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Abstract

In1985, Shmuley proposed a theorem about intractability
of Composite Diffie-Hellman. The theorem of Shmuley
may be paraphrased as saying that if there exist a prob-
abilistic polynomial time oracle machine which solves the
Diffie-Hellman modulo an RSA-number with odd-order
bases then there exist a probabilistic algorithm which fac-
tors the modulo. In the other hand Shmuely proved the
theorem only for odd-order bases and left the even-order
case as an open problem. In this paper we show that
the theorem is also true for even-order bases. Precisely
speaking we prove that even if there exist a probabilis-
tic polynomial time oracle machine which can solve the
problem only for even-order bases still a probabilistic al-
gorithm can be constructed which factors the modulo in
polynomial time for more than 98% of RSA-numbers.

Keywords: Computational number theory, cryptography
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1 Introduction

The first public key cryptosystem was proposed by Diffie
and Hellman in 1976 [9]. After that, plenty of public-
key cryptosystems have been proposed. The mostly used
public-key encryption scheme throughout the world is
RSA that invented by Ronald Rivest, Adi Shamir and
Leonard Adleman in 1977. After that, many cryptogra-
phers tried to combine these two cryptosystems to obtain
more security.

The main idea of Composite Diffie-Hellman was first
proposed by Shmuley and McCurley [8, 10]. Shmuley
proved that breaking Composite Diffie-Hellman with odd-
order base is at least as hard as factoring. In 1988, K.
S. McCurley proposed a new cryptosystem based on the
idea of Shmuley and proved it is provably secure based on

∗The first version in the Electronic Colloquium on Computa-
tional Complexity (ECCC) (047): (2005), and the second version in
ePrint Archive (eprint.iacr.org) Report 2005/111, April 2005

intractability of factoring [8]. After that in 1999 Eli Bi-
ham, Dan Boneh and Omer Reingold proved that break-
ing Generalize Diffie-Hellman is also at least as hard as
factoring [2]. As will be discussed in more detail in Sec-
tion 3, both Shmuley and also Biham, Boneh and Rein-
gold only proved that breaking Composite Diffie-Hellman
with odd-order base is implied by factoring not breaking
Composite Diffie-Hellman in general case.

Paper plan: In Section 2 we list definitions representing
the various types of problems we deal with in this paper.
In Section 3 we consider the theorem of Shmuley and that
of Biham, Boneh and Reingold. After that, we propose
our main theorem and prove it comes true modulo special
RSA-numbers in Section 4. In Section 5, we will prove
that special RSA-numbers introduced in Section 4 have a
density more than 98%.

2 Preliminary Definitions

In this section we state definitions used in other sections.
In the remainder of this paper, we use the following no-
tations:

• p|′x denotes x is not divisible by p.

• p‖x denotes x is divisible by p but not by p2.

• gcd(x, y) denotes the greatest common divisor of x
and y.

• lcm[x, y] denotes the least common multiple of x and
y.

• ordN (x) denotes the smallest positive integer d such
that xd = 1(modN).

• λ denotes the Carmichael Function (also called the
least universal exponent function) [4]. For any inte-
ger N , λ(N) is defined as the smallest integer such
that xλ(N) ≡ 1(modN) for all x relatively prime to
N . Note that according to [5], Section 4 for any
RSA-number N = pq, λ(N) ≡ lcm[p− 1, q − 1].
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• log(x) denotes the logarithm function with base 2.

• φ denotes the Euler-totient function.

Definition 1. (FIG) The Factoring-instance-generator,
FIG is a probabilistic polynomial time algorithm such that
on input 1n its output, N = P · Q is distributed over
2n − bit integers, where P and Qq are two n-bit primes
(Such N is known as a RSA-number).

A natural way to define FIG is to let FIG(1n) be uni-
formly distributed over 2n− bit RSA-numbers.

Definition 2. (The function DH) Let N be any possible
output of FIG(1n), let g be any element in Z∗

N . Define
the function DHN,g(g

x, gy) with domain D = (g) × (g)
such that,

DHN,g(g
x, gy) = gxy mod N.

g is called the base of the function DHN,g, and gx, gy

are called two inputs of the function.

Definition 3. (ε-solving the DH-Problem) Let A be a
probabilistic oracle machine and ε = ε(n) a real-valued
function.A ε-solves the DH-Problem if for infinitely n’s

Pr(ADHN,g (N, g) = DH(1n)) ≥ ε(n).

Definition 4. (ε-solving the Hard DH-Problem) Let A be
a probabilistic oracle machine and ε = ε(n) a real-valued
function. A ε-solves the Hard DH-Problem if it ε-solves
the DH-Problem for odd-order bases (ordN (g) is an odd
number).

Definition 5. (ε-solving the Weak DH-Problem) Let A be
a probabilistic oracle machine and ε = ε(n) a real-valued
function. A ε-solves the Weak DH-Problem if it ε-solves
the DH-Problem for even-order bases (ordN (g) is an even
number).

Although the names selected for these two problems -
Hard-DH problem and Weak-DH problem- do not make
any difference in what we are looking for, here we show
intuitively that the hard-DH problem appear to be harder
than Weak-DH problem.

Definition 6. Let N be any possible output of FIG(1n).
Let g and g′ be two integers such that ordN (g) is an odd

number, ordN (g′) is an even number and g = g2k

mod N .
If gx, gy are two possible inputs for DHN,g, then we have
the followings: (all equations are modulo N)

DHN,g′(gx, gy) = DHN,g′(g′2
k

, g′2
ky) = g′2

kxy

= g2kxy = (DHN,g(g
x, gy))2

k

.

Therefore DHN,g′(gx, gy) can be obtained if we can com-
pute DHN,g(g

x, gy). We should remember that we don’t
want to prove that hard DH-problem is not weaker than
weak DH-problem. We only want to show that why we
select these names.

Definition 7. (ε-factoring) Let A be a probabilistic
Turing-machine and ε = ε(n) a real-valued function. A
ε-solves the Factoring-Problem if for infinitely n’s

Pr[A(P ·Q) ∈ {P,Q} ≥ ε(n)

where the distribution of N = P ·Q is FIG(1n).

3 Previous Works

In 1985, Shmuley proved that the following theorem [10]:

Theorem 1. Shmuley’s Theorem: If there exist a
probabilistic polynomial time oracle machine which ε-
solves the Hard DH-Problem modulo an RSA-number N .
Then we can construct a probabilistic algorithm which can
ε-factor the module in polynomial time.

In 1988, K. S. McCurley proposed a new key distribu-
tion system based on the concept of Diffie-Hellman mod-
ulo a composite and proved that breaking that scheme
is at least as hard as factoring [8, 10]. In 1999 Eli Bi-
ham, Dan Bone and Omer Reingold proposed a theorem
like that of Shmuley for Generalize Diffie-Hellman (Diffie-
Hellman for more than two parties).

The Shmuley’s theorem is restricted in the case where
base g is an odd-order element in Z∗

N . The theorem of
Biham, Boneh and Reingold is also restricted in the case
that N is a Blum-integer and g is a quadratic-residue. It
is clear that g will be an odd-order element in those cir-
cumstances. It is clear that theorem of Biham, Boneh and
Reingold for two parties is a special case of that of Shmu-
ley. Consequently, so far, there is no theorem concerning
intractability of breaking Composite Diffie-Hellman in the
case which g is an even-order element. In the other hand,
there is no fact about intractability of Weak DH-Problem.

4 The Reduction

In this section, we state our main theorem. First we pro-
pose some elementary lemma used in our proof, and then
we propose our main theorem.

Definition 8. A 2n-bit RSA-number, N = PQ is said
to be a good RSA-number if p ‖ λ(N), for some prime
p < log(N).

Lemma 1. If N is a good RSA-number, p is a prime
such that p ‖ λ(N) and x = yp(modN) for some integer
y then ord(x) is not divisible by p.

Lemma 2. Let N = PQ be a good RSA-number, s be a
prime such that p ‖ λ(N) and x and y be two integers cho-
sen randomly from Z∗

N , such that xs = ys(modN) then
gcd(x− y,N) yields a non-trivial factor of N with proba-
bility 1 − (1/s).

The generalized form of this lemma was proposed in
[6].
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Theorem 2. If there exists a probabilistic polynomial-
time oracle machine which ε-solves the Weak DH-Problem
modulo a good RSA-number N , there exists a poly-time
algorithm which ε-factors the module N .

Proof. Assume that A is a probabilistic polynomial time
oracle machine, which ε-solves the weak DH-problem
modulo a good RSA-number N . Let p < log(N) be an
odd-prime such that p ‖ λ(N). Note that since N is
a good RSA-number such prime exists. To propose the
main idea of the proof we first suppose that we know such
p. Knowing p we can do the following for factoring the
module N :

1) Sample δ uniformly at random in Z∗
N and compute

g = δp2

.

2) Select two random integers a and b.

3) Invoke A and let x = DHN,g(g
a+1/p, gb+1/p). Let

d = ordN (g). Note that by lemma 1 d is not divisible
by p so (1/p mod d) exist and is unique. Therefore
g1/p will exist and will be unique. In addition we
know that (δp)p = g and δp ∈ 〈g〉 so g1/p = δp. Let
σ = δp.

4) Let u = x
σpab+a+b (modN). We know that: x =

g(a+1/p)(b+1/p)(modN) and σ = g1/p. So we have

u = g1/p2

.

5) Compute gcd(u− δ,N).

It is easy to see that up = δp(modp so by lemma 4.2
gcd(u−δ, p) will yield a non-trivial factor of N with prob-
ability 1 − 1/p. In the other hand we can say that since
u ∈ 〈g〉 but the probability that δ ∈ 〈g〉 is 1/p so the
probability of success is equal to 1 − 1/p.

Note that in general case we do not know such p so we
must somehow look for it. For achieving that goal, we do
the following:

1) Sample v uniformly at random in Z∗
N .

2) Let p = {p1, p2, . . . , pk} be the set of all odd-primes
less than log(N).

3) Compute w =
∏

1≤t≤k pt
2 and g = vw(modN).

4) For each 1 ≤ i ≤ k do the following:

a. Compute w =
∏

1≤t≤k&t6=i pt
2.

b. Let δi = vwi(modN) and σi = δpi

i (modN). If
pi ‖ λ(N) then d is not divisible by pi (accord-
ing to lemma 1), so (1/pi) mod d exist and is
unique. Therefore g1/pi will exist and will be
unique. In addition we know that (δpi

i )pi = g
and δpi

i ∈ 〈g〉 so g1/pi = δpi . Let σi = δp
i .

c. Select two random integers a and b.

d. Invoke A and let x = DHN,g(g
aσi, g

bσi). It is
clear that x = DHN,g(g

a+1/pi , gb+1/pi).

e. Set u = x

δ
piab+(a+b)

i

.

f. Compute gcd(u− δi, N).

As discussed in the first part of the proof if pi < log(N) is
an odd-prime such that pi ‖ λ(N) the algorithm yields a
non-trivial factor of N in the i′th iteration of step 4 with
probability at least (1 − 1/pi) · ε. And in the theorem we
suppose that such pi exist so the algorithm ε′-solves the
factoring and ε′ > ε/2. Since the number of iterations
is less than log(N) and each operation can be done in
poly-time so the algorithm can be accomplished in poly-
time.

5 The Distribution of Good RSA-

numbers

In Section 4 we proved the hardness of weak composite
Diffie-Hellman modulo good RSA-numbers. Now, it is
very important for us to determine the density of good
RSA-numbers. For doing so in this section we discuss
natural density of good RSA-numbers and prove that the
density is more than 98%. At the end of this section we
propose some practical result about distribution of good
RSA-numbers.

Lemma 3. For any integer k:

d = lim
n→∞ ]{p;pisan−bitprime,k|p−1}

]{p;pisan−bitprime}

= 1
ϕ(k) .

This lemma can be obtained by Chebotarev theorem [7]
as indicated in [3]. The complete proof is in Appendix A.

Corollary 1. For any prime s:

lim
n→∞

]{p;pisan−bitprime,s‖p−1}
]{p;pisan−bitprime}

= 1
ϕ(s) −

1
ϕ(s2) = 1

s .

Definition 9. For any prime s, we define the function ψ
as follows: ψ(s) = lim

n→∞ ]{N ;Nisa2n−bitRSA−numbr,s‖λ(N)}
]{N ;Nisa2n−bitRSA−numbr}

.

Lemma 4. Let s be a prime: ψ(s) = 1
s2 + 2

s × s−2
s−1 .

The proof is in Appendix B.

Following table show some data collected by computing
function ψ for some value s.

S 3 5 7 11 13
ψ(s) 0.444 0.339 0.258 0.171 0.146

Definition 10. Define the function ξ(c) as follows:

limn→∞
]{N ;Nisa2n−bitRSA−number,s‖λ(N)forsomeprimes<c}

]{n;Nisa2n−bitRSA−number} .

It is obvious that the natural density of good RSA-
numbers is equal to limc→∞ξ(c).

Lemma 5. Let pi be the i′th and pi+1 be the i+1′th odd-
prime. We have ξ(pi+1) = ξ(pi) + (1− ξ(pi+1)) ·ψ(pi+1).

Following table show some data collected by computing
the recursive functions ξ for some values c:
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C 3 5 10 100 1000 10000
ξ(c) 0.444 0.633 0.728 0.924 0.965 0.980

Corollary 2. The natural density of good RSA-numbers
is more than 98%. Therefore our main theorem comes
true for more than 98% of RSA-numbers.

The following table shows some experimental result col-
lected about distribution of good RSA-numbers. Our ex-
periments confirm that for any integer n, the density of
2n-bit good RSA-numbers is approximately equal to ξ(n).
According to experimental result our theorem about in-
tractability of composite Diffie-Hellman with even-order
bases comes true for approximately 97% of 1000-bit RSA-
numbers.

n 50 500 5000
2n 100 1000 10000

Density of good
RSA-numbers 94% 97% 99%
The number of

RSA-numbers tested 1000 1000 100
in the experiment

6 Conclusion and Future Works

In this paper, we showed that not only Composite Diffie-
Hellman with odd-order bases yields factoring but also
solving that problem for even-order bases will yield fac-
toring. As a future work, the following conjecture can be
shown:

Conjecture 1. If there exist a probabilistic polynomial-
time oracle machine which ε-solves the Weak DH-Problem
modulo an RSA-number N and there exist a prime p less
than log(N), such that p | λ(N) not necessarily p ‖ λ(N)
then still there exist a poly-time algorithm which ε-factors
the module N .

A possible line for further research is the study of the
theorem in the case where ordN (g) = λ(N). It is clear
that both the new theorem and that of Shmuley does not
say anything about this. That is if g is a maximum-order
element we cannot say anything about intractability of
Composite Diffie-Hellman with base g.
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Appendix A

Lemma 3. For any integer k:

d = lim
n→∞ ]{p;pisan−bitprime,k|p−1}

]{p;pisan−bitprime}

=
1

ϕ(k)
. (1)

Proof. We know from [3, 1] that:

d = lim
n→∞ ]{p;pisax−bitprimewherex<n,k|p−1}

]{p;pisanx−bitprimewherex<n}

=
1

ϕ(k)
. (2)

The Equation (2) is a special form of the Chebotarev the-
orem [7].

Let:

ai = ]{p; pisan− bitprime, k | p− 1}

bi = ]{p; pisan− bitprime},

Ai =

i∑

j=1

aj , Bi =

i∑

j=1

bj.

ri = ai

bi
, and si = Ai

Bi
.

The Equation (2) means that:

limi→∞si=
1

ϕ(k)
. (3)

According to the distribution of prime numbers we
know that there is a positive real number α such that:

∀i ∈ N : bi+1 > αBi.

According to elementary calculus, from Equations (3)
and (4) we can conclude the lemma.
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Appendix B

Lemma 4. Let S be a prime: ψ(s) = 1
s2 + 2

s × s−2
s−1

Proof. Let Nn denotes the set of all 2n-bit RSA-numbers
and Pn denotes the set of all n-bit primes. From Definition
9 we have:

ψ(s) = limn→∞
]{x;x ∈ Nn, s ‖ λ(x)}

]{x;x ∈ Nn}

= limn→∞
]{x, y ∈ Pn;W1 or W2 or W3}

]{x, y ∈ Pn}

=
1

s2
+

2

s
×
s− 2

s− 1
W1 = (s ‖ λ(x)&s ‖ λ(y))

W2 = (s ‖ λ(x)&s |′ λ(x)&s |′ λ(y))

W3 = (s |′ λ(x)&s ‖ λ(y)).
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