providing doubling the order h. The method
is based on the use of two mutually inverse CO boxes

FV (1)

n;m and
(

F−1
)V (2)

n;m
of the same order h and allows one

to synthesize the SCO box F
(V,e)
2n;2(m+n) of the order 2h,

where V = (V1, V
(1), V (2), Vs) is the controlling vector of

the synthesized CO box and s = 2(m/n+1) is the number
of active layers in the last. The size of the vectors V (1)

and V (2) differs from the size of V1 and Vs. It is easy to
show that for all values V and e ∈ {0, 1} we have

F
(V,e⊕1)
2n;2(m+n) =

(

F
(V,e)
2n;2(m+n)

)−1

.

In the case n = 2k the minimum number of the
active layers in the box Fn;m (or F−1

n;m) of the order
h = 1, 2, ..., n/4 is smin = log2hn (in the case h = n we
have smin = log2hn − 1) [10]. To construct the SCO box

F
(V,e)
n′;m′ , where n′ = 2n and m′ = 2(n + m), of the order

h′ = 2, 4, ..., n′/4 using the described synthesis method
one should use the boxes Fn;m and F−1

n;m of the order
h = h′/2 and add two additional active layers. The min-
imum number of the required active layrs is

s′min = log2hn + 2 = log24hn = log2h
′n′.

The SCO boxes of the maximum order (i.e. h′ = n′)
can be constructed using the (2log2n−1)-layer boxes Fn;m

and F−1
n;m of the order h = n [10]. For this case we have

s′min = (2log2n − 1) + 2 = 2(log2n + 1) − 1 = 2log2n
′ − 1.

Thus, for the given order h = 2, 4, ..., 2k the imple-
mentation of switchable (F(V,e)) and ordinary (F(V))
CO boxes requires the same minimum number of the
active layers. If n = 2k, then it is easy to construct

the maximum-order box F
(V)
n;m with symmetric structure.

Therefore the maximum-order switchable box F
(V,e)
n;m can

be also synthesized analogously to different constructions
of the SCO boxes with symmetric topology.

3 Fast SCO-based Cipher Hawk-

64

The property of the controllability of the operations used
as cryptographic primitive provides possibility to design
different types of the iterative block cryptoschemes with
simple key scheduling, which can be implemented in cheap
hardware. The property of the switchability allows avoid-
ing the weak keys while using the simple key scheduling.
Figure 8 presents new 64-bit cipher Hawk-64 particular
feature of which is the combining SPN (Si operation per-
formed on the right data subblock) with CSPNs (two SCO

boxes F
(L,e1)
32;96 and F

(L,e2)
32;96 in the left branch of the round

cryptoscheme). The design of the used SCO boxes is ex-
plained in Figures 3d,c,4a,b, and 6a, where the (i,j) CE
is used as building block F2;1. Hawk-64 uses 128-bit key
K = (K1, K2, K3, K4) (K ∈ {0, 1}32) and very simple key
scheduling that is the same while enciphering and deci-
phering. However different scheduling of the bits e1 and
e2 is used while encryption and decryption.

Ciphering procedure of Hawk-64 is described as follows:
C = T(e=0)(M, K) and M = T(e=1)(C, K), where M
is the plaintext, C is the ciphertext (M, C ∈ {0, 1}64), T

is the transformation function, and e ∈ {0, 1} is a param-
eter defining encryption (e = 0) or decryption (e = 1)
mode. Iterative structure of Hawk-64 is shown in Fig-
ure 8a. First data block is divided into two 32-bit sub-
blocks A and B and then using the procedure Crypt(e)

eight encryption rounds are performed. The last round
is followed by final transformation (FT). The structure of

the procedure Crypt(e) is shown in Figure 8b. The FT
is performed as XORing data subblocks with respective

International Journal of Network Security, Vol.7, No.3, PP.404–415, Nov. 2008 411

e

1

n

L

Fn;m

-1

Y

Fn;m

-1

L

V1’

Vs’

2n

n

V’
(2)

V
(2)

V1VsV
(1)

V’
(1)

1... ...2n

1... ...n ...2n n+1...

...2n 1... ...n

(e)

P2m;1 (e)

Pn;1

n
m m

n

1... ...2n

2n
X

0

0

Pn’;m’
(V’)V=(V1,V

(1)
,V

(2)
,Vs)

m' = 2n+2m

2n X

P2n;2(m+n)

(V,e)

Y 2n

m'

V

V’ = (V’1,V’
(1)

,V’
(2)

,V’s)

n' = 2n

n+1....

Figure 7: Synthesis of the SCO boxes of different orders

Table 3: Key scheduling and specification of the switching
bits e′ and e′′

j 1 2 3 4 5 6 7 8 FT
Qj K1 K2 K3 K4 K4 K1 K2 K3 K1

Uj K3 K3 K2 K1 K4 K4 K3 K2 K3

e′ 1 0 1 1 0 1 0 0 -
e′′ 0 0 1 0 1 1 0 1 -

subkeys: A := A ⊕ K1 and B := B ⊕ K3.

The F
(B,e1)
32;96 and F

(B,e2)
32;96 boxes are constructed using

the (i,j) elements as standard building blocks in corre-
spondence with topology described in Section 2.1. The e1

and e2 values depend on e and round number: e1 = e′⊕ e
and e2 = e′′ ⊕ e, where e′ and e′′ are specified in Table 3.
The permutational involution I1 in the left branch of the
round transformation is the same as that corresponding
to connection between cascade of four parallel boxes F8;12

and cascade of four boxes F−1
8;12 in the box F32;96 (see Fig-

ure 4a,b). The Si operation is involution (see Appendix 1
for more detailed comments). It is a SPN constructed
using the Π1, Π2, and Π3 permutations (specified in Ta-
ble 4) and the following 4× 4 S-box substitutions: direct
ones S0,..., S7 and respective inverses S−1

0 ,..., S−1
7 (spec-

ified in Table 5). Eight 4×4 S-boxes of the DES cipher
(one from each of eight 6×4 S-boxes) have been selected
as the S0,..., S7 boxes of Hawk-64 in order to ispire a high
level of public confidence that no trapdoor are inserted in

Table 4: The I1, Π1, Π2, and Π3 permutations

I1
(1)(2,9)(3,17)(4,25)(5)(6,13)(7,21)(8,29)(10)(11,18)

(12,26)(14)(15,22)(16,30)(19)(20,27)(23)(24,31)(28)(32)

Π1
(1)(2,5)(3,17)(4,21)(6)(7,18)(8,22)(9)(10,13)(11,25)

(12,29)(14)(15,26)(16,30)(19)(20,23)(24)(27)(28,31)(32)

Π2
(1)(2,5)(3,9)(4,13)(6)(7,10)(8,14)(11)(12,15)(16)(17)

(18,21)(19,25)(20,29)(22)(23,26)(24,30)(27)(28,31)(32)

Π3
(1,3,19,17)(2,7,20,21)(4,23,18,5)(6,8,24,22)

(11,27,25,9)(10,15,28,29)(12,31,26,13)(14,16,32,30)

Hawk-64. Similar justification of the S-boxes selection has
been earlier used in the design of the Serpent cipher [2].

4 Discussion and Conclusion

The use of the DDO is oriented to the cipher design using
simple key scheduling [7, 14]. Earlier [8] the SCOs have
ben proposed to prevent the weak keys while designing
cryptosystems with simple key scheduling. In this paper
we have proposed three new designs of SCOs. The FPGA

(ASIC) implementation cost of SCOs F
(L,e)
n;m based on the

designs described in Sections 2.2 and 2.3 is 117% (≈ 112−
125% for different types of CEs) in comparison with the
corresponding COs Fn;m. For SCOs described in [8] the
respective figures are 150% (FPGA) and ≈ 135 − 175%
(ASIC).

One of the designed SCOs has been used in new cipher
Hawk-64. We have implemented Hawk-64 using FPGA
Xilinx Vitrex Device and the loop unrolling architecture
(denoted as LU-N , where N is number of the unrolled en-

International Journal of Network Security, Vol.7, No.3, PP.404–415, Nov. 2008 412

a) b)

B A

c)

Final
transformation

Crypt
(e)

Crypt
(e)

Crypt
(e)

8

e
n
c
ry

p
ti
o
n

 r

o
u

n
d
s

A B

Si

F32/96

(B′,e2)
32

Qj

Uj

F32/96

(B,e1)

I1 32

S0 S1 S2 S7

S0 S3 S4 S7

S4 S7 S0 S3

S0 S1 S2 S7

Π1

Π3

-1 -1 -1 -1

-1 -1

-1 -1

4

Π2

I1

I1

Figure 8: Hawk-64: a) - iterative structure, b) - procedure Crypt(e), and c) - topology of the Si operation

cryption rounds [1]; the iterative looping architecture cor-
responds to LU-1). Due to the use of the FPGA-oriented
primitives this cipher is significantly more efficient for
the FPGA implementation against known ciphers DES,
SAFER+, Cobra-H64 [14], SCO-1(2,3) [12] and many
others including AES finalists. Table 6 (where DFFs -
D Flip-Flops, CLBs - Configurable Logic Blocks, FGs
- Function Generators) compares FPGA implementation
efficiency (estimated as ratio ”performance/cost” [1] and
”performance/(cost·frequency)”) of Hawk-64 with some
known 64- and 128-bit DDO-based ciphers, AES, Serpent,
RC6, and Twofish.

Investigation of the statistic properties of Hawk-64 has
been carried out with standard tests which have been used
in [11] for five AES finalists. The obtained results have
shown that two rounds of Hawk-64 are sufficient to sat-
isfy the test criteria. Our preliminary security estima-
tion of Hawk-64 shows that it is indistinguishable from a
random cipher with differential, linear and other attacks.
Differential analysis appears to be more efficient than lin-
ear attack. This corresponds to ealier results [4, 5, 14] on
analysis of the DDP-based ciphers, which have shown that
linear analysis is less efficient than the differential attack
even against ciphers based on the DDP operations that
are a linear primitive. Our best differential characteristics
correspond to the two-round differences with one active
bit. Such characteristics have probability P (2) ≤ 2−32.
The differences pass through one round with probabil-
ity P ′ = 2−12, if the active bit passes through the left
branch of the round transformation, and with probabil-
ity P ′′ ≤ 2−20, if the active bit passes through the right
branch of the round transformation (formation scheme
of the iterative two-round differential characteristic is re-
sented in Appendix 2).

Four rounds of Hawk-64 are sufficient to thwart the
differential attacks. Additional four rounds have been
added to get the 100% security margine (measured as

R−Rmin
Rmin

· 100%, where R and Rmin are the specified

and minimum secure number of rounds, correspondingly).
The slide attacks [3] against Hawk-64 are not efficient,
since this cipher uses non-periodic key scheduling and
non-periodic specification of the bits e′ and e′′ that difine
direct or inverse transformations are performed with the

operations F
(B,e1)
32;96 and F

(B′,e2)
32;96 in each of eight encryption

rounds. The related-key differential analysis [6] is also not
efficient, since each of the subkeys is used at least in three
different rounds.

The main results of this paper can be formulated as
follows:

1) Three new desings of SCOs that are efficient for hard-
ware implementation have been developed.

2) A new SCO-based cipher Hawk-64 that is efficient for
application in the constrained environments has been
proposed. One of the features of Hawk-64 is using
the same key scheduling for both the data encryption
and the data decryption. Analysis of the algorithm
Hawk-64 has shown that it is secure against known
attacks.

3) The FPGA implementation cost and integral efficacy
of Hawk-64 has been estimated and compared with
conventional ciphers.

References

[1] A. J. Albirt, W. Yip, B. Ghetwynd, and C. Paar,
“FPGA implementation and performance evaluation
of the AES block cipher candidateAlgorithm final-
ists,” 3rd Advanced Encryption Standard Conference
Proceedings, New York, NY, USA, Apr. 13-14, 2000.

[2] R. Anderson, E. Biham, and L. Knudsen, “Serpent:
A proposal for the advanced encryption standard,”

International Journal of Network Security, Vol.7, No.3, PP.404–415, Nov. 2008 413

Table 5: The S-boxes used in the Si operation

S-box 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

S1 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

S2 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8

S3 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2

S4 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4

S5 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S6 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8

S7 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2

S−1
0 14 3 4 8 1 12 10 15 7 13 9 6 11 2 0 5

S−1
1 9 10 5 0 2 15 12 3 6 13 11 14 8 1 7 4

S−1
2 1 8 14 5 13 7 4 11 15 2 0 12 10 9 3 6

S−1
3 12 0 15 5 1 13 10 6 11 14 8 2 4 3 7 9

S−1
4 3 9 13 10 15 12 1 6 14 2 0 15 4 7 11 8

S−1
5 10 4 6 15 13 14 8 3 1 11 12 0 2 7 5 9

S−1
6 12 9 3 14 2 7 8 4 15 6 0 13 5 10 11 1

S−1
7 12 0 15 5 7 9 10 6 3 14 4 11 8 2 13 1

Table 6: The FPGA (Xilinx Virtex Devices) implementation synthesis results for the LU-1 architecture

Cipher Block # rounds Covered area F Rate Integral efficacy

size CLBs FGs DFFs (MHz) (Mbps) Mbps
CLBs

Mbps
CLBs·GHz

Hawk-64 (proposed) 64 8 560 1,019 166 85 670 1.2 14.1
SPECTR-H64 [13] 64 12 713 1,320 203 83 443 0.62 7.5
Cobra-H64 [14] 64 10 615 1,229 204 82 525 0.85 10.4
Cobra-H128 [14] 128 12 2,364 4,728 399 86 917 0.39 4.5
AES [13] 128 10 2,358 - - 22 259 0.11 5.0
AES [1] 128 10 3,528 - - 25.3 294 0.083 3.3
Serpent [1] 128 32 5,511 - - 15.5 61.9 0.011 0.6
RC6 [1] 128 20 2,638 - - 13.8 88.5 0.034 2.4
Twofish [1] 128 16 2,666 - - 13 104 0.039 3.0

1st Advanced Encryption Standard Candidate Con-
ference Proceedings, Venture, California, Aug. 20-22,
1998.

[3] A. Biryukov, and D. Wagner, “Advanced slide at-
tacks,” Eurocrypt ’00, LNCS 1807, pp. 589-606,
Springer-Verlag, 2000.

[4] N. D. Goots, V. B. Izotov, A. A. Moldovyan, and
N. A. Moldovyan, “Fast ciphers for cheap hardware:
Differential analysis of SPECTR-H64,” Proceedings
of the Second International workshop on Mathemati-
cal Methods, Models, and Architectures for Computer
Network Security, LNCS 2776, pp. 449-452, Springer-
Verlag, 2003.

[5] Y. Ko et al., “Linear cryptanalysis on SPECTR-H64
with higher order differential property,” Proceedings
of the Second International workshop on Mathemati-
cal Methods, Models, and Architectures for Computer
Network Security, Springer-Verlag, LNCS 2776, pp.
298-307, 2003.

[6] Y. Ko, S. Hong, W. Lee, S. Lee, and J.-S. Kang, “Re-
lated key differential attacks on 27 round of XTE and
full-round GOST,” Proceedings of the 11th Interna-
tional Workshop, Fast Software Encryption - FSE
’2004, LNCS 3017, pp. 299-316, Springer-Verlag,
2004.

[7] A. A. Moldovyan, and N. A. Moldovyan, “A cipher
based on data-dependent permutations,” Journal of
Cryptology, vol. 15, no. 1, pp. 61-72, 2002.

[8] N. A. Moldovyan, “On cipher design based on switch-
able controlled operations,” Proceedings of the Sec-
ond International workshop on Mathematical Meth-
ods, Models, and Architectures for Computer Net-
work Security, Springer-Verlag, LNCS 2776, pp. 316-
327, 2003.

[9] N. A. Moldovyan, A. A. Moldovyan, M. A. Eremeev,
and N. Sklavos, “New class of cryptographic primi-
tives and cipher design for network security,” Inter-
national Journal of Network Security, vol. 2, no. 2,
pp. 114-125, 2006.

International Journal of Network Security, Vol.7, No.3, PP.404–415, Nov. 2008 414

[10] N. A. Moldovyan, and A. A. Moldovyan, Innovative
Cryptography, pp. 386, Charles River Media, Boston,
Massachusetts, 2006.

[11] B. Preneel et al., Comments by the NESSIE
project on the AES finalists, May 24, 2000. http://
www.nist.gav/aes.

[12] N. Sklavos, and O. Koufopavlou, “Architectures and
FPGA implementations of the SCO (-1,-2,-3) ci-
phers family,” Proceedings of the of 12th Interna-
tional Conference on Very Large Scale Integration,
(IFIP VLSI SOC ’03), pp. 68-73, Darmstadt, Ger-
many, Dec. 1-3, 2003.

[13] N. Sklavos, A. A. Moldovyan and O. Koufopavlou,
“Encryption and data dependent permutations: Im-
plementation cost and performance evaluation,” Pro-
ceedings of the Second International workshop on
Mathematical Methods, Models, and Architectures
for Computer Network Security, LNCS 2776, pp. 337-
348, 2003.

[14] N. Sklavos, N. A. Moldovyan, and O. Koufopavlou,
“High speed networking security: Design and imple-
mentation of two new DDP-based ciphers,” Mobile
Networks and Applications, vol. 10, no. 1, pp. 237-
249, 2005.

Appendix 1

Figure 9 explains the structure of the operation Si, where
the following designations are used:

S0...7 is the cascade of the boxes S0, S1,..., S7;
S−1

0...7 is the cascade of the boxes S−1
0 , S−1

0 ,..., S−1
7 ;

S0...3 is the cascade of the boxes S0, ..., S3;
S−1

0...3 is the cascade of the boxes S−1
0 , ..., S−1

3 ;
S4...7 is the cascade of the boxes S4, ..., S7;
S−1

4...7 is the cascade of the boxes S−1
4 , ..., S−1

7 .
The Π3 permutation is represented as superposition T ◦
Π−1

1 (T is the transposition operation and Π−1
1 = Π1).

The Π2 permutational involution is represented as cascade
of two involutions Π′

2 and Π′′
2 = Π′

2.
Thus, the Si can be represented as the following super-

position:

S0...7◦Π1◦
(

S0...3, S
−1
4...7

)

◦Π1◦
(

S4...7, S
−1
0...3

)

◦T◦Π−1
1 ◦S−1

0...7.

Taking into account such representation of the Si opera-
tion it is easy to see that

Si (Si(X)) = X,

where X is arbitrary 32-bit binary vector.

Appendix 2

Formation scheme of the two-round differential charac-
teristic (DC) is presented in Figure 10, where ∆A

i and
∆B

i denote differences of the A and B data subblocks.
The index i indicates the weight of the difference, i. e.

16

32

S0…7

Π3

Π1

S0…3 S4…7

Π2 Π2

S4…7 S0…3

Π1 = Π1

S0…7

1616

16

32

32

32

Π2

−1

−1

−1

−1

Figure 9: Structure of the Si operation

the number of active bits in the difference. The numbers
of the digits to which the active bits correspond are not
taken into account, i. e. we consider some ”integral” DCs
that relates to the set of DC with the indicated weight i.
Efficient DCs correspond to the differences with few ac-
tive bits. The iterative two-round differences

(

∆A
1 , ∆B

0

)

and
(

∆A
0 , ∆B

1

)

pass through two rounds with probability
P (2) ≤ 2−32.

For example, the formation scheme of the DC with
the difference

(

∆A
1 , ∆B

0

)

is presented in Figure 10. In
the first round the active bit passes 12 active layers of the

boxes F
(B,e1)
32;96 and F

(B′,e2)
32;96 with the probability P ′ ≈ 2−12.

Inded, one active bit passes one active layer with probabil-

ity p = 2−1 [10]. When passing through the box F
(B,e1)
32;96

(or F
(B′,e2)
32;96), six different bits of the data subblock B

control the F2;1 elements through which the active bit
passes. Therefore the active bit passes through the box

F
(B,e1)
32;96 (or F

(B′,e2)
32;96) with probability p = 2−6. In the sec-

ond round the active bit passes through the Si operation
with probability ps ≤ 2−8 as it is shown in Figure 10.

Besides, it controls three CEs in each of the boxes F
(B,e1)
32;96

and F
(B′,e2)
32;96 . Each of the indicated CEs generates no

active bit with probability p1 = 2−2 [10], therefore no ac-

tive bits are generated in the boxes F
(B,e1)
32;96 and F

(B′,e2)
32;96

with probability p2 = (p1)
6 = 2−12, therefore we have

P ′′ = psp2 ≤ 2−20.
Thus, we have P (2) = P ′P ′′ ≤ 2−32.

International Journal of Network Security, Vol.7, No.3, PP.404–415, Nov. 2008 415

F32/96

I1

SSSSSSSS

SSSSSSSS

SSSSSSSS

1

SSSSSSSS

32

32

F32/96

32

32

1

(B′,e2)

0

0

1

p ≤ 2
-1

p ≤ 2
-1

p ≤ 2
-2

p ≤ 2
-1

p ≤ 2
-2

p ≤ 2
-1

1
1

1 1

1

p = 2
-6

∆
A

1

1

1

p = 2
-12

p = 1

∆
A
1 ∆

B
0

01

0

0

The first round

∆
B

0

32

(B,e1)

p = 2
-6 The second round

0

Figure 10: Formation of the two-round iterative differential characteristic with the difference
(

∆A
1 , ∆B

0

)

and proba-
bility P (2) ≤ 2−32

Nikolay A. Moldovyan is an honored inventor of Rus-
sian Federation (2002), a chief researcher with the Spe-
cialized Center of Program Systems ”SPECTR”, and
a Professor with the Saint Petersburg Electrical Engi-
neering University. His research interests include com-
puter security and cryptography. He has authored or
co-authored more than 50 inventions and 200 scientific
articles, books, and reports. He received his Ph.D. from
the Academy of Sciences of Moldova (1981). Contact him
at: nmold@cobra.ru.

