
International Journal of Network Security, Vol.7, No.3, PP.397–403, Nov. 2008 397

Multiplicative Forward-Secure Threshold

Signature Scheme

Sherman S. M. Chow1,∗, H. W. Go1,∗, Lucas C. K. Hui2, and S. M. Yiu2

(Corresponding author: Sherman S.M. Chow)

Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, USA1

Department of Computer Science, The University of Hong Kong, Hong Kong2

(Email: schow@cs.nyu.edu, {hwgo, hui, smyiu}@cs.hku.hk)

(Received Sept. 13, 2006; revised Nov. 8, 2006; and accepted June 12, 2007)

Abstract

The devastating consequence of secret key exposure in
digital signature is that any signature can be forged and
cannot be trusted. To mitigate the damage of secret key
exposure, forward-secure signature schemes and threshold
signature schemes are devised. In this paper, we propose
a robust forward-secure threshold signature scheme with
the applicability to mobile ad-hoc network in mind. Our
main objective is to reduce interaction among the set of
signers and to reduce the dependency on broadcast as well
as private point-to-point connections. We achieve this by
avoiding the regular polynomial sharing and employing
multiplicative sharing in a threshold structure. The secu-
rity of our proposed threshold scheme is reducible to the
security of a single-user scheme, which has been proven
secure under the random oracle model.

Keywords: Ad-hoc network, forward secure threshold sig-
nature, forward security, multiplicative sharing

1 Introduction

In public key infrastructure (PKI), the private key of the
certificate authority (CA) is mainly used for digital sig-
nature purposes: to sign on users’ public key in the form
of certificates, or to sign the certificate revocation lists
(CRLs) that contain information about which public key
is revoked prior its prescribed validity period. The public
and private key pair of the CA service is normally used for
rather long time, due to the difficulties in re-distributing
CA’s public key to all network users (who may be dis-
connected at any time) and re-generating all the users’
certificates using CA’s new private key.

The devastating consequence of secret key exposure in
digital signature is that any signature can be forged and
cannot be trusted. The damage of secret key exposure
of CA is particularly severe, as it implies all the chains

∗The research was done when the authors were with Department

of Computer Science, The University of Hong Kong.

of certificates generated using the CA’s private key are
no longer trusted and need to be revoked, and there is
no way to tell if a signature is generated before or after
the key compromise. Along with the revocation of CA’s
private key come the revocations of all the certificates
in the certification chains, and the re-generation of new
certificates using the newly generated CA’s key pair. The
new public key needs to be distributed to all users as
well, which may also pose a big administrative overhead.
Strong protection of this secret is thus needed.

To mitigate the damage of secret key exposure,
forward-secure signature schemes and threshold signature
schemes are devised. Forward-secure signature schemes
address the key exposure problem by dividing the us-
age lifetime of the public key into discrete time peri-
ods and using different secret keys in different periods,
such that all signatures generated in previous time pe-
riods with old secret keys are still considered valid even
if the current secret key is compromised. Threshold sig-
nature schemes lower the chance of complete exposure of
the secret by sharing it among different entities. No single
entity will get hold of the complete secret. Threshold sig-
nature schemes also address the problem of unavailability,
in which any t out of n (t ≤ n) signing entities can give a
valid signature.

Forward-secure threshold signature schemes combine
threshold signatures with forward security. Using a for-
ward secure threshold signature scheme, CA’s private
key can be evolved via the key updating protocol with
at least t participating servers, and shares may be re-
freshed between key updates as well. Such a class of
schemes is an important technology in mobile ad-hoc net-
work (MANET) as mobile nodes are more vulnerable to
compromise. Moreover, the transient and volatile nature
of MANETs makes the idea of single CA not practical.
The problems of low security level and low availability of
a single CA can be addressed with the use of forward-
secure threshold signature schemes.



International Journal of Network Security, Vol.7, No.3, PP.397–403, Nov. 2008 398

1.1 Our Contributions

In this paper, we propose a robust forward-secure thresh-
old signature scheme based on the technique of multiplica-
tive secret sharing. Each signer only needs to perform a
modular exponentiation to obtain a new share value for
the new time period from the old share value, i.e. no in-
teraction among the signers is required, while interaction
is necessary for previous constructions [1, 4, 7]. For sign-
ing, our scheme uses fewer communication rounds when
compared with existing work. Our scheme is also the first
multiplicative threshold signature scheme that does not
require the presence of all n signers to perform signing
and key update, as compared with [1], which requires n
signers to perform signing and key update. The security
of our threshold scheme is reducible to the security of
the scheme in single user setting, which has been already
proven secure under the random oracle model in [2].

1.2 Organization

The rest of the paper is organized as follows. The next
section shows how existing schemes cannot satisfy the re-
quirements in MANETs. Followed by some preliminaries
in Section 3, Section 4 presents our proposed multiplica-
tive forward-secure threshold signature scheme. The pro-
posed scheme’s efficiency and security analysis are given
in Section 5. Finally, Section 6 concludes our paper.

2 Existing Schemes

In a threshold CA setting, the private key of CA is dis-
tributed among a number of servers. To apply forward
security to the threshold CA key, a number of require-
ments related to communication issues are introduced:

1) The number of communication rounds required for
the operations should be minimized;

2) Only loose synchronization is required;

3) The scheme should not depend on the network topol-
ogy. For example, the scheme should rely on the exis-
tence of broadcast or point-to-point private channels
as little as possible.

To the best of authors’ knowledge and an extensive
survey in [6], existing forward-secure threshold signature
schemes include [1, 4, 7]. The comparisons of them are
summarized in Table 1. It can be seen that although these
schemes are quite optimal in the security aspects (e.g.
some of them achieve optimal resilience of t = (n− 1)/2),
they are far from efficient in terms of communication over-
head and do not fit in MANET very well. All of them
require a quite tight synchronization, and the uses of a
broadcast channel and point-to-point private channels.

Scheme 1 in [1] requires all n signing servers to be on-
line for signing and private key updates, hence is not truly
a threshold scheme, and it is not considered in our com-
parisons. All the three schemes in Table 1 are or can be

extended to be secure against mobile malicious attack-
ers. They require at least t + 1 uncorrupted servers to
perform signing (which represents more than half of n).
In the case some of the partial signatures being invalid
(produced by corrupted servers) or lost, recovery proce-
dures need to be performed. However, the communication
overheads required to sign is rather unsatisfactory. All of
them require a broadcast and point-to-point private chan-
nels to exchange messages and require quite a number of
rounds. We refer one round of communication as the flow
of messages from node Pi to node Pj and then back to
node Pi. The numbers in Table 1 only represent the min-
imum number of rounds required under ‘perfect’ condi-
tion. If recovery procedures are needed, the numbers will
be even higher. To perform private key update, scheme
2 in [1] requires at least two-third of online servers, while
the schemes in [4] and [7] both requires all the n servers
to participate which may not be feasible in MANETs as
nodes may be unreachable at any time.

There are difficulties to apply the above three schemes
to threshold CA servers in MANET environments, due to
the restrictive assumptions:

1) Presence of broadcast channels and/or point-to-point
private channels;

2) Synchronization between the servers with a global
clock;

3) Signing and key updating requires a majority or even
all the servers to participate and they need to connect
to each other.

These cannot be easily achieved due to high node mobil-
ity and poor connectivity in MANETs. In order to re-
lax the broadcast and point-to-point assumptions, some
secure routing protocols and Byzantine agreement may
be required. More practical and efficient forward secure
threshold schemes which are round optimal and useful in
MANET environments is a viable research direction.

3 Preliminaries

3.1 Framework

A standard framework of a forward-secure threshold sig-
nature scheme [1, 4, 7] is adopted. For a (t, n) forward-
secure threshold signature scheme, there are a total of n
signers each with a share of the secret key, where any t
out of n signers can function together correctly to im-
plicitly “reproduce” the secret key and generate signa-
tures, but any t−1 signers cannot. A (t, n) forward-secure
threshold signature scheme consists of the following four
components: key generation (KeyGen), distributed sign-
ing (Sign), distributed key evolution (Update), and ver-
ification (Verify). The functions of these algorithms are
formalized as below.

• KeyGen: On input of the total number of signers n,
the threshold number of signers t, the total number of



International Journal of Network Security, Vol.7, No.3, PP.397–403, Nov. 2008 399

Schemes AMN01 [1]
Scheme 2

TT01 [7] CLT03 [4]

Security-Related Aspects
Sharing Principle Polynomial-based Multiplicative and

polynomial-based
Polynomial-based

Number of Compromised Servers Tolerated t = (n− 1)/3 t = (n− 1)/2 t = (n− 1)/2
Number of Uncorrupted Servers for Signing 2t + 1 t + 1 t + 1
Type of Adversaries Tolerated Mobile Halting Mobile Malicious Adaptive Malicious

Communication-Related Aspects
Rounds of Communication in Signing 2L 1 At least 3 broad-

casts and 1 private
exchange

At least 5 broad-
casts

Synchronization Model Synchronous Com-
munication

Synchronous by
Rounds

Synchronous Com-
munication

Broadcast and Private Channel Requirement Both2 Both3 Both

Table 1: Comparisons of different forward-secure threshold signature schemes

time periods T and an unary string input 1k where
k is a security parameter, it produces the common
public parameters params, which include the public
key PK, a description of a finite message space to-
gether with a description of a finite signature space.

Each signer Pi also gets SK
(i)
0 as the share of the

secret key value SK0 for period 0.

• Sign: On input (i, j, m, SK
(i)
j ), where m denotes the

message to be signed and SK
(i)
j denotes the ith share

of the secret key SKj for the current time period
j (1 ≤ j ≤ T ), the signer Pi outputs the partial
signature σ(i). A third party or any signer is able to
construct the final signature σ given a set of t partial
signatures {σ(i)}.

• Update: On input (i, j, SK
(i)
j ), where SK

(i)
j denotes

the ith share of the secret key SKj for the current

period j (1 ≤ j ≤ T ), the signer Pi gets SK
(i)
j+1

for period j + 1 and deletes SK
(i)
j . As a result, the

system’s secret key is implicitly evolved to SKj+1.

• Verify: On input (σ, j, PK, m), it outputs 1 for “true”
or 0 for “false”, depending on whether σ is a valid
signature of message m signed by the secret key SKj

at period j of the corresponding PK or not.

3.2 Multiplicative Secret Sharing

A multiplicative secret sharing scheme for secret in non-
Abelian group was proposed in [5]. In this scheme, there
are n parties where n is a power of 2, and a threshold of
t parties to recover the secret. The scheme is based on
Vandermonde’s convolution equation, i.e.

∑

`

(

r

`

)(

s

t− `

)

=

(

r + s

t

)

,

which has a combinatorial meaning as the number of ways
to choose ` red balls among a total of r red balls, and to
choose t− ` green balls among a total of s green balls, for
each possible `, is equal to the number of ways to choose
t balls among r red balls and s green balls.

To share a secret y to n parties in which t of them can
recover it, we can put r = s = n/2 and spilt the secret in a
recursive manner. First randomly pick a y2 and compute
y1 = y(y2)

−1, then share y1 in (n/2, `) threshold scheme
and share y2 in (n/2, t− `) threshold scheme, where ` is
in the range max(0, t− n/2) ≤ ` ≤ min(t, n/2).

Our scheme use two procedures from [5]: Share and
Recover. Share(S0, (1, n), t, list) distributes the initial se-
cret key S0 to the signers (indexed by 1 to n) such that
t of them can recover the secret, using a multiplicative
sharing method. Data structure for storing the shares is
named SUB-SHARE, a global associative array which is
indexed by list hinting which share to use given the list
of online signers. After executing the procedure Share,
each signer is given a number of sub-shares. To perform
signing, a chosen signer Pi (t of n signers) will execute
Recover(i, (1, n),B, list) to determine which sub-share to
use, where B is the set of the selected signers. An al-
gorithm Share to distribute the secret y to n parties is
described as followed:

Share(y; (i, j); t; list = empty) {
if (i = j) and (t = 1) then

give the pair (list, y) to party Pi;
(Pi then stores y at virtual address list)
SUB-SHARE[list] ← y;

if (i < j) then
m← j − i + 1;
m1 ← max(0, t−m/2);
m2 ← min(t, m/2);
for ` = m1, · · · , m2 inclusive

list1 ← list ∪ ((i, i− 1 + m/2), `);
list2 ← list ∪ ((i + m/2, j), t− `);



International Journal of Network Security, Vol.7, No.3, PP.397–403, Nov. 2008 400

if (` 6= 0) then
if (` 6= t) then

uniformly choose y1,` in the group Z;
y2,` ← (y1,`)

−1 · y;
Share(y1,`; (i, i− 1 + m/2); `; list1);
Share(y2,`; (i + m/2, j); t− `; list2);

else Share(k; (i, i− 1 + m/2); t; list1);
else Share(k; (i + m/2, j); t; list2);

}

A (t, n) sharing of secret s can be done by executing
Share(s; (1, n); t; list = empty).

The algorithm Recover to recover a secret y from a
subset of size t out of a total of n is described as followed:

Let B be a subset of t parties to recover the secret y.
Set Bi = 1 if and only if party Pi is in B. Each party Pi in-
vokes Recover(i; (1, n); (B1,B2, · · · ,Bn); list = empty) to
recover his sub-share yi. It is noted that the hamming
weight of (B1,B2, · · · ,Bn) = t and y =

∏

Pi∈B yi.

Recover(`; (i, j); (B1,B2, · · · ,Bn); list) {
set m = j − i + 1;
if (m = 1) then

set list = list ∪ ((i, i);Bi);
output y` = SUB-SHARE[list];

if (` ≤ m/2) then
set j′ = i− 1 + m/2;

set list = list ∪ ((i, j′);
∑j′

z=i Bz);
Recover(`; (i, j′); (Bi, · · · ,Bj′); list);

else
set i′ = i + m/2;

set list = list ∪ ((i′, j);
∑j

z=i′ Bz);
Recover(`; (i′, j); (Bi′ , · · · ,Bj); list);

}

The number of duplicated sub-shares will depend on
the threshold t and the total number of parties n. When
t is small, more sub-shares (given to different nodes) will
be the same to provide the needed redundancy. Larger t
means the parties have higher chance to get unique share.

4 Proposed Signature Scheme

Our proposed scheme extends the forward-secure signa-
ture scheme in [2] to a (t, n) threshold version, in which
n signers each with a share of the secret key, and any
t of them can function correctly to generate signatures.
The secret key is not explicitly constructed to prevent the
secret from being exposed. The scheme in [2] is a non-
threshold signature scheme provably forward-secure un-
der the random oracle model. In our scheme, the multi-
plicative secret sharing technique from [5] is used in shar-
ing the secret as well as in signing messages.

Let H : {0, 1}∗ → {0, 1}l be a cryptographic hash that
is modeled by a random oracle. The total number of
periods is T = 2r < 2l < 2k. In general, the notation
X(i) indicates the share of secret X held by signer Pi.

4.1 Key Generation

With the input of the security parameter k and the total
number of periods T , the trusted dealer D performs the
following.

1) D computes N = p · q, where N is k bit, p and q are
two random distinct primes such that p ≡ q ≡ 3 mod
4.

2) D randomly selects S0 from the group Z
∗
N .

3) D runs Share(S0, (1, n), t, list) to distribute the secret

S0 so that the ith signer gets the share S
(i)
0 .

4) D computes U ← 1/S2l(T+1)

0 mod N .

The public key PK of the whole system is (N, U, T ),
and the (initial) secret key is shared among n sign-

ers where each signer Pi is given the share SK
(i)
0 =

(N, T, 0, S
(i)
0 ). In the key generation process, the trusted

dealer D needs to establish n point-to-point private com-
munication channels to distribute the respective secret
shares to the n signers. After that, D can go offline.

4.2 Key Update

At the beginning of each time period j (1 ≤ j ≤ T ), each

signer Pi computes his new secret share S
(i)
j by raising 2l

power on the existing share S
(i)
j−1 used in period j−1, i.e.

S
(i)
j = [S

(i)
j−1]

2l

mod N . The secret key share for signer

Pi at period j is (N, T, j, S
(i)
j ). When j equals T + 1,

each signer simply does nothing and returns ε (the empty
string). This step requires no interaction among the sign-
ers, except for the signaling to perform the key update
operation. If a signer is not available or reachable during
the key update time, he can get the most current time in-
dex from another signer later, so that he can perform the
key update by himself to ‘catch up’ the time index. For
example, if his own time index is Ta and his neighbour
is Ta + 1, then he knows he has missed one update and
needs to perform the update by one exponentiation.

4.3 Signing

In the signing protocol, a user U tries to contact at least
any t out of the n signers to get a signature. For ex-
ample, U may broadcast to his neighbours and wait for
responses (together with the time index j) from any t sign-
ers. U then acts as a combiner for the partial signatures
generated by the t signers. This is a common scenario in
MANETs where U is the user requesting certificate from
the distributed CA servers in a (t, n) threshold setting.
Only U is interested in getting the final signature from
the servers’ partial signatures, but the signers may not
be interested at all in the generated partial signatures. U
will perform the following to get a signature:



International Journal of Network Security, Vol.7, No.3, PP.397–403, Nov. 2008 401

1) After U succeeds in contacting at least t signers with
consistent time index j, he sends the coalition in-
formation to the t selected signers, in the form of an
n-bits string (B1, · · · ,Bn), where Bi equals 1 if signer
Pi is selected (i.e. in the coalition), 0 otherwise. This
requires at least t messages n bits each.

2) Each signer Pi in the coalition individually picks a
random number Ri from the group Z

∗
N , computes

Yi = R2l(T+1−j)

i mod N , and sends Yi backs to U .
This requires t messages k bits each.

3) After U gets all Yi where Bi = 1, he can reconstruct
Y =

∏

Bi=1 Yi mod N . Then U performs hashing on
time index j, the computed Y , and message M , to
get σ = H(j, Y, M). U sends σ to signer Pi where
Bi = 1. This requires t messages l bits each.

4) Each signer Pi in the coalition invokes
Recover(i, (1, n), (B1, · · · ,Bn), list) to decide which
sub-shares to use in signing. Each of them then

computes Zi = Ri[S
(i)
j ]σ mod N , sends Zi back to

U . This requires t messages k bits each.

5) U constructs Z =
∏

Bi=1 Zi mod N .

The signature produced for message M is {j, Z, σ},
which is (r + k + l) bits long. All signers then safely erase
their Ri’s. Hence, in the signing protocol, there are only
two rounds of communication required for constructing
the signature after user U has located at least t signers.

4.4 Verification

The signature verification is simply an algorithm which
can be executed by any party who possesses the pub-
lic key PK of the signer to verify the signature without
any interaction with the signers possessing the secret key
shares. Suppose a user U possesses the signer’s public key
PK = (N, U, T ), he can verify the signature {j, Z, σ}
of a message M by the following steps.

1) If Z ≡ 0 mod N , then return 0.

2) Compute Y ′ = Z2l(T+1−j)

· Uσ mod N .

3) If σ = H(j, Y ′, M), then return 1; else return 0.

The correctness of the scheme is as followed. For a mes-
sage M and its signature {j, Z, σ}, given the signer’s pub-

lic key PK = (N, U, T ),

Y ′ = Z2l(T+1−j)

· Uσ mod N

= [
∏

Bi=1

Z2l(T+1−j)

i ] · [1/S2l(T+1)

0 ]σ mod N

= [
∏

Bi=1

R2l(T+1−j)

i (S
(i)
j )σ2l(T +1−j)

]/Sσ2l(T+1)

0 mod N

= (
∏

Bi=1

Yi) · S
σ2l(T +1−j)

j /Sσ2l(T+1)

0 mod N

= (
∏

Bi=1

Yi) · S
σ2l(T +1)

0 /Sσ2l(T+1)

0 mod N

= (
∏

Bi=1

Yi) mod N

= Y mod N.

Hence, we have H(j, Y ′, M) = H(j, Y, M) = σ.

4.5 Robustness

If some of the signers uses an incorrect share to produce
the partial signature, the final signature generated will be
invalid and hence malicious adversaries cannot be toler-
ated. We can overcome this problem by doubling the size
of non-secure storage: generating the “public keys” for

the shared private keys by U (i) ← 1/S
(i)
0

2l(T+1)

mod N ,
then the validity of the partial signature can be verified
as follows.

1) After U gets {Yi} from all participating signers, U
computes Y =

∏

Bi=1 Yi mod N and σ = H(j, Y, M).

2) U sends σ to all participating signers and receives
partial signature Zi in turns.

3) Then U computes Y ′
i = Z2l(T+1−j)

i · U (i)σ
mod N .

4) If Yi = Y ′
i , then the signature combination proceeds,

else it is concluded that the signer Pi has produced
an invalid partial signature.

5 Analysis of Our Proposal

5.1 Efficiency

For initial key generation, a trusted dealer is assumed. He
will establish n point-to-point private channels with the
signers to distribute the secret shares. If a PKI is already
deployed, this is easily done by encrypting the shares with
each signer’s public key to ensure data confidentiality. Be-
sides, after the distribution of shares is done, the trusted
dealer no longer needs to stay online and the private chan-
nels are no longer needed. i.e. our scheme do not rely on
the restrictive assumption #1 in Section 2.

Regarding the restrictive assumption #2 in Section 2;
only loose synchronization (the ‘catch up’ mechanism for
signers who are unavailable during the key update time)
is required in our scheme for key update. The ‘catch up’



International Journal of Network Security, Vol.7, No.3, PP.397–403, Nov. 2008 402

mechanism enables the key update to be done by any t
signers instead of all n signers. By our construction of the
signing protocol, any t signers can give a valid signature.
To conclude, the update and signing algorithm of our pro-
posed scheme do not reply on the restrict assumption #3.

Now comes to the computational efficiency. For key
update, the proposed scheme requires only one exponen-
tiation operation with no interaction among signers, i.e.
O(k3) where k being the security parameter, while [4] runs
in O(log5 T ) time where T is the total number of time pe-
riods, or equivalently, O(k5) time if T = 2r < 2l < 2k. For
signing, the proposed scheme also uses fewer communica-
tion rounds, namely two rounds, than previous schemes.
In fact, the proposed scheme trades the efficiency of key
update by the size of the secret shares. Verification is just
as efficient as other schemes.

5.2 Security

We first give some intuitive idea about the security of the
scheme. User U collects all Yi’s and Zi’s, but will not
know Ri due to the RSA assumption. Even Ri is known,

U will not know S
(i)
j from ZiR

−1
i mod N as long as the

exponentiation by σ is non-trivial, again due to the RSA
assumption. Hence, U cannot recover the secret.

For the distributed random number generation, each
signer Pi selects its own random number Ri. Dishonest
signers may choose a Y ′

i according to the Yi’s generated
from other signers. However, it is not possible to derive
the corresponding R′

i from Y ′
i by the RSA assumption.

Finally, the forward security relies on the intractability
of the Blum integer factorization problem [1] (an integer
N is called a Blum integer [3] if N = pq where p and q
are both primes and p ≡ q ≡ 3 mod 4).

The following theorem proves our proposed scheme is
secure against adaptive chosen message attack [1, 4, 7].

Theorem 1. Let FS-DS denote the single-user signature
scheme in [2]. Our proposed scheme is a forward-secure
threshold signature scheme secure against adaptive cho-
sen message attack as long as FS-DS is a forward-secure
signature scheme in the single-user sense.

Proof. Let A be an adversary who controls up to t − 1
signers during execution of our scheme before the jth time
period and controls up to t signers (i.e. knowing the secret
key of the system) at the jth time period. A is allowed to
launch adaptive chosen-message attack, i.e. it can obtain
valid signatures for message M1, M2, · · · on its wishes, in
an adaptive manner. If A can produce with non-negligible
probability a valid signature for an un-queried message
M , (i.e. M 6= Mi for i ≥ 1) for time period j′, where
j′ < j, we can construct a forger F to forge a signature of
FS-DS using the procedure A and the signing oracle Osig

of FS-DS.
Let (N, U, T ) be the public key of FS-DS. We set U

to be the public key corresponding to the secret share
obtained by one signer Uk of our simulated scheme, while
we can execute the original key generation algorithm for

generating the secret share for the rest of n − 1 signers.
The public key of our simulated scheme will be (N, U ′, T ),
where U ′ =

∏

i6=j U (i) · U .

For signing requests issued by A, for a signature of Mi,
F queries Osig to obtain a signature {j, Z, σ}. F simu-
lates the generation of partial signature by Uk as follows.

Firstly, Y is recovered by Y = Z2l(T+1−j)

· Uσ mod N ,
then a random number Rk is chosen from Z

∗
N and F will

set Uk’s first message to be Y ·R2l(T+1−j)

k . For the rest of
the participating signers other than Uk, the random num-
ber Ri used during partial signature generation will be
randomly chosen except an arbitrary one of them, which
is set to be the inverse of the product of these Ris and
Rk, i.e. [Rk ·

∏

Bi=1 Ri]
−1. This is to ensure that the

Y will appear again in the final signature. Specifically,
F simulates the transcript of the signature generation by
returning the following.

1) Y ·R2l(T+1−j)

k as the intermediate value produced by
Uk during partial signature generation.

2) {j, Z ·Rk, σ} as the partial signature produced by Uk.

3) {j, Z ·
∏

Bi=1 [S
(i)
j ]σ mod N, σ} as the final signature.

It is easy to see that the transcripts for the partial
signature generation of all signers are valid and the final
signature is valid as well. Moreover, A will not find the
transcripts are deviated from the real situation as all Ri

are generated from a random distribution.

At the jth time period, F provides the correct secret
shares of t signers to A by choosing j as the break-
in period of FS-DS. On input of these correct shares
and previous transcripts, A produces a valid signature
{j′, Z ′, σ′} for a new message M , M 6= Mi, at time period

j, where j′ < j, then {j′, Z ′, σ′/
∏

Bi=1 [S
(i)
j′ ]σ

′

mod N} is
the forgery for FS-DS. Thus, FS-DS is forgeable under a
chosen message attack, which is a contradiction.

6 Concluding Remarks

Existing forward-secure threshold signature schemes may
not fulfill the low communication round requirement of
mobile ad-hoc network. A new robust forward-secure
threshold signature scheme is proposed. Our scheme is
based on multiplicative secret sharing, which allows non-
interactive proofs in the form of partial signatures, and
avoids a lot of interactive proof of knowledge required
in the polynomial-based scheme. In this way, key update
and signing are efficient in terms of communication rounds
when compared with existing schemes.

We note that polynomial sharing gives an optimum in-
formation theoretic secure secret sharing scheme, with the
size of the shares given to each player is equal to the size of
the dealt secret; while it is not the case for multiplicative
threshold structure. In spite of the low communication
attained, we need a comparatively larger secure storage,



International Journal of Network Security, Vol.7, No.3, PP.397–403, Nov. 2008 403

specifically, a log n expansion. Studying the trade-off be-
tween bandwidth and storage requirement is a viable re-
search direction.

References

[1] M. Abdalla, S. Miner, and C. Namprempre,
“Forward-secure threshold signature schemes,” Top-
ics in Cryptology - CT-RSA ’01, LNCS 2020, pp.
441-456, David Naccache, Editor, Springer-Verlag,
2001.

[2] M. Abdalla, and L. Reyzin, “A new forward-secure
digital signature scheme,” Advances in Cryptology -
Asiacrypt ’00, 6th International Conference on the
Theory and Application of Cryptology and Informa-
tion Security, LNCS 1976, pp. 116-129, Tatsuaki
Okamoto, Editor, Springer-Verlag, Kyoto, Japan,
Dec. 3-7, 2000.

[3] M. Blum, “Coin flipping by telephone: A protocol
for solving impossible problems,” Proceedings of 24th
IEEE Computer Conference (CompCon), pp. 133-
137, 1982.

[4] C. K. Chu, L. S. Liu, and W. G. Tzeng, “A threshold
GQ signature scheme,” Cryptology ePrint Archive,
Report 2003/016, 2003, http://eprint.iacr.org.

[5] Y. Desmedt, G. D. Crescenzo, and M. Burmester,
“Multiplicative non-abelian sharing schemes and
their application to threshold cryptography,” Ad-
vances in Cryptology - Asiacrypt ’94, LNCS 917,
pp. 21-32, Josef Pieprzyk and Reihaneh Safavi-Naini,
Editors, Springer-Verlag, 1995.

[6] G. Itkis, Forward Security – Adaptive Cryptography:
Time Evolution, Handbook of Information Security,
John Wiley and Sons, 2005.

[7] W. G. Tzeng, and Z. J. Tzeng, “Robust forward-
secure signature schemes with proactive security,”
Public Key Cryptography ’01, LNCS 1992, pp. 264-
276, Kwangjo Kim, Editor, Springer-Verlag, 2001.

Sherman S.M. Chow is currently a PhD candidate
in the Courant Institute of Mathematical Sciences at
New York University. He obtained his BEng degree
in Computer Engineering (with first class honors) and
MPhil degree in Computer Science from the University
of Hong Kong, and his MS degree in Computer Science
from New York University. He is a member of the IACR.
His research interests include Applied Cryptography and
Distributed System Security.

H. W. Go obtained her M.Phil. degree in Computer
Science from the University of Hong Kong. Her research
interest is in Information Security and Cryptography,
specifically in Forward Security.

Lucas Chi-Kwong Hui is the founder and Honorary
Director of the Center for Information Security &
Cryptography, and concurrently an associate professor in
the Department of Computer Science, The University of
Hong Kong. His research interests include Information
Security, Computer Crime, Cryptographic Systems, and
Electronic Commerce Security. Dr Hui received his
B.Sc. and M.Phil. degrees in computer science from
the University of Hong Kong, and his M.Sc. and Ph.D.
degrees in computer science from the University of
California, Davis. He is a member of HKIE and a senior
member of IEEE.

S.M. Yiu obtained his PhD in Computer Science from
the University of Hong Kong and is currently a Research
Assistant Professor in the Department of Computer Sci-
ence of the same university. His research interests include
bioinformatics, information security, and cryptography.


