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Abstract

A location-aware scheme uses a priori knowledge of the
deployed sensor nodes of some target field in a sensor net-
work. Such location-aware schemes improve substantially
higher network connectivity and resilience against node
captures if the deployment error between the actual and
expected locations of the deployed sensor nodes is smaller.
The ideas of using pre-deployment and post-deployment
knowledges for the key pre-distribution techniques in a
sensor network are two mutually orthogonal techniques.
Therefore, it may be desirable to combine them together
to provide better performances. In this paper, we propose
a scheme which takes advantages of both pre-deployment
and post-deployment knowledges of the deployed sensor
nodes in a sensor network. Our scheme significantly im-
proves the performance of establishing pairwise keys be-
tween neighbor sensor nodes than the existing previous
key pre-distribution schemes. Moreover, it provides a
better trade-off among network connectivity, communica-
tion overhead, computational overhead, storage require-
ment and security against node capture than the existing
schemes. In addition, it supports addition of new sen-
sor nodes after the initial deployment of sensor nodes and
also works for any deployment topology.

Keywords: Key pre-distribution, location-aware key pre-
distribution schemes, post-deployment knowledge, pre-
deployment knowledge, security, sensor networks

1 Introduction

A sensor network consists of many tiny computing nodes
called sensors, that are scattered in a target field in or-
der to sensing some information and transmitting the
information to nearby base stations for further process-
ing. A sensor network is different from a traditional dis-
tributed network in various aspects. To make sensor net-
works economically viable, sensor devices are limited in
their energy, computation, and communication capabili-
ties. Each sensor node contains a primitive processor fea-
turing very low computing speed and only small amount
of programmable memory. A sensor node is battery pow-

ered and is expected to operate only for few days. Sensor
nodes have the ability to communicate with each other
and with the base station by short range wireless radio
transmission at low bandwidth and over small communi-
cation ranges (typically 30 meters). A survey on sensor
networks could be found in [1, 2].

Sensor networks are widely deployed in a variety of
applications ranging from military to environmental and
medical research. Mostly, for military applications, infor-
mation collected by sensor nodes need be encrypted before
transmission. Due to resource limitations of sensor nodes,
it is not practical to use public key cryptographic tech-
nique such as RSA [16] or Diffie-Hellman Key Exchange
Protocol [5] or Elliptic Curve Cryptography (ECC) [18].
A symmetric cipher such as DES [18] or RC5 [17] or
IDEA [18] or AES [4] is the viable option for encryp-
tion or decryption of secret information. However, estab-
lishing symmetric keys among communicating nodes is a
challenging problem. Key materials are predistributed in
each sensor node’s memory by a (key) set-up server before
the deployment of the nodes. After the deployment, each
node finds out the neighbors with which it can commu-
nicate using the predistributed keys. This key establish-
ment protocol is referred as bootstrapping protocol.

In wireless sensor networks (WSNs), the following gen-
eral securities are required:

• Authentication: authenticating the other sensor
nodes and the base stations before granting a lim-
ited resource, or revealing information.

• Integrity: ensuring that message or the entity under
consideration is not altered.

• Confidentiality: providing privacy of the wireless
communication channels to prevent eavesdropping.

• Non-repudiation: preventing the malicious nodes to
hide their activities.

These above security requirements can be provided by
a key pre-distribution mechanism with the following re-
quirements:

• Scalability: ability to support large networks. This
means that the key pre-distribution algorithms must
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support large networks, and must be flexible against
substantial increase in the size of the network even
after the deployment of the sensor nodes in a sensor
network.

• Efficiency: storage, processing and communication
limitations on sensor nodes must be less.

• Network connectivity: probability that two sensor
nodes share the same key or keying material. Enough
network connectivity must be provided for a WSN in
order to perform its intended functionality.

• Resilience against node capture: resilience measure-
ment against node capture is computed by comparing
the number of nodes captured, with the fraction of
total network communications that are exposed to
the adversary not including the communications in
which the compromised nodes are directly involved.

A location-adaptive key pre-distribution scheme may or
may not use any prior knowledge of the deployment loca-
tions of the sensor nodes, but it can adapt to the geogra-
phy of deployment areas. On the other hand, a location-
aware key pre-distribution scheme depends on the prior
knowledge of the deployment locations like the expected
location of each sensor and the overall geometry of the
deployment area. This pre-deployment knowledge helps
us to tune the key pre-distribution algorithms to achieve
better network connectivity and higher resilience against
node capture.

Several techniques [3, 6, 7, 8, 12, 13, 14] are pro-
posed in the literature to solve the bootstrapping prob-
lem. Eschenauer and Gligor proposed the first basic ran-
dom key predistribution scheme popularly known as the
EG scheme [8]. In the key predistribution phase, the (key)
setup server selects a large pool of randomly generated key
materials where each key material is simply a randomly
generated number. For each sensor node to be deployed
in the network, a subset of m keys from the key pool
is selected randomly without replacement and loaded in
sensor’s memory. This subset is called the key ring of a
sensor node. After deployment of sensor nodes, the direct
key establishment phase (also called shared key discov-
ery phase) is performed by the deployed sensor nodes. In
this phase, each node first discovers its physical neighbors
which are within its communication range. Then, if two
neighbor sensor nodes, say, u and v share a common key,
they become key neighbors. The path key establishment
phase is an optional phase, and if executed, adds to the
connectivity of the network. If two neighbor nodes, say,
u and v fail to establish a direct key between them in the
direct key establishment phase, they find a secure h-hop
path between them, and one of them, say, u generates a
new secret pairwise key between them and finally trans-
mits that key securely along the discovered path to the
desired destination node v. The communication overhead
increases as the number h of hops of the secure path in-
creases. However, in practical situations, the number h

of hops is restricted to a small value, say, 2 or 3. From
the analysis of the EG scheme, it follows that connectiv-
ity of the network depends on size of the key pool. If the
key pool size is chosen smaller, it leads to higher network
connectivity. Since the key rings are selected randomly
without replacement, the same key may be repeated for
several pair of neighbor nodes in the network. As a re-
sult, even if the number of captured nodes is small, they
can reveal a large fraction of total communications in the
network which in turn degrades the security.

Chan et al. [3] proposed several extended versions of
the EG scheme which are the q-composite scheme, the
multi-path key reinforcement scheme and the random
pairwise keys scheme. All these schemes improve the se-
curity significantly compared to the EG scheme. How-
ever, the multi-path key reinforcement scheme requires
more communication overhead to establish a pairwise
key between two neighbor sensor nodes. The polyno-
mial pool-based key pre-distribution scheme [12] proposed
by Liu and Ning and the matrix-based key distribution
scheme [6] proposed by Du et al. improve the perfor-
mances significantly.

The rest of this paper is organized as follows. We give
a brief overview of existing key pre-distribution schemes
in Section 2. In Section 3, we introduce our proposed
scheme which is based on deployment knowledges of the
sensor nodes. In Section 4, we provide a detailed theoret-
ical analysis of our scheme with respect to network con-
nectivity, resilience against node capture, communication
overhead, computational overhead and storage require-
ment. In Section 5, we compare the performances of our
scheme with the existing schemes. Finally, we conclude
the paper in Section 6.

2 Background: Overview of Ex-
isting Key Pre-Distribution

Schemes

In this section, we discuss the random pairwise keys
scheme [3] proposed by Chan et al and the polynomial-
pool based scheme [12] proposed by Liu and Ning.
We also give an overview of two existing location-
aware schemes, namely, the closest pairwise keys scheme
(CPKS) [14] and the closest polynomials pre-distribution
scheme (CPPS) [14].

2.1 The Random Pairwise Keys Scheme

Let m be the size of the key ring of each sensor node and
p the probability that any two nodes be able to commu-
nicate securely. In the key predistribution phase, a total
of n = m

p unique node identifiers are generated. The ac-
tual size of the network may be smaller than n. For each
sensor node to be deployed, a set of m other randomly
selected distinct node ids and a pairwise key is generated
for each pair of nodes. The key is stored in both nodes’



International Journal of Network Security, Vol.7, No.3, PP.358–369, Nov. 2008 360

key rings along with the id of the other node that also
knows the key.

In the direct key establishment phase, each node broad-
casts their own ids to their neighbor nodes in communi-
cation ranges. Two neighbor nodes can then easily verify
the id of a neighbor node in their key rings. If the id of
a neighbor node is found in a node’s key ring, they share
a common pairwise key for communication. A crypto-
graphic handshake is then performed between neighbor
nodes for mutual verification of the common key.

Since the pairwise key between two nodes is generated
randomly, no matter how many nodes are captured by
an adversary, the other non-compromised nodes commu-
nicate with each other with 100% secrecy. Thus, the ran-
dom pairwise keys scheme provides unconditional security
against node capture attacks.

2.2 The Closest Pairwise Keys Scheme
(CPKS)

2.2.1 Description of CPKS

The closest pairwise keys scheme (CPKS) [14] proposed
by Liu and Ning is a location-aware scheme. It is the ex-
tended version of the random pairwise keys scheme which
uses priori deployment knowledge of the deployed sensor
nodes.

In the key pre-distribution phase, for each sensor node
u to be deployed in the target field, the key setup server
determines a set S of c other nodes whose expected loca-
tions of deployment are closest to that of u. Let S = {v1,
v2, . . ., vc}. For every vi ∈ S (i = 1, 2, . . ., c) for which
a pairwise key between u and vi has not already been as-
signed by the setup server, a new random symmetric key
ku,vi

is generated. The key-plus-id combination (ku,vi
, vi)

is loaded to u’s key ring, whereas the pair (ku,vi
, u) is

loaded to vi’s key ring. Thus, we note that before deploy-
ment of the sensor nodes in the deployment field, each
sensor node u is loaded with c key-plus-id combinations
{(ku,vi

, vi), i = 1, 2, . . ., c} into its key ring.

After deployment of the sensor nodes in a deployment
field, they start the direct key establishment phase (the
shared key discover phase) in order to establish secret
keys between neighbor sensor nodes. At first, each sensor
node locates its physical neighbors in its communication
range. Two neighbor nodes, say, u and v can establish a
secure communication link, if they share a pre-distributed
pairwise key in their key rings. Nodes u and v exchange
their identifiers to each other. If the id of u is resident in
v’s key ring as well as the id of v is also resident in u’s key
ring, both nodes u and v use their common key ku,v in
their key rings for future communication with each other.
Thus, we note that to identify a common key is trivial
in this phase, because each pairwise key in a particular
node is accompanied by the id of the other nodes holding
the key. A cryptographic handshake may be performed
between neighbor nodes u and v for mutual verification
of the common key possessed by them.

2.2.2 Network Connectivity of CPKS

Assume that the deployment field is two dimensional. Let
u be a sensor node whose expected location be (ux, uy),
whereas its actual location be (u′

x, u′

y). This corresponds
to a deployment error e = (u′

x−ux, u′

y−uy). Liu and Ning
showed that the network connectivity of CPKS depends
upon the deployment error e. If the maximum deployment
error e is small, CPKS provides significantly better con-
nectivity than the random schemes [3, 8, 12]. They have
also shown that for sufficiently large errors, CPKS essen-
tially degrades to the random pairwise keys scheme [3]
which has very poor connectivity when the network size
is larger.

2.2.3 Security of CPKS

We note that each predistributed pairwise key ku,v be-
tween two neighbor nodes u and v is randomly generated.
Thus, no matter how many nodes are captured, the pair-
wise keys between non-compromised sensor nodes remain
still secure. This means that no matter how many sen-
sor nodes are captured, the non-compromised nodes can
communicate with each other with 100% secrecy. In this
way, CPKS provides unconditional security against node
capture attacks.

2.3 The Polynomial-Pool Based Key Pre-
Distribution Scheme

Liu and Ning’s polynomial-pool based key distribution
scheme [12] can be described as follows. Let Fq = GF (q)
be a finite field with a q (either a prime or 2m for some
positive integer m) just big enough to accommodate a
symmetric cryptographic key. Let f(x, y) ∈ Fq[x, y] be a
t-degree bivariate symmetric polynomial i.e., f(x, y) =
f(y, x). The coefficients of the polynomial f(x, y) are
chosen from the finite field Fq. A polynomial share of
f(x, y) is a univariate polynomial f(u, y) for some u ∈ Fq.
We have, f(u, v) = f(v, u).

Thus, if two shares f(u, y) and f(v, y) of the same
polynomial f(x, y) are given to two nodes, say, u and
v, they can come up with the common value f(u, v) ∈ Fq

as a shared key between them. If (t + 1) or more shares
of f(x, y) are known, one can easily reconstruct f(x, y)
uniquely using the Lagrange’s Interpolation [9]. Thus, the
disclosure of up to t shares does not reveal the polynomial
f(x, y) to an adversary and uncompromised shared keys
based on f(x, y) remains completely secure.

The key setup server selects a random pool K of s sym-
metric bivariate polynomials in Fq[x, y] each of degree t

in x and y. Some ids u1, u2, . . ., un ∈ Fq are also gen-
erated for the sensor nodes in the network, where n is
the network size. For each sensor node u to be deployed
in the network, s′ polynomials, say, f1(x, y), f2(x, y), . . .,
fs′(x, y) are randomly selected from K and the polynomial
shares f1(u, y), f2(u, y), . . ., fs′(u, y) are loaded in the key
ring Ku of u. Immediately after deployment, each sensor
u transmits the ids of the polynomial shares residing in its
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key ring. Two physical neighbors u and v having shares
of some common polynomial(s) can establish a pairwise
key between them.

2.4 The Closest Polynomials Pre-
Distribution Scheme (CPPS)

2.4.1 Description of CPPS

The closest polynomials pre-distribution scheme
(CPPS) [14] proposed by Liu and Ning is a location-aware
scheme. It is based on the polynomial-pool based scheme
which uses priori deployment knowledge of the deployed
sensor nodes. The deployment field is partitioned into
rectangular cells Ci,j containing R rows and C columns.
The four adjacent neighboring cells of a cell Ci,j are
considered as the cells Ci,j−1, Ci−1,j , Ci,j+1, and Ci+1,j .

In the key predistribution phase, the key setup server
chooses s = R × C random symmetric t-degree bivariate
polynomials fi,j(x, y) ∈ Fq[x, y], i = 1, 2, . . ., R, j = 1,
2, . . ., C, where Fq = GF (q) is a finite field with q large
enough to accommodate a cryptographic key. Here GF (q)
stands for the Galois field of order q where q is either a
prime or of the form 2m for some positive integer m. As-
sume that the expected deployment location of a node u

lies in the cell Ci,j called the home cell of u. The key ring
of u is loaded with the shares of the five polynomials corre-
sponding to the home cell and the four neighboring cells.
That is, u is given the five polynomial shares: fi,j(u, y),
fi−1,j(u, y), fi+1,j(u, y), fi,j−1(u, y), fi,j+1(u, y). The key
set-up server also stores in u’s memory the id (i, j) of its
home cell. Thus, we note that each sensor node’s key
ring contains five t-degree polynomial shares before its
deployment in the target field. Since each t-degree poly-
nomial share consists of (t+1) coefficients which are from
Fq, so the storage requirement for this polynomial share
is (t + 1) log q bits. Hence, the storage requirement for
each sensor node is 5(t + 1) log q bits in order to store
its keying informations. If each symmetric key is taken
of q bits, the storage requirement is equivalent to store
5(t + 1) symmetric keys.

In direct key establishment phase, each node u broad-
casts its home cell’s id (i, j) (or some messages encrypted
by potential pairwise keys) to its immediate physical
neighbors. Suppose u and v be two neighbors. From
the co-ordinate of the home cell (i, j) of the source node
u, the destination node v can immediately determine the
ids of the polynomial shares the source node u has. Let u

and v find a common polynomial, say, f . Then the source
node u computes a common pairwise key shared with the
destination node v as f(u, v). Similarly, the destination
node v also computes a common pairwise key shared with
the source node u as f(v, u). Since f(u, v) = f(v, u), they
store this value f(u, v) as the secret key shared between
them for their future communication. A cryptographic
handshake may be performed between neighbor nodes u

and v for mutual verification of the common key f(u, v)
possessed by them.

2.4.2 Network Connectivity of CPPS

Similar to the analysis of CPKS, the network connectivity
of CPPS also depends on the deployment error. Larger
error leads to poorer connectivity. Moreover, the net-
work connectivity of CPPS depends on the length L of
cell side. Liu and Ning showed that if L is chosen larger,
there is a higher probability of establishing a direct key
between two neighbors. Thus, smaller L leads also to
poorer connectivity. If the maximum deployment error is
small, CPPS also provides significantly better connectiv-
ity than the random schemes [3, 8, 12].

2.4.3 Security of CPPS

As long as no more than t polynomial shares of a bivari-
ate polynomial are disclosed, an attacker knows nothing
about the non-compromised pairwise keys established us-
ing this polynomial. Thus, the security of this scheme de-
pends on the average number of nodes sharing the same
polynomial, or equivalently on the number of nodes that
are expected to be located in each cell and its four adja-
cent cells. If that number is larger than t, CPPS is not
unconditionally secure. Again, in CPPS, if the length L

of cell side is larger, it leads to a larger number of sen-
sor nodes sharing the same bivariate polynomial, which
in turn degrades the security performance. As a result,
CPPS is unconditionally secure and t-collusion resistant.

3 The Proposed Scheme

In this section, we describe the main motivation behind
our proposed scheme. We also describe various phases to
this scheme.

3.1 Motivation

Our scheme is motivated by the following considerations.
The location-aware schemes such as CPKS and CPPS de-
scribed above, lose their performance enhancements as
the deployment error between the actual and expected
locations of the deployed sensor nodes increases. For
sufficiently larger errors such location-aware schemes es-
sentially degrade to a random pairwise keys scheme [3]
without a priori knowledge of deployment configuration.
The ideas of using both pre-deployment as well as post-
deployment knowledges for the key pre-distribution mech-
anisms in a sensor network are mutually orthogonal tech-
niques. It may be desirable to combine them together
to provide better performances. In this paper, we intro-
duce a scheme which is based on both pre-deployment
and post-deployment knowledges of the deployed sensor
nodes. In order to achieve this goal, we use the closest
pairwise keys scheme (CPKS) to take advantages of pre-
deployment knowledge of deployed sensor nodes. How-
ever, in practical situations, it is not always possible to
deploy sensor nodes in a target field to their expected
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locations. As a result, there will be always a deploy-
ment error between the actual and the expected loca-
tions of the deployed sensor nodes. From the analysis
of CPKS, we observe that the network connectivity de-
grades if the maximum deployment error increases. In
order to further improve performances we take the ad-
vantages of post-deployment locations of deployed sensor
nodes. Due to [14], it is a possible task for sensor nodes
to determine their post-deployment locations securely af-
ter their initial deployment. To take advantages of post-
deployment knowledges of deployed sensor nodes, we use
the key prioritization technique [14] applied over the ba-
sic probabilistic scheme (the EG scheme) [8]. Hence, our
proposed scheme is an enhancement of CPKS in conjunc-
tion with the key prioritization technique applied over the
EG scheme. We call our scheme as the enhanced closest
pairwise keys scheme (ECPKS). ECPKS works for any
deployment topology and there is no need to assume the
deployment area as rectangular (as in CPPS [14]).

The different phases of ECPKS are as follows.

3.2 Key Pre-Distribution

This phase is performed by the key setup server in offline
before deployment of the sensor nodes in some target
field. It consists of the following steps:

Step 1. Let n be the size of the sensor network. For each
sensor node u, the key setup server assigns a unique
identifier idu.

Step 2. The key setup server selects a large key pool K
of M key units. Each key unit consists a random
number (i.e., a symmetric cryptographic key) gener-
ated by the setup server and a unique location (x, y)
in the deployment field associated with it. For ex-
ample, a key unit for a sensor node i is of the form
kui = (k, (xi, yi)) where k is a randomly generated
symmetric key by the (key) setup server and (xi, yi)
is the location attached with k. For convenience we
refer this location (xi, yi) as the id of the key k.

Step 3. For each sensor node u to be deployed in the
sensor network, the setup server selects a set S1 of
c sensor nodes whose expected locations are closest
to sensor node u. For each sensor node v in S1, for
which a pairwise key between u and v has not already
been generated, a new random key kuv is generated.
The key-plus-id combination (kuv, idv) is loaded to
u’s key ring, whereas the pair (kuv, idu) is loaded to
v’s key ring.

Step 4. To further improve performances of our scheme,
we load an excessive amount of key materials in each
sensor node initially. Crossbow Technology Inc. [10]
develops a typical MICA2 mote sensor device which
has 512KB EEPROM, but only 4KB RAM. Thus,
it is practical to store more pre-distributed keying
information in EEPROM of a sensor device. Since

the low priority key units after the key prioritization
phase will be deleted from memory, so the returned
memory will be used for application part by the sen-
sor node. To achieve this goal, for each sensor node
u to be deployed in the network, the setup server se-
lects another set S2 of m key units randomly from
the key pool K and loads this set to u’s key ring.

As a result, we notice that the key ring KRu of each
sensor node u contains (c + m) key units in its memory
before its deployment in the target field.

3.3 Direct Key Establishment

Immediately after the deployment, each sensor node first
locates its all neighbors in its communication range.
Two nodes are called physical neighbors if they lie in
each other’s communication range. They are called
key neighbors if they share a common key. They are
called direct neighbors if they are both physical and key
neighbors. After the deployment of the sensor nodes,
two physical neighbor nodes, say, u and v can establish a
secure communication link, if they share a pre-distributed
pairwise key. To achieve this, we use the first c key
units in each node’s key ring. To identify a common key
between u and v becomes trivial in this case, because
each node can easily verify the id of other nodes in its c

key units. Thus, sensor nodes deployed to their expected
locations in the target field are able to establish pairwise
keys between them. The remaining unused key units from
these c key units will be deleted from their key rings so
that the returned memory will be used for application part.

Communication Steps:

This phase is summarized below. MACk(M) refers to
the message authentication code (MAC) for the message
M , under the key k. We refer RNu as a random nonce
generated by a sensor node u. A||B refers that data A

concatenates with data B.

In order to establish a secret key between two neighbor
nodes, say, u and v, they need to exchange the following
messages:

1) Node u generates a random nonce RNu. It then sends
its own id idu and RNu to its neighbor v.
u → v : idu||RNu.

2) Node v also generates a random nonce RNv and then
sends its own id idv as well as RNv to its neighbor u.
v → u : idv||RNv.

3) Assume that the id of v is found from first c key units
of u’s key ring. Let kuv be the key shared with node
v corresponding to that id. It sends its own id idu,
the id idv of v as well as the random nonce RNv of v

and a message authentication code (MAC) on these
fields under the key kuv to node v.
u → v : T = (idu||idv||RNv)||MACkuv

(T ).
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4) In a similar fashion, v verifies the id of u in first c

key units of its key ring and assume that v finds a
secret key kuv shared with node u corresponding to
that id. It then sends its own id idv, the id idu of u

as well as the random nonce RNu of u and a message
authentication code (MAC) on these fields under the
key kuv to node u.
v → u : T ′ = (idu||idv||RNu)||MACkuv

(T ′).

After receiving the last message by the nodes u and v,
they perform one symmetric cryptographic MAC verifi-
cation on that message, under the key kuv. If the MAC
verification is successful, then only they store the key kuv

for their future communications. We note that by sending
the random nonces of each other by the nodes u and v,
the transaction between them is determined uniquely.

3.4 Key Prioritization

If the maximum deployment error increases, the network
connectivity gradually degrades. Assume that two phys-
ical neighbors do not able to establish a pairwise key in
direct key establishment phase. In order to establish a
pairwise key between two neighbor nodes u and v, they
use their post-deployment locations. We assume that ev-
ery sensor node in the sensor network can discover its
real post-deployment location securely after the deploy-
ment of the sensor nodes. Akyildiz et al. [1] pointed out
that “most of the sensing tasks require knowledge of po-
sitions,” and “location finding systems are required by
many of the proposed sensor network routing protocols”.
There are also recent development in determining indi-
vidual sensor nodes’ positions either with a global posi-
tioning system (GPS) [11] or local references [15]. Thus,
it is practical to assume for the sensor nodes to determine
their post-deployment locations securely.

The main idea behind key prioritization is as follows.
By using memory for sensing applications, a sensor node
can keep a large number of key units during key predis-
tribution phase. After deployment, once a sensor node
determines its post-deployment location, it can prioritize
these key units based on this post-deployment knowledge.
A sensor node can then give up the key units that are less
likely to be used for pairwise key establishment in order to
thwart against node capture attacks by an adversary and
return the memory to the sensing applications. Thus, it
has a higher probability to keep those key units that may
be required for secure communications with its neighbor
nodes in the sensor networks. Hence, this phase reuses
the memory for sensing applications to keep more key
units during key predistribution phase, keeps the higher
priority key units that are most likely to be used after the
post-deployment location is known, and finally discards
the low priority key units in order to thwart against node
capture attacks and returns the memory to the applica-
tions.

This phase uses the last remaining m key units from
the key rings of sensor nodes. This phase consists of the
following steps:

Step 1. Sensor node u securely determines its post-
deployment location, say PDLu = (ux, uy). u com-
putes the distances between PDLu and the locations
attached to these m key units. Then u ranks these
m key units in its key ring KRu in increasing order
according to the computed distances. The shorter
distance has the higher priority. Node u chooses c′

highest priority key units from these key units and
deletes the remaining (m− c′) key units from its key
ring which are less likely to be used for pairwise key
establishment in order to thwart against node capture
attacks. The returned memory is used for application
by the sensor node u.

Step 2. Similarly, a physical neighbor v of sensor node
u performs the above step.

Step 3. It is easy to observe that if two nodes are close
to each other, there is a high probability to establish
a direct key between them. To establish a direct
key between them, nodes u and v exchange only the
locations (ids) of the c′ highest priority key units from
their key rings.

Communication Steps:

In order to establish a secret key between two neighbor
nodes u and v, the following messages are to be exchanged
between them:

1) Node u sends its own id, a randomly generated nonce
RNu and a list of c′ highest priority key ids to the
node v:
u → v : idu||RNu||{ list of c′ highest priority key ids
}.

2) Similarly, node v also sends its own id, a randomly
generated nonce RNv and a list of c′ highest priority
key ids to the node u:
v → u : idv||RNv||{ list of c′ highest priority key ids
}.

3) Assume that u finds q common keys, say, k1, k2, . . .,
kq (q ≥ 1) from the c′ highest priority key units. It
computes a secret key shared with node v as kuv =
k1⊕k2⊕. . .⊕kq and then sends the following message
with a MAC under the computed key kuv to node v:
u → v : T1 = (idu||idv||RNv)||MACkuv

(T1).

4) Similarly, node v also computes the secret key kuv

shared with the node u. It then sends its own identi-
fier idv, node u’s identifier idu as well as the random
nonce RNu of node u along with a message authenti-
cation code (MAC) of these fields under the key kuv

to node u:
v → u : T2 = (idu||idv||RNu)||MACkuv

(T2).

Finally, both nodes u and v have to perform one MAC
verification on the last message received by them under
the key kuv. If the MAC verification is successful, they
store this key kuv for their future communications. We
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also note from this phase that the transaction is deter-
mined uniquely because each node attaches other node’s
nonce to its message.

3.5 Dynamic Node Addition

During the lifetime of a sensor network, some nodes may
be damaged or compromised by an adversary. Therefore,
new sensor nodes may be added to replace such nodes in
the network. For doing this, the setup server performs
the above key pre-distribution phase for the new sensor
node to be deployed and then informs the deployed sensor
nodes chosen for the new sensor node the corresponding
keys through the secure channels. To establish direct keys
with its physical neighbors, it performs direct key estab-
lishment and key prioritization phases as described above.

4 Analysis of the ECPKS Scheme

In this section, we derive the probability of establishing
direct keys between neighbor sensor nodes and analyze the
security issues for our proposed scheme (ECPKS). We also
analyze storage requirement, communication overhead
and computational overhead required for our scheme.

4.1 Probability of Establishing Direct
Keys between Neighbors

We use the following notations for deriving the probability
of establishing a direct key between two neighbor nodes.
We also use those notations for discussion in rest of this
paper.

• n: the network size.

• d: the average number of neighbor sensor nodes of
each sensor node.

• c: the number of pre-distributed key units to each
node for the direct key establishment phase of
ECPKS.

• M : the key pool size.

• m: the number of pre-distributed key units to each
node for the key prioritization phase of ECPKS.

• ρ: the communication range.

• e: the maximum deployment error.

• E1: the event that a sensor node can establish a key
during the direct key establishment phase of ECPKS
with one of its d physical neighbors using only the
first c key units from its key ring.

• p1: P (E1), the probability that two neighbors estab-
lish a direct key for the event E1.

• E2: the event that a sensor node can establish a
direct key during the key prioritization phase of
ECPKS with one of its d′ physical neighbors, where
d′ = b(1 − p1) · dc, using the last m key units from
its key ring.

• p2: P (E2), the probability that two neighbors estab-
lish a direct key for the event E2.

• p: the overall probability that two neighbors estab-
lish a direct key which is same as the probability that
at least one of the events E1 and E2 will occur.

It is easy to observe that the events E1 and E2 are
stochastically independent. Hence, we have P (E1 ∩ E2)
= P (E1)·P (E2). Now, P (Ē1∩Ē2) = 1−P (E1∪E2) = 1−
[P (E1)+ P (E2)−P (E1 ∩E2)] = (1−P (E1))(1−P (E2))
= P (Ē1)P (Ē2), where P (Ē) represents the probability of
the complement of the event E. Thus, both the events
Ē1 and Ē2 are also stochastically independent. As a
result, the required probability that at least one of the
events E1 and E2 will occur is 1− (probability that none
of the events E1 and E2 will occur) = 1 − P (Ē1 ∩ Ē2)
= 1 − (1 − p1) (1 − p2) = p1 + p2 − p1 p2. Therefore,
we obtain the overall probability of establishing a direct
pairwise key between two neighbor sensor nodes as

p = p1 + p2 − p1 p2.

For the derivation of p1, we use only the first c key units
from the key ring of each sensor node. For the sake of sim-
plicity, we assume that the target field is two-dimensional,
so that every point in that region is expressed by two co-
ordinates x and y. Assume that u is a sensor node whose
expected location is (ux, uy) whereas its actual location
is (u′

x, u′

y). This corresponds to a deployment error of
eu = (u′

x − ux, u′

y − uy). The actual location (or equiva-
lently the error eu) can be modeled as a continuous ran-
dom variable that can assume values in R2. The proba-
bility density function fu(u′

x, u′

y) of (u′

x, u′

y) characterizes
the pattern of deployment error. As in [13] we assume
that (u′

x, u′

y) is uniformly distributed within a circle with
center at (ux, uy) and radius e called the maximum de-
ployment error. We have:

fu(u′

x, u′

y) =

{

1
πe2 if (u′

x − ux)2 + (u′

y − uy)
2 ≤ e2;

0 otherwise.
(1)

As in [7] another way to model (u′

x, u′

y) as a random
variable following the two-dimensional normal (Gaussian)
distribution with mean (ux, uy) and variance σ2. The
corresponding probability density function is:

fu(u′

x, u′

y) =
1

2πσ2
e−[(u′

x−ux)2+(u′

y−uy)2]/(2σ2).

However, for the sake of simplicity we only consider the
uniform distribution given in Equation (1).

Let u and v be two deployed nodes. Assume that the
different nodes are deployed independently i.e., (u′

x, u′

y)
and (v′x, v′y) are independent random variables. Since u
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and v are independently deployed, the probability that u

and v are in each other’s communication range is given
by

p1(u, v) =

∫ ∫ ∫ ∫

C1

fu(u′

x, u′

y) fv(v′x, v′y) du′

x du′

y dv′x dv′y,

where C1 is the region (u′

x − v′x)2 + (u′

y − v′y)2 ≤ ρ2.
Let us consider that the key neighbors of u are uni-

formly distributed in a circle of radius ρ′. Since u can
share pairwise keys with c nodes, the expected value of

ρ′ is given by ρ′ = ρ ×
√

c
d+1 . Let v be a key neighbor

of u. Then, the probability that v lies in the physical
neighborhood of u is given by

p1(u) =
1

πρ′2

∫ ∫

C2

p1(u, v) dx dy,

where C2 is the region (x−ux)2 +(y−uy)
2 ≤ ρ′2. Again,

since u is expected to have c×p1(u) direct neighbors, the
probability that u can establish a pairwise key with one
of its physical neighbor is given by

p1 =
p1(u) × c

d
≈ p1(u) × λ,

where λ = c
d+1 . We take the communication range ρ as

the basic unit of distance measurement, i.e., ρ = 1. One
can compute the probability p1 for the density function
given in Equation (1) and establish that p1 ≈ 1 for small
deployment errors.

For the derivation of p2, we use only the last remaining
m key units from the key rings of sensor nodes during
the key prioritization phase. Since a sensor node u can
establish a direct key with its physical neighbor v with
probability p1, so it could not able to establish pairwise
keys till now with d′ physical neighbors, where d′ = b(1−
p1) · dc.

Let A be the area of the deployment field. Since
a node u gets m keys during the key pre-distribution
phase and ranks only c′ highest priority keys after the
key prioritization phase, so these c′ keys’ associated lo-
cations are no more than a distance r′ away from u,

where r′ =
√

c′×n
m×(d′+1) . The overlapping area between

two neighbor nodes u and v is shown in Figure 1. B and
C are the expected locations of the nodes u and v respec-
tively. Assume that the distance between u and v is x.
We observe that BDCE is a rhombus. Let ∠DBC = θ.
We then have ∠EBC = ∠DCB = ∠ECB = θ. Here BD
= DC = CE = BE = r′ and BC = x. We also have, BF =
FC = x

2 . From the triangle BDF, we obtain, cos θ = x
2r′

.

Again, we have DF = EF =
√

r′2 − x2

4 . Let d1 be the

length of first diagonal BC of the rhombus BDCE and
d2 the length of the second diagonal DE of that rhom-
bus. The area of the rhombus BDCE is given by 1

2 d1 d2

= x

√

r′2 − x2

4 . Thus, we obtain the required overlapping

area A(x) between nodes u and v as sum of the areas of
the sectors BDE and CDE minus the area of the rhombus

BDCE which is given by A(x) = 2×πr′2

2π ×2θ−x

√

r′2 − x2

4 .

Hence, the overlapping area within both nodes’ (i.e., u

and v) communication radii is given by

A(x) = 2r′2 cos−1
( x

2r′

)

− x

√

r′2 −
x2

4
.

B C

E

x

D

F

r

Figure 1: Overlapping area between two neighbor nodes
u and v

The (average) number of pre-distributed keys that fall
into A(x) is given by

N ′(x) = bm ×
A(x)

A
c,

and the total number of keys that are distributed over
A(x) is

N(x) = bM ×
A(x)

A
c.

Thus, the probability that two neighbor nodes u and v

share a key during the key prioritization phase of ECPKS
is computed as 1− (probability that u and v do not share
any keys) and hence, we have,

p2(x) = 1 −

(

N(x) − N ′(x)
N ′(x)

)

(

N(x)
N ′(x)

)

= 1 −

N ′(x)−1
∏

i=0

N(x) − N ′(x) − i

N(x) − i
.

As a result, the (average) probability of establishing a
direct key between two neighbor sensor nodes during the
key prioritization phase of ECPKS is given by

p2 =

∫ ρ

r=0

∫ 2π

θ=0

p2(r)

πρ2
r dr dθ = 1 − 2

∫ 1

0

g(r) dr,

where g(r) = r × (
∏N ′(r)−1

i=0
N(r)−N ′(r)−i

N(r)−i ).

We have considered for the analysis of network connec-
tivity the parameter values as follows:

• The communication range is ρ = 30 meters.

• The number of nodes in the network is n = 10000.
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• The average number of neighbor nodes for each node
is d ≤ 40.

• The number of pre-distributed keys given for the di-
rect key establishment phase is c = 200.

• The key pool size is M = 40000.

• The number of pre-distributed keys given for the key
prioritization phase is m = 100.

• The number of highest priority keys after the key
prioritization phase is c′ = 80.

• The size of the deployment area A is chosen so that
the maximum supported network size becomes n =

bA×(d+1)
π×ρ2 c.

Figure 2 illustrates the relationship between the proba-
bility p of establishing a direct key between two neighbor
nodes and the maximum deployment error e. From this
figure it is very clear that p ≈ 1 for small deployment
errors. Moreover, this figure shows that ECPKS provides
reasonable connectivity even for larger errors.
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Figure 2: Direct network connectivity of ECPKS with
d = 30, 40, n = 10000, M = 40000, c = 200, m = 100,
and c′ = 80

4.2 Security Against Node Capture

We observe that if the maximum deployment error is
small, the network connectivity is high. Since ECPKS
uses the first c key units for the direct key establishment
phase, and these keys are different from each other be-
cause of the fact that they are generated randomly, so
capturing of a node does not lead to compromise the se-
cret communications between non-compromised nodes.

We note that if the sensor nodes are compromised be-
fore the key prioritization phase, they may reveal more
secrets than compromising the same set of sensor nodes
after the key prioritization phase. Thus, an adversary can
observe this property and attack the network in the time
period between the key pre-distribution and the key pri-
oritization phases. This time period is known as the win-
dow of vulnerability. However, once a sensor node securely

determines its post-deployment location after its deploy-
ment in the target field, it can immediately complete the
key prioritization. Thus, we believe the sensor nodes can
be protected fairly well during the window of vulnerabil-
ity. The most vulnerable period of time is the period after
deployment and before key prioritization. However, this
period is actually quite short due to the ease of complet-
ing key prioritization. As a result, we only consider the
fact that no nodes are compromised during the window
of vulnerability. We assume that an attacker (adversary)
randomly compromises Nc sensor nodes in the network
after the window of vulnerability.

Assume that there are n sensor nodes in the sensor
network. This network is considered as an undirected
graph with n vertexes each having the same degree d,
where d is the average number of neighbor nodes of each
node. The total number of edges of the undirected graph

with n vertexes is
∑

n
i=1

d

2 = n d
2 . Hence, the total direct

communication links in the sensor network of size n is
n d
2 . Let us consider the direct key establishment phase

of ECPKS. In this phase, each pairwise key between two
neighbor nodes was generated by the key setup server
randomly and thus, those keys are different for each pair
of neighbor nodes in the network. Therefore, no matter
how many nodes are compromised secret communications
between non-compromised nodes are still secure. As a re-
sult, we have n d

2 ·p1 secure links so far even after capturing
Nc nodes by the adversary. We now consider the key pri-
oritization phase of ECPKS. Since a sensor node keeps
only c′ highest priority key units after key prioritization
phase in order to establish secret keys with its remaining
(1− p1)d neighbor nodes, nd

2 (1− p1)p2 ×[1− (1− c′

M )Nc ]
links will be compromised by the adversary from the to-
tal [nd

2 p1 + nd
2 (1 − p1)p2] secure links in the sensor net-

work. Hence, the required fraction of compromised se-
cure communication links (i.e., direct keys) between non-
compromised sensor nodes can be estimated as

Pe(Nc) =
(1 − p1)p2

p1 + (1 − p1)p2
×

[

1 −

(

1 −
c′

M

)Nc

]

=

(

1 −
p1

p

)

×

[

1 −

(

1 −
c′

M

)Nc

]

,

where M is the key pool size.
The resilience against node capture of our scheme

(ECPKS) is shown in Figure 3 with different values of M .
We notice from this figure that the key pool size should
be chosen larger in order to achieve higher resilience.

4.3 Communication Overhead

We observe that if two neighbor sensor nodes wish to
establish a direct pairwise key during the direct key es-
tablishment phase of ECPKS, they only need to verify
whether there is a pre-distributed pairwise key between
them. This is done trivially by exchanging the ids of sen-
sor nodes.
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Figure 3: Resilience against node captures of ECPKS,
with n = 10000, d = 40, M = 40000, 80000, 100000,
c = 200, m = 100, c′ = 80, and e = 4

To establish a direct pairwise key between two neigh-
bor sensor nodes during the key prioritization phase of
ECPKS, the sensor nodes only require to exchange the
locations (ids) of the highest priority key units from their
key rings.

As a result, the communication overhead is mainly due
to transmission of the highest priority key ids from the key
rings of the sensor nodes.

4.4 Computational Overhead

From the direct key establishment phase of our scheme
(ECPKS), it follows that a sensor node requires one
symmetric cryptographic MAC computation and another
MAC verification in order to establish a secret key with
a neighbor node. On the other hand, during the key pri-
oritization phase, that node requires prioritization of the
m key units in its key ring, q (q ≥ 1) bit-wise XOR oper-
ations and two MAC operations. Since the time needed
for prioritization as well as bit-wise XOR operations are
negligible, the computational overhead is mainly due to
four MAC operations in order to establish a secret key
between two neighbor nodes during both phases.

4.5 Storage Requirement

We note that each sensor node is loaded initially with (c+
m) key units in its key ring. Later on unused keys from the
first c key units of each node are deleted from its memory
after the direct key establishment phase and again that
node only keeps c′ highest priority key units from the
remaining m key units. Since the returned memory is
used by the application part, the final storage requirement
is mainly due to c′ highest priority key units.

5 Comparison with Previous

Schemes

In this section, we compare the performances of our
scheme (ECPKS) with those for CPKS and CPPS.
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Figure 4: Direct network connectivity of ECPKS, CPKS,
and CPPS. The length L of cell side in CPPS is chosen so
that it is perfectly resistant to the node captures. Assume
that each sensor node has available storage equivalent to
200 cryptographic keys

Figure 4 shows the comparison of network connectiv-
ity between ECPKS, CPKS, and CPPS. We assume the
network size is n = 10000. For CPKS, we have taken
c = 200, and d = 40. For CPPS, the length of cell side
L = 0.77 is chosen so that it is perfectly resistant to the
node compromise, and the value of d is taken as d = 40.
Finally, for ECPKS, we have taken the parameter val-
ues as M = 40000, m = 100, c′ = 80, d = 40, and
ρ = 30 meters, and the size of the deployment area A is
chosen so that the maximum supported network size be-

comes n = bA×(d+1)
π×ρ2 c. From this figure, it is clear that

our proposed scheme (ECPKS) significantly improves the
network connectivity than CPKS and CPPS.

Figure 5 illustrates the security against node capture
of ECPKS, CPKS and CPPS. We note from this figure
that CPKS provides unconditional security, because
compromise of any number of nodes do not reveal any
secret between non-compromised nodes in the network.
The security of CPPS shows that it performs well as long
as number of captured nodes in the network is small.
However, when the number of captured nodes exceeds
a certain threshold, CPPS leads to a large fraction of
communication links between non-compromised nodes.
In our scheme (ECPKS), it follows that even if an
adversary captures large number of nodes in the network,
ECPKS leads to only a certain fraction of communication
links between non-compromised nodes. Since the key
prioritization phase is applied only for d′ neighbors of
a sensor node where d′ = b(1 − p1) · dc, so the security
degrades only due to pairwise keys established with
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Table 1: Comparison of the performances of our scheme (ECPKS) with those for the existing key pre-distribution
schemes (CPKS and CPPS)

Schemes ⇒ CPKS [14] CPPS [14] ECPKS(Our scheme)
Items ⇓

Storage c key units 5 polynomial c′ key units
requirement shares

(5(t + 1) key units)
Communication node’s own node’s home node’s own id

overhead id cell id + highest priority key ids
Computational 2TMAC evaluation of 2TMAC (in direct

overhead a t-degree key establishment)
univariate polynomial + 2TMAC (in key

+ 2TMAC prioritization)
Network poorer if poorer if significantly better

connectivity e is larger e is larger even if e is larger
Resilience against unconditionally unconditionally secure better than

node capture secure and t collusion CPPS
resistant
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Figure 5: Comparison of resilience against node captures
between ECPKS, CPKS, and CPPS, with n = 10000,
e = 4, L = 1.4, 1.7, d = 40, M = 40000, 100000, m = 100
and c′ = 80. Assume that each sensor node has available
storage equivalent to 200 cryptographic keys

those d′ nodes. In CPPS, if the length L of cell side is
chosen larger, CPPS leads to a larger number of sensor
nodes sharing the same bivariate polynomial, which
in turn degrades the security performance. CPKS is
unconditionally secure against node compromise, whereas
CPPS is less secure than CPKS. On the other hand,
ECPKS provides better security than CPPS.

The overall comparison of the performances of our pro-
posed scheme (ECPKS) with CPKS and CPPS is illus-
trated in Table 1. TMAC denotes the time needed for
one symmetric cryptographic MAC operation. We see
that CPPS requires storage requirement for five polyno-
mial shares which is same as storing 5(t + 1) symmetric
keys. If we assume that each sensor node has available

storage equivalent to 200 cryptographic keys, then t = 39
where t is the degree of a bivariate polynomial. This
means that if more than t shares of that polynomial is
compromised by an adversary, that polynomial is com-
pletely determined using the Lagrange’s Interpolation [9].
As a result, all the keys established using that polynomial
will be compromised. Thus, CPPS is unconditionally se-
cure and t-collusion resistant. On the other hand, CPKS
is unconditionally secure, whereas ECPKS is not uncon-
ditionally secure but it has significantly better security
than CPPS. For network connectivity, we observe that
our scheme (ECPKS) provides significantly better con-
nectivity even for larger deployment errors than CPKS
and CPPS. The communication overhead of our scheme is
also comparable with CPKS and CPPS. Liu and Ning [12]
pointed out that the evaluation of a t-degree polynomial
requires t modular multiplications and t modular addi-
tions in a finite field Fq = GF (q). Since symmetric MAC
operations are efficient, the computational overheads for
CPKS and ECPKS are comparable with the computa-
tional overhead for CPPS in order to establish a secret
key between two neighbor nodes in the sensor network.
Thus, our proposed scheme (ECPKS) is scalable, because
the time needed to finish the key establishment proce-
dure depends only on the average number of neighbor
nodes rather than the total number of nodes in the net-
work. Overall, we conclude that ECPKS is scalable and
efficient in computation, communication and storage.

6 Conclusion

In this paper, we propose a scheme called the enhanced
closest pairwise keys scheme (ECPKS) which uses si-
multaneously advantages of both pre-deployment as well
as post-deployment knowledges of the deployed sensor
nodes. ECPKS significantly improves network connec-
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tivity compared to that for the existing schemes (CPKS
and CPPS). ECPKS provides a better trade-off among
communication overhead, computational overhead, stor-
age overhead, network connectivity and resilience against
node captures than CPKS and CPPS. In addition, it sup-
ports the addition of new sensor nodes after initial de-
ployment and also works for any deployment topology.
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