
International Journal of Network Security, Vol.7, No.3, PP.348–357, Nov. 2008 348

Multi-Designated Verifiers Signatures Revisited

Sherman S. M. Chow

Department of Computer Science, Courant Institute of Mathematical Sciences

New York University, NY 10012, USA. (Email: schow@cs.nyu.edu)

(Received Sept. 05, 2006; revised and accepted Oct. 06, 2006)

Abstract

Multi-Designated Verifier Signatures (MDVS) are
privacy-oriented signatures that can only be verified by
a set of users specified by the signer. We propose two
new generic constructions of MDVS from variants of
existing cryptographic schemes, which are ring signature
from anonymous subset and multi-chameleon hash.
We first devise a single add-on protocol which enables
many existing identity-based (ID-based) ring signature
schemes to support anonymous subset, which gives us
three ID-based MDVS schemes. We then construct a
multi-chameleon hash from an existing scheme with key
exposure freeness. Interestingly, these two techniques can
be seen as a multisignature version of Hess’s ID-based
signature and Schnorr signature respectively.

Keywords: Bilinear pairings, chameleon hash, ID-based
signature, key exposure, multi-chameleon hash, multi-
designated verifiers signature, multisignature, privacy,
ring signature, ring signature from anonymous subset

1 Introduction

Designated verifier signature (DVS), introduced by
Chaum [2] and Jakobsson et al. [14] independently, is a
privacy-oriented signature scheme in which only a specific
user can verify the signature produced. The “loss” of the
non-repudiation property of traditional signature makes it
useful in various commercial cryptographic applications,
like call for tenders, electronic voting or electronic auc-
tion.

At CRYPTO 2003’s rump session, Desmedt [10]
asked for a Multi-Designated Verifiers Signature (MDVS)
scheme, in which the number of designated verifiers is
larger than one. Naturally, such feature helps the “multi-
party version” of DVS’s application, like distributed con-
tract signing.

Subsequently, a generic MDVS scheme appeared in
[16], which takes any discrete logarithm based ring sig-
nature scheme and any secure multi-party computation
(SMC) protocol. The “designated” property of this
generic MDVS comes from the fact that either the signer
using his/her own private key, or the cooperation of all
verifiers using SMC with their private keys as the input,

can generate the signature. All verifiers get convinced
about the real signer of the signature, but not any “out-
siders”. The use of SMC is crucial in their proposal, or
the private key of each verifier is in risk if they really
generate a “MDVS” cooperatively. In the shadow of this,
one will generally believe that it is the signer but not the
group of verifiers who generated the signature.

This situation is similar to the use of key-exposing
chameleon hash function as pointed out by [1].
Chameleon hash function is a “public key hash function”
which takes a message m and a public key pk to give a
hashed value. Chameleon hash functions have the crypto-
graphic properties of normal hash functions including pre-
image resistance and collision-resistance (yet “limited”);
but they are equipped with one additional property: it is
easy to find collision and second-preimage with the knowl-
edge of a secret key. If we use a chameleon hash function
associated with the public key of the recipient to make the
message digest, a single-designated verifier signature can
be generated by using any digital signature scheme to sign
on this message digest. The reason behind is that it is easy
for the recipient to find collision with the help of his/her
private key. Key-exposure problem here means making
a collision exposes the associated private key, and hence
every one is biased to believe that the single-designated
verifier signature enabled by these classes of chameleon
hash function usually comes from the signer instead of
the verifier. Many chameleon hash functions (e.g. [15])
suffer from this problem.

Back to the MDVS case, if SMC is not used, the “des-
ignated” property of MDVS loses due to the key exposure
property. SMC, while feasible, is costly (in terms of com-
munication rounds, bandwidth, and computational com-
plexity). Its complexity usually increases with the size of
the group of the verifiers. Every one is biased to believe
that the MDVS usually comes from the signer due to the
uneven costs of MDVS generation by the signer and by
group of verifiers, thus the real “designated” property of
MDVS is in question.

We identify that if a ring signature scheme satisfies the
“cooperative signing without key exposure” property, the
requirement of SMC can be removed, which in turns make
the idea of MDVS more realistic. To the best of author’s
knowledge, unfortunately, all existing discrete logarithm
based ring signature schemes fail to satisfy this special

International Journal of Network Security, Vol.7, No.3, PP.348–357, Nov. 2008 349

requirement by themselves. One of the results in this pa-
per shows that: a ring signature from anonymous subset
(i.e. 1-out-of-n-groups ring signature) can be derived if
the ring signature scheme satisfies the “cooperative sign-
ing without key exposure” property.

Moreover, inspired by the generic construction of
[16], we propose a new generic construction of multi-
designated-verifiers signature scheme based on a modi-
fied notion of chameleon hash function: multi-chameleon
hash. Informally, multi-chameleon hash is a chameleon
hash function that forgery (i.e. finding collision) is
only possible when all members of the group participate.
Again, such class of schemes should be equipped with
the “cooperative collision finding without key exposure”
property.

1.1 Related Work

Ring signature gives 1-out-of-n signer verifiability, allow-
ing a user to sign anonymously on behalf of a group of
n spontaneously conscripted members. Rivest et al. first
formalized the concept of ring signature in [20]. One of
the most significant progresses in ring signature was given
by [11], the anonymous identification scheme proposed en-
ables a ring signature of constant-size (independently of
the number of possible signers). With the help of an ac-
cumulator from bilinear pairings in [19], ID-based ring
signatures of constant signature size are made possible
[7, 19].

Ring signature scheme can be used to derive crypto-
graphic schemes apart from multi-designated verifiers sig-
nature [16], like perfect concurrent signature like [6], and
non-interactive deniable ring authentication [22].

The concept of designated verifier proof was introduced
by Jakobsson et al. in 1996 [14], with the proposals of
both interactive and non-interactive solution for a single
verifier. After seven years, the non-interactive scheme was
shown to be insecure by [23], where a dishonest signer
can convince the designated recipient that a legitimate
signature is issued while it is indeed not the case. Two
countermeasures of the above attack were proposed in [23]
as well.

Chameleon hash function was introduced in [15]. How-
ever, the key exposure problem was not addressed until
2004 in [3]. To the best of author’s knowledge, [1] is the
most recent work of chameleon hash function without key-
exposure.

The first generic MDVS scheme was proposed in [16],
which is based on ring signature scheme and implicitly
relied on SMC as well. A concrete bi-designated verifiers
signature scheme was proposed in [16] too.

1.2 Our Contributions

We give a bundle of results related to multi-designated
verifiers signatures (MDVS). We identify that, without
the help of secure multi-party computation (SMC), not
all discrete logarithm based ring signature scheme can be

used to construct the MDVS. We propose a technique that
makes many ring signature schemes the suitable candi-
dates for the generic construction of MDVS without the
help of SMC. Our technique makes the cost of MDVS
generation by the signer and by the group of verifiers
more even. In other words, we increase the practicality of
MDVS. Interestingly, the same technique can be applied
to many ring signature schemes, which extended these
ring signature schemes from anonymous single signer to
anonymous set of signers. Consequently, three ID-based
MDVS schemes are derived. As bonus results, our pro-
tocol extends existing ID-based ring signature schemes to
support anonymous subset, and gives raise to a new ID-
based multisignature, which are of independent interests.

We also propose a new notion of chameleon hash
function called multi-chameleon hash, together with a
concrete construction. From such a scheme, a new
generic construction of multi-designated verifiers signa-
ture scheme is possible.

1.3 Organization

The rest of the paper is organized as follows. The next
section contains the number-theoretic preliminaries of the
cryptographic primitive and related complexity assump-
tion used in the paper. The framework of MDVS and an
existing generic construction, together with a discussion
on the key exposure problem in cooperative signing us-
ing existing ID-based ring signature schemes, are given
in Section 3. Section 4 discusses our proposed protocol
for extending existing ID-based ring signature schemes to
support anonymous subset, resulting three identity based
multi-designated verifiers signature schemes. In Section
5, we propose our new generic construction of MDVS, to-
gether with our new building block, multi-chameleon hash
function. An example showing how to modify an existing
chameleon hash function to make it admissible for this
new generic construction of MDVS is given in the same
section too. Finally, Section 6 concludes the paper.

2 Cryptographic Primitive and

Complexity Assumption

Bilinear pairing is an important primitive for many cryp-
tographic schemes. In particular, many ring signatures
schemes are pairing-based [5, 7, 8, 12, 13, 17, 19, 24].
Here, we describe some of its key properties.

Let (G1, +) and (G2, ·) be two cyclic groups of prime
order q. The bilinear pairing is given as ê : G1×G1 → G2,
which satisfies the following properties:

1) Bilinearity: For all P, Q, R ∈ G1, ê(P + Q, R) =
ê(P, R)ê(Q, R), and ê(P, Q + R) = ê(P, Q)ê(P, R).

2) Non-degeneracy: There exists P, Q ∈ G1 such that
ê(P, Q) 6= 1.

International Journal of Network Security, Vol.7, No.3, PP.348–357, Nov. 2008 350

3) Computability: There exists an efficient algorithm to
compute ê(P, Q) ∀P, Q ∈ G1.

Definition 1. Computational Diffie-Hellman (CDH)
Problem: Let G1, and P be as above. The CDH problem
in G1 is as follows: Given 〈P, aP, bP 〉 with a, b, c ∈ Z∗

q ,
compute abP ∈ G1. An algorithm A has advantage ε in
solving the CDH problem if Pr [A(〈P, aP, bP 〉) = abP] =
ε. Here the probability is measured over random choices
of a, b in Z∗

q and the random bits of A.

3 Review of Multi-Designated

Verifiers Signature

Multi-designated verifiers signature is defined as follows
in [16].

Definition 2. A Multi-Designated Verifiers Signature
(MDVS) scheme consists of the following five polynomial
time algorithms.

• {params} ← MDVS.Setup(1k): A probabilistic algo-
rithm that takes security parameter k and outputs the
public parameters params. In identity-based cryp-
tosystem, it also produces a master secret key msk,
kept in sercet by PKG (private key generator). For
brevity, we omit the input of params in the descrip-
tions of other algorithms of MDVS.

• {sk, pk} ← MDVS.SKeyGen(IDS): A probabilistic
algorithm that takes an identity IDS and outputs a
private key skS together with the corresponding public
key pkS. For traditional public key infrastructure, the
certificate authority (using the private key of the cer-
tificate authority) will issue a digital certificate bind-
ing the relationship of ID and pk. For identity-based
cryptosystem, no certificate is involved, and the PKG
takes the additional input of master secret key msk

to generate the user’s private key sk.

• {sk, pk} ← MDVS.VKeyGen(IDV): A probabilis-
tic algorithm that takes an identity IDV and out-
puts a private key skV together with the corre-
sponding public key pkV . The differences between
a scheme assuming traditional public key infrastruc-
ture or identity-based paradigm are similar as the
SKeyGen algorithm above.

• {σ} ← MDVS.Sign(m, sk, L): A probabilis-
tic/deterministic algorithm that takes a private key
sk, a message m, a list L that contains public keys
of all designated verifiers and outputs a signature σ.

• {> or ⊥} ← MDVS.Verify(σ, m, L): A deterministic
algorithm that takes a message m, a signature σ, a
public keys list L (and possibly some subset of the
private keys corresponding to L1); which outputs ei-
ther > or ⊥ meaning accept or reject respectively,

1Private key of the verifier is not necessary be the input if the
scheme is essentially a proof showing either “the signer has signed

depending on whether σ is a MDVS signature on the
message m with respect to the public key lists L.

These algorithms should satisfy the standard consistency
and unforgeability requirement of a signature scheme. In
addition, it should satisfy the source hiding property,
i.e. given a message m and a MDVS signature σ, it is
(preferably unconditionally) infeasible to determine who,
from the original signer or the whole group of the desig-
nated verifiers, performed the signing, even if the private
keys of all parties are known.

3.1 Review of Previous Generic Multi-

Designated Verifiers Signature

We start by reviewing the definition of ring signature (e.g.
see [20]).

Definition 3. A ring signature scheme consists of the
following polynomial time algorithms.

• {params} ← Ring.Setup(1k): A probabilistic algo-
rithm that takes security parameter k and outputs
the public parameters params For brevity, we omit
the input of params in the descriptions of other al-
gorithms below.

• {sk, pk} ← Ring.KeyGen(ID): A probabilistic algo-
rithm that takes identity of the user ID and outputs
a private key sk together with the corresponding pub-
lic key pk.

• {σ} ← Ring.Sign(sk, m, L): A probabilistic algorithm
that takes a private key sk, a message m and a list
L that contains public keys including the one that
corresponds to sk; outputs a ring signature σ.

• {> or ⊥} ← Ring.Verify(σ, m, L): A deterministic
algorithm that takes a message m and a signature σ,
and outputs either > or ⊥ meaning accept or reject
respectively, depending on whether σ is the signature
on message m signed by private key sk corresponding
to one of the public key in the list L.

These algorithms should satisfy the standard consistency
requirement, i.e. ∀{k, m, L}, if
{sk, pk} ← Ring.KeyGen(1k) and σ ←
Ring.Sign(sk, m, L), then we must have the following
equation satisfied: {>} ← Ring.Verify(σ, m, L). Besides,
it should satisfy the security requirements including
existential unforgeability under adaptive chosen-message
attack and signer ambiguity. Identity-based ring signature
can be defined changing Ring.Setup and Ring.KeyGen

accordingly as discussed in the review of MDVS. For full
details, one may refer to [8].

Here we review the generic construction of multi-
designated verifiers signature from any discrete-logarithm
based ring signature proposed in [16].

on a message” or “I have the verifier’s secret key” is true. The
designated verifier, being confident that his/her private key is kept
in secret, get convinced that the signer has signed on a message.

International Journal of Network Security, Vol.7, No.3, PP.348–357, Nov. 2008 351

• MDVS.Setup = Ring.Setup.

• MDVS.SKeyGen = Ring.KeyGen, we denote {QS , SS}
be the signer’s public key and private key respec-
tively.

• MDVS.VKeyGen = Ring.KeyGen, we denote
{QVi

, SVi
} be the verifier i ’s public key and

private key respectively.

• MDVS.Sign = Ring.Sign(m, SS , {QS} ∪ {
∑n

i=1 QVi
}).

• MDVS.Verify = Ring.Verify(σ, m, {QS} ∪
{
∑n

i=1 QVi
}).

In short, it generates a 2-party ring signature. One
party is the signer. Another is the “group of verifiers”,
with “group public key”

∑n

i=1 QVi
and the “group private

key”
∑n

i=1 SVi
. The source hiding property comes from

the following facts.

1) Either the private key of the signer or the “group
private key” is used to generate the signature.

2) No one can distinguish which key (i.e. signer’s pri-
vate key or the “group private key”) is actually used.

3) The group of verifiers can generate the “group pri-
vate key” or complete the signing process without
exposing their private keys (says by invoking a se-
cure multi-party computation protocol).

The designated property comes from the following facts.

1) The scheme satisfies the source hiding property.

2) Any one in the group of verifiers, however, knows
well that the signer generates the signature since it
is necessary to use all the private keys of all verifiers
to generate such a signature.

3.2 Applying the Generic Construction

to Existing Schemes

Now we try applying the above generic construction to
three existing identity-based ring signature schemes. The
schemes below all use the same setup and private key
generation algorithms.

Setup: The PKG randomly chooses s ∈R Z∗
q , keeps it as

the master secret key and computes the corresponding
public key Ppub = sP . Let H1(·) be a cryptographic hash
function where H1 : {0, 1}∗ → G1. This hash function is
for hashing any arbitrary identity into a value represent-
ing the user’s public key. In addition, we require another
cryptographic hash function H2(·) for the signing of mes-
sages, where H2 : {0, 1}∗ → Z∗

q . The system parameters
are:

params = {G1, G2, ê(·, ·), q, P, Ppub, H1(·)H2(·)}.

KeyGen: The user with identity ID ∈ {0, 1}∗ submits ID

to the PKG. The PKG sets the user’s public key QID to

be H1(ID) ∈ G, computes the user’s private key SID by
SID = sQID, where s ∈ Z∗

q is the master secret key of the
PKG. Then PKG sends the private key to the user in a
secure channel.

3.2.1 Notations

One can refer to the survey in [5] for a more detailed
review of the schemes below. We will look into the the
essential operation to generate a ring signature by the pri-
vate key (the close-the-ring operation in the terminology
of [5]) to see why they cannot satisfy the “cooperative
signing without key exposure” property. To make the ex-
planation easier, the case of only two designated verifiers
(IDV1

and IDV2
) is considered, and we name the pur-

ported originator of the message as IDS. Let L be the
string IDV1

||IDV2
||IDS . The terms in the form of ck are

the commitments used in the signature. A and R1 are
elements randomly chosen from G1.

3.2.2 Zhang and Kim ’s Scheme [24]

Firstly, compute c1 = H2(L||m||ê(A, P)). Then, ran-
domly choose elements R1 from G1 and compute c2 =
H2(L||m||ê(R1, P)ê(c1H1(IDS), Ppub)). To give the sig-
nature, the verifiers need to compute R2 = A− c2(SV1

+
SV2

). For verifier 1, it is easy to get the verifier 2’s private
key by computing c2

−1(A−R2)− SV1
.

3.2.3 Lin and Wu ’s Scheme [17]

We need to use an extra hash function H3 : G2 → Zq

in this scheme. Compute c1 = H3(ê(A, P)) and
c2 = H3(ê(R1, P)ê(c1H1(IDS), Ppub)

H2(m||L)). To give
the signature, the verifiers need to compute R2 =
A − H2(m||L)c2(SIDV1

+ SIDV2
). For verifier 1, it is

easy to get the verifier 2’s private key by computing
(c2H2(m||L))−1(A−R2)− SIDV1

.

3.2.4 Herranz and Sáez ’s Scheme [12]

Compute r1 = ê(R1, P) and c1 = H2(L||m||r1). To
give the signature, the verifiers need to compute U =
c1H1(IDS), r2 = ê(A, P)ê(−Ppub, U), c2 = H2(L||m||r2)
and V = c2(SIDV1

+ SIDV2
) + A + R1. For verifier 1, it

is easy to get the verifier 2’s private key by computing
c2

−1(V −A−R1)− SIDV1
.

4 Protocol for Supporting Anony-

mous Subset

Due to the key exposure problem in straightforward co-
operative signing, the authors of [16] suggested the use of
SMC. Now we propose the modification to remove such
requirement by exploiting the structure of the ring signa-
ture scheme and the structure of the bilinear pairing.

International Journal of Network Security, Vol.7, No.3, PP.348–357, Nov. 2008 352

4.1 Add-On Protocol

1) Each verifier i randomly chooses an element Ai from
G1, computes ei = ê(Ai, P).

2) An arbitrary entity in the group of verifiers, after
receiving these eis, computes E =

∏n

i=1 ei.
(E is then used to replace the part ê(A, P) in the
above descriptions)

3) To close the ring, each verifier i computes φi = Ai +
χ(SVi

).
(χ is defined as −c2, −H2(m||L)c2 and c2 for [24],
[17] and [12] respectively.)

4) An arbitrary entity in the group of verifiers, after
receiving these φis, computes ϕ =

∑n

i=1 φi and pro-
ceeds the rest steps for giving a ring signature.
(Simply setting R2 = ϕ in [24] and [17] while com-
puting V = ϕ + R1 in [12]).

The above protocol exploits the additive homomorphic
properties for the private keys and the corresponding pub-
lic keys. Instead of only n individual public keys, we can
use n “combined group public keys” in a ring signature.
As a result, the underlying ID-based 1-out-of-n ring sig-
nature schemes can be extended into ID-based 1-out-of-
n-group ring signature schemes. The framework of ring
signature from anonymous subset (i.e. 1-out-of-n-groups
ring signature) is in the Appendix.

4.2 Security Analysis

For our protocol, we should consider the adversary to have
the power to ask any group to compute the equation φi =
Ai + χ(SVi

) for any χ chosen by the adversary (which
model the situation where the value of χ is modified by
the adversary). Our protocol is insecure if it leaks any
information about the private key SVi

that are useful in
other parts of the protocol.

We analyze the security of our protocol by considering
the below related multisignature scheme [18]. The ad-
versary’s power considered is chosen-message-and-group
attacks, i.e. the adversary is given a signing oracle that
can give signature on any message on behalf of any group.
The adversary’s goal is to give forgery that is not from
these oracle queries, and there exists at least one user in
the group that the adversary does not know, which means
that information about the private key SVi

is leaked.

4.3 ID-based Multisignature Scheme

Multisignature schemes allow any subgroup of a group of
users to sign a document jointly, such that a verifier is
convinced that each member of the subgroup has partic-
ipated in signing. Our add-on protocol can be used to
implement an ID-based multisignature scheme as follows,
which provdes a useful abstraction when we evaluate the
security of our protocol.

Sign:

1) Each signer IDi randomly chooses an element Ai

from G1.

2) Each signer computes ri = ê(Ai, P), and broadcasts
the value.

3) One of the signers combines these ris into r =∏n

i=1 {ri}, and this value is broadcasted.

4) Each signer IDi computes c = H2(m||r), where m is
the message to be signed.

5) Each signer IDi computes Ri = cSIDi
+ Ai.

6) One of the signers outputs the signature as σ =
(c, R =

∑n

i=1 {Ri}).

Verify:
On receiving a message m and a signature σ = (c, R),
the verifier accepts the signature if and only if c =
H2(m||ê(P, R) · ê(

∑n

i=1 {H1(IDi)},−Ppub)
c).

The scheme’s correctness is easy to follow. For security
proof, we relate the security of our protocol to the Compu-
tational Diffie-Hellman (CDH) problem. The challenger
C will make use of the adversary A against the multisig-
nature corresponding to our protocol to solve a random
instance of CDH problem (P, aP, bP).

1) Simulation: C firstly set Ppub = bP , and returns
ri(aP) as the answer for the i-th identity-hashing
query with probability ζ (which can be determined
using the standard technique in [9]), and riP with
probability 1− ζ. It is easy to see that C can answer
any query relating to the second case, including pri-
vate key generation queries. On the other hand, any
private key generation queries for the first case will
make C fails. Now we show how C can answer the
signing queries for IDi.

C randomly chooses Ri ∈ G1 and h ∈ Z∗
q , com-

putes ri = ê(Ppub, QIDVi
)−hê(P, Ri). Notice that

if the combined commitment c = H2(m||r) = h,
(c, Ri) is a partial signature since c = H2(m||ê(P, Ri)·
ê(−Ppub, QIDVi

)c). For c = H2(m||r) = h to
hold, the simulation uses the rewinding technique in
the proof of the unforgeability of the multisignature
scheme in [18].

2) Solving CDH Problem: A forgery is successful if it is
a multisignature that involves the signature on the
message mi signed by IDi, where the adversary has
not asked for IDi’s private key and made no signing
query to get this signature on mi. If the adversary
has chosen to forge the signature of IDi that is de-
fined as ri(aP) by C, then we can solve CDH problem
with the help of A.

Similar to what is done in the forking lemma, algo-
rithm C solves the CDH problem by replaying algo-
rithm A with the same random tape but different
choices of H2 to obtain two valid signatures (c, R)

International Journal of Network Security, Vol.7, No.3, PP.348–357, Nov. 2008 353

and (c′, R′), and the solution of CDH problem can

be obtained by abP = (ri(c− c′))
−1

(R−R′).

4.4 Robustness and Efficiency

If this protocol can be deviated easily (e.g. any single en-
tity in the group can unnoticeably deviate from the pro-
tocol to make the final output is invalid), the designated
property of MDVS is also questionable. In our protocol,
the robustness can be ensured easily by checking whether
the equality ê(φi, P) = eiê(QVi

, Ppub)
χ

holds.
Each party only needs to perform one pairing opera-

tion, one point exponentiation and one point multiplica-
tion, while these steps are essential for the case of a single
signer to generate the MDVS as well. The arbitrary en-
tity in Step 2 and Step 4 of the protocols only needs to
do n− 1 additions in G1 and n− 1 multiplications in G2,
where n is the number of designated verifiers. Notice that
addition in G1 and multiplication in G2 are much more
efficient than the dominating operation: bilinear pairing.
Besides, our protocol only takes two rounds and no secure
channel is necessary.

5 A New Generic Multi-

Designated Verifiers Signature

Before proposing our new generic construction of multi-
designated verifiers signature, we first review the defini-
tion of chameleon hash function, which is the basic form
of our proposed building block: multi-chameleon hash.

Definition 4. A chameleon hash function consists of the
following four polynomial time algorithms.

• {params} ← Chameleon.Setup(1k): A probabilistic
algorithm that takes security parameter k and out-
puts the public parameters params. For brevity, we
omit the input of params in the descriptions of other
algorithms below.

• {sk, pk} ← Chameleon.KeyGen: A probabilistic algo-
rithm that outputs a private key sk together with the
corresponding public key pk, for each user.

• {h} ← Chameleon.Hash(pk, m, τ): A probabilistic al-
gorithm that takes a public key pk, a message m and
a random factor τ , outputs a hash value h.

• {τ ′} ← Chameleon.Forge(sk, m, m′, τ): An efficient
probabilistic algorithm that takes a message m, a
random factor τ and another message m′, outputs
τ ′ such that the equality Chameleon.Hash(pk, m, τ) =
Chameleon.Hash(pk, m′, τ ′) holds.

These algorithms should satisfy the following security re-
quirements.

1) Collision resistance: Given the input of pk,
m, τ and m′, it is computationally infeasible
to find τ ′ such that Chameleon.Hash(pk, m, τ) =
Chameleon.Hash(pk, m′, τ ′) without the secret key sk.

2) Semantic security: Let H [X] be the entropy of a ran-
dom variable X and H [X |Y] be the entropy of the
variable X given the value of a random function Y

of X, the conditional entropy H [m|C] of the message
m given its chameleon hash value C equals the total
entropy H [m] of the message space.

3) Key exposure freeness: Given a polynomially many
queries on oracle access to Chameleon.Forge, there is
no efficient algorithm that can find a collision that
has not been queried.

5.1 Framework of Multi-Chameleon

Hash Function

A multi-chameleon hash function consists of the
following six polynomial time algorithms: Setup,
KeyGen, Single− Hash, Single− Hash, Multi− Hash, and
Multi− Forge.

• {params} ← Setup(1k): On a unary string input
1k where k is a security parameter, it produces the
common public parameters params.

• {sk, pk} ← KeyGen: A probabilistic algorithm that
outputs a private key sk together with the corre-
sponding public key pk for each user.

• {h} ← Single− Hash(pk, m, τ): A probabilistic algo-
rithm that takes a public key pk, a message m and a
random factor τ , outputs a hash value h.

• {τ ′} ← Single− Forge(sk, m, m′, τ): An efficient
probabilistic algorithm that takes a message m, a
random factor τ and another message m′, outputs
τ ′ such that the equality Single− Hash(pk, m, τ) =
Single− Hash(pk, m′, τ ′) holds.

• {h} ← Multi− Hash(∪n
i=1{pki}, m, τ): On input of n

public keys, a message m and a random factor τ , it
outputs a hash value h corresponding to the input
parameters.

• {τ ′} ← Multi− Forge(∪n
i=1{ski}, m, m′, τ): On in-

put of n private keys, a message m, a message
m′ different from m, the hash value h, and a
random factor τ , it outputs another random fac-
tor τ ′ such that Multi− Hash(∪n

i=1{pki}, m, τ) =
Multi− Hash(∪n

i=1{pki}, m
′, τ ′), where the n private

keys used are the corresponding private keys of
∪n

i=1{pki}.

The security requirements of Single− Hash and
Single− Forge are the same as those in a normal
chameleon hash. Semantic security is about the hash
value so the same applies on both Single− Hash and
Multi− Hash. Multi− Hash and Multi− Forge should
satisfy the following security requirements.

International Journal of Network Security, Vol.7, No.3, PP.348–357, Nov. 2008 354

1) Collision resistance: Given the input of ∪n
i=1{pki},

m, τ and m′, it is computationally infeasi-
ble to find τ ′ such that Hash(∪n

i=1{pki}, m, τ) =
Hash(∪n

i=1{pki}, m
′, τ ′) without all of the secret keys

corresponding to ∪n
i=1{pki}.

2) Key exposure freeness: Given a polynomially many
queries on oracle access to Multi− Forge, there is no
efficient algorithm that can find a collision that has
not been queried.

5.2 Proposed Construction

We firstly review the scheme proposed in [1], then we show
our modification to extend it into a multi-chameleon hash
function, with security analysis.

• {params} ← Chameleon.Setup(1k): We need a nor-
mal cryptographic hash function H4 to map arbitrary
length inputs to bit strings of fixed length.

• {sk, pk} ← Chameleon.KeyGen: Let p be a k-bit safe-
prime such that p = 2q + 1 where q is also prime.
Suppose g is a generator of the subgroup of quadratic
residues Qp of Z∗

p of order q. Private key sk is ran-
domly chosen from {2, · · · , q−1} and the correspond-
ing public key pk is y = gsk.

• {h} ← Chameleon.Hash(pk, m, {r, s}): Suppose
{r, s} ∈ Z2

q, compute e = H4(m, r) and h = r− (yegs

mod p) mod q.

• {r′, s′} ← Chameleon.Forge(sk, m, m′, {r, s}): Let
h = Chameleon.Hash(m, {r, s}) where e = H4(m, r).
Randomly chooses k′ from {1, 2, · · · , q−1}, computes
r′ = h + (gk′

mod p) mod q, e′ = H4(m
′, r′), and

s′ = k′ − e′(sk) mod q.

To extend the above scheme to multi-chameleon hash,
we make the following changes.

1) Each verifier i randomly chooses an element k′
i from

{1, 2, · · · , q − 1}, computes gi = gk′

i .

2) An arbitrary entity in the group of verifiers, after
receiving these gis, computes r′ = h+

∏n

i=1 gi mod p

and e′ = H4(m
′, r′).

3) Each verifier i computes φi = k′
i − e′ski mod q.

4) An arbitrary entity in the group of verifiers, after
receiving these φis, computes s′ =

∑n

i=1 φi mod q.

5.3 Generic Construction of MDVS

Given a discrete logarithm based signature scheme which
is existentially unforgeable against adaptive chosen mes-
sage attack ({DigSig.Setup, DigSig.Sign, DigSig.Verify})
and a discrete logarithm based multi-chameleon hash
function with “cooperative collision finding without key
exposure” property, we can construct a multi-designated
verifiers signature scheme as follows.

• MDVS.Setup = Chameleon.Setup, DigSig.Setup.

• MDVS.SKeyGen = DigSig.KeyGen, suppose {QS , SS}
is the signer’s public key and private key respectively.

• MDVS.VKeyGen = Chameleon.KeyGen, suppose
{QVi

, SVi
} is the verifier i ’s public key and private

key respectively.

• MDVS.Sign = (DigSig.Sign

(SS , Chameleon.Multi− Hash(
∑n

i=1 QVi
, m, {r, s})),

m, {r, s}), i.e. signing the chameleon hash, and in-
cluding the message with the random factor such that
the chameleon hash value can be reconstructed.

• MDVS.Verify = DigSig.Verify

(σ, Chameleon.Multi− Hash(
∑n

i=1 QVi
, m, {r, s}), QS)

where σ is the signature generated by DigSig.Sign.

In short, it generates a chameleon signature [1] where the
recipient is a “group of verifiers”, with “group public key”∑n

i=1 QVi
and the “group private key”

∑n

i=1 SVi
. The

source hiding property comes from the following facts.

1) Either the private key of the signer or the “group
private key” is used to generate the signature.

2) No one can distinguish which key (i.e. signer’s pri-
vate key or the “group private key”) is actually used
since both parties can generate this signature.

3) The group of verifiers can forge a collision with
the input of the “group private key” or by using
Multi− Forge without exposing their private keys.

The designated property comes from the following facts.

1) The scheme satisfies the source hiding property.

2) Any one in the group of verifiers, however, knows
well that the signer generates the signature since it
is necessary to use all the private keys of all verifiers
to generate such a signature.

5.4 Discussion

Note that the proposed scheme inherits the “weakness” of
chameleon signatures, in which the group of verifiers can
only forge a signature on a message on their wish only
if they have obtained a signature on some other message
from the signer already. Nevertheless, we think that it
is not a great problem even they cannot generate such a
signature spontaneously. Once a signature is presented
by the signer, the group of verifiers can forge another
message, so any third party can only know the signer has
signed on some messages, but do not know exactly which
one.

Similar to our add-on protocol in previous section, our
extension to chameleon-hash function can be considered
as the multisignature extension [18] of Schnorr’s signature
[21]. As a result, our extension’s security can be proved
in a similar way as the proof in [18].

International Journal of Network Security, Vol.7, No.3, PP.348–357, Nov. 2008 355

6 Conclusion

Existing construction of multi-designated verifier signa-
ture (MDVS) scheme relies on the fact that either the
actual signer or the group of verifiers can create the same
signature. However, for the group of verifiers to create
the signature, they may leak their private key due to the
failure of existing ring signature schemes in supporting
the “cooperative signing without key exposure” require-
ment. Secure multi-party computation (SMC) protocol is
one of the solutions to remedy but incurs an uneven cost
of MDVS generation between the signer and the group of
verifiers. As a result, one is easily biased to believe that
the MDVS usually comes from the signer and hence the
real “designated” property of MDVS loses.

By exploiting the structure of the ring signature
schemes, we find that a generic SMC can be replaced by
a simple protocol that is yet robust and efficient. Our
proposed protocol can be applied to many identity-based
ring signature schemes and converted them into ring sig-
nature scheme supporting anonymous subset. As a re-
sult, three practical identity-based multi-designated ver-
ifiers signature schemes are devised. We also proposed
a new generic construction of multi-designated verifiers
signature from a new notion called multi-chameleon hash
functions: chameleon hash functions that satisfy the “co-
operative collision finding without key exposure” prop-
erty.

We leave it as an open problem to devise other (generic)
constructions of multi-designated verifiers signature and
other multi-chameleon hash function. Another interesting
direction is to study the generic construction of multi-
designated verifiers signature with stronger privacy guar-
antee, like the use of encryption and ring signature in the
construction of [4].

References

[1] G. Ateniese, “On the key exposure problem in
chameleon hashes,” Security in Communication Net-
works, 4th International Conference, SCN 2004,
LNCS 3352, pp. 165–179, C. Blundo and S. Cimato,
Editors, Springer-Verlag, Amalfi, Italy, Sep. 8-10,
2004, Revised Selected Papers, Amalfi, Italy, 2005.

[2] D. Chaum, “Private signature and proof systems,”
United States Patents, no. 5, pp. 493-614, 1996.

[3] X. Chen, F. Zhang, and K. Kim, “Chameleon hash-
ing without key exposure,” Proceedings of Infor-
mation Security, 7th International Conference, ISC
2004, LNCS 3225, pp. 87-98, K. Zhang and Y. Zheng,
Editors, Springer-Verlag, Palo Alto, CA, USA, Sep.
27-29, 2004.

[4] S. S. M. Chow, “Identity-based strong multi-
designated verifiers signatures,” Proceedings of the
Public Key Infrastructure, Third European PKI
Workshop: Theory and Practice, EuroPKI 2006,
LNCS 4043, pp. 257-259, A. S. Atzeni and A. Lioy,

Editors, Springer-Verlag, Turin, Italy, June 19-20,
2006.

[5] S. S. M. Chow, R. W. C. Lui, L. C. K. Hui, and S. M.
Yiu, “Identity based ring signature: Why, how and
what next,” Public Key Infrastructure, Second Euro-
pean PKI Workshop: Research and Applications, Eu-
roPKI 2005, LNCS 3545, pp. 144-161, D. W. Chad-
wick and G. Zhao, Editors, Springer-Verlag, Canter-
bury, UK, Jun. 30- Jul. 1, 2005, Revised Selected
Papers, 2005.

[6] S. S. M. Chow and W. Susilo, “Generic construction
of (identity-based) perfect concurrent signatures,”
Proceedings of the Information and Communications
Security, 7th International Conference, ICICS 2005,
LNCS 3783, pp. 194-206, S. Qing, W. Mao, J.
Lopez, and G. Wang, Editors, Springer-Verlag, Bei-
jing, China, Dec. 10-13, 2005.

[7] S. S. M. Chow, W. Susilo, and T. H. Yuen, “Es-
crowed linkability of ring signatures and its applica-
tions,” Proceedings of the Vietcrypt 2006, First In-
ternational Conference on Cryptology, LNCS 4341,
pp. 175–192, P. D. Dieu and P. Q. Nguyen, Editors,
Springer-Verlag, Vietnam, Hanoi, Vietnam, Sep. 25-
28, 2006.

[8] S. S. M. Chow, S. M. Yiu, and L. C. K. Hui, “Ef-
ficient identity based ring signature,” Applied Cryp-
tography and Network Security, Third International
Conference, ACNS 2005, LNCS 3531, pp. 499-512, J.
Ioannidis, A. D. Keromytis, and M. Yung, Editors,
Springer-Verlag, New York, USA, Jun 7-10, 2005.

[9] J. S. Coron, “On the exact security of full domain
hash,” Proceedings of Cryptology - Crpto ’00, 20th
Annual International Cryptology Conference, LNCS
1880, pp. 229-235, M. Bellare, Editor, Springer-
Verlag, Santa Barbara, California, USA, Aug. 20-24,
2000.

[10] Y. Desmedt, “Verifier-designated signatures,” 2006.
(http://web.archive.org/web/20060904033040/
www.cs.fsu.edu/∼desmedt/lectures/verifier-
designated-signatures.pdf)

[11] Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup,
“Anonymous identification in ad hoc groups,” Ad-
vances in Cryptology - Eurocrypt ’04, International
Conference on the Theory and Applications of Cryp-
tographic Techniques, LNCS 3027, pp. 609-626, C.
Cachin and J. Camenisch, Editors, Springer-Verlag,
Interlaken, Switzerland, May 2-6, 2004.

[12] J. Herranz and G. Sáez, “New identity-based ring sig-
nature schemes,” Proceedings of the Information and
Communications Security, 6th International Confer-
ence, ICICS 2004, LNCS 3269, pp. 27-39, J. Lopez,
S. Qing, and E. Okamoto, Editors, Springer-Verlag,
Malaga, Spain, Oct. 27-29, 2004.

[13] F. Hess, “Efficient Identity Based Signature Schemes
based on Pairings,” Selected Areas in Cryptogra-
phy, 9th Annual International Workshop, SAC 2002,
LNCS 2595, pp. 310-324, K. Nyberg and H. M. Heys,
Editors, Springer-Verlag, St. John’s, Newfoundland,
Canada, Aug. 15-16, 2002.

International Journal of Network Security, Vol.7, No.3, PP.348–357, Nov. 2008 356

[14] M. Jakobsson, K. Sako, and R. Impagliazzo, “Des-
ignated verifier proofs and their applications,” Ad-
vances in Cryptology - Eurocrypt ’96, International
Conference on the Theory and Application of Crypto-
graphic Techniques, LNCS 1070, pp. 143-154, U. M.
Maurer, Editor, Springer-Verlag, Saragossa, Spain,
May 12-16, 1996.

[15] H. Krawczyk and T. Rabin, “Chameleon hashes,”
Network and Distributed System Security Symposium
(NDSS) 2000, pp. 143-154, 2000.

[16] F. Laguillaumie and D. Vergnaud, “Multi-designated
verifiers signatures,” Proceedings of the Informa-
tion and Communications Security, 6th International
Conference, ICICS 2004, LNCS 3269, pp. 495-507,
J. Lopez, S. Qing, and E. Okamoto edit, Springer-
Verlag, Malaga, Spain, Oct. 27-29, 2004.

[17] Chih-Yin Lin and Tzong-Chen Wu, “An identity-
based ring signature scheme from bilinear pairings,”
Cryptology ePrint Archive, Report 2003/117, 2003.
Available at http://eprint.iacr.org

[18] S. Micali, K. Ohta, and L. Reyzin, “Accountable-
subgroup multisignatures: Extended abstract,” Pro-
ceedings of the CCS ’01: 8th ACM conference on
Computer and Communications Security, pp. 245-
254, New York, NY, USA, ACM Press, 2001.

[19] L. Nguyen, “Accumulators from bilinear pairings and
applications,” Topics in Cryptology - CT-RSA 2005,
The Cryptographers’ Track at the RSA Conference
2005, LNCS 3376, pp. 275-292, A. J. Menezes Editor,
Springer-Verlag, San Francisco, CA, USA, Feb. 14-
18, 2005.

[20] R. L. Rivest, A. Shamir, and Y. Tauman, “How to
Leak a Secret,” advances in Cryptology - Asiacrypt
’01, 7th International Conference on the Theory and
Application of Cryptology and Information Security,
LNCS 2248, pp. 552-565, C. Boyd, Editor, Springer-
Verlag, Gold Coast, Australia, Dec. 9-13, 2001.

[21] C. P. Schnorr, “Efficient signature generation by
smart cards,” Journal of Cryptology: The Journal
of the International Association for Cryptologic Re-
search, vol. 4, no. 3, pp. 161-174, 1991.

[22] W. Susilo and Y. Mu, “Non-interactive deniable ring
authentication,” Information Security and Cryptol-
ogy - ICISC 2003, 6th International Conference,
LNCS 2971, pp. 386-401, J. I. Lim and D. H. Lee,
Editors, Springer-Verlag, Seoul, Korea, Nov. 27-28,
2003, Revised Papers, Seoul, Korea, 2004.

[23] G. Wang, “An attack on not-interactive designated
verifier proofs for undeniable signatures,” Cryptology
ePrint Archive, Report 2003/243, 2003. Available at
http://eprint.iacr.org.

[24] F. Zhang and K. Kim, “ID-based blind signature and
ring signature from pairings,” Advances in Cryptol-
ogy - Asiacrytp ’02, 8th International Conference on
the Theory and Application of Cryptology and Infor-
mation Security, LNCS 2501, pp. 533-547, Y. Zheng,
Editor, Springer-Verlag, Queenstown, New Zealand,
Dec. 1-5, 2002.

Appendix

ID-Based Ring Signature from Anonymous

Subset

An ID-based ring signature from anonymous subset con-
sists of four algorithms: Setup, KeyGen, Sign, and Verify.

• Setup: On a unary string input 1k where k is a se-
curity parameter, it produces the master secret key
s and the common public parameters params, which
include a description of a finite signature space and
a description of a finite message space.

• KeyGen: On an input of signer’s identity ID ∈ {0, 1}∗

and the master secret key s, it outputs the signer’s
secret signing key SID. (The corresponding public
verification key QID can be computed easily by ev-
eryone.)

• Sign: On input of a message m, n group of users’
identities {Ui}, where 1 ≤ i ≤ n and Ui = {IDij

},
and the secret keys {SIDsj

} of all members of one

of the group Us, where 1 ≤ s ≤ n; it outputs an ID-
based ring signature from anonymous subset σ on the
message m.

• Verify: On input of a ring signature σ, a message m

and n group of users’ identities {Ui}, where 1 ≤ i ≤ n

and Ui = {IDij
}, it outputs > for “true” or ⊥ for

“false”, depending on whether σ is a valid signature
signed by all members of a certain group in the {Ui}
on a message m.

These algorithms must satisfy the standard consistency
constraint of ID-based ring signature from anonymous
subset, i.e. if σ = Sign(m, {Ui}, {SIDsj

}), we must get

“true” from the verification algorithm taking the signa-
ture, the message and the groups of identities as the input,
i.e. Verify(σ, {Ui}, m) = >.

For a secure ID-based ring signature from anonymous
subset, we need unforgeability and signer ambiguity.

The following EUF-IDRSAS-CMIA2 game played be-
tween a challenger C and an adversary A formally defines
the existential unforgeability of ID-based ring signature
under adaptive chosen-message-and-identity attack.

EUF-IDRSAS-CMIA2 Game:

Setup: The challenger C takes a security parameter k and
runs the Setup to generate common public parameters
params and the master secret key s. C sends params to
A.

Attack: The adversary A can perform a polynomially
bounded number of queries in an adaptive manner (that
is, each query may depend on the responses to the previ-
ous queries). The types of queries allowed are described
below.

• Hash functions queries: A can ask for the values of
the hash functions (e.g. H1(·) and H2(·) in our pro-
posed scheme) for any input.

International Journal of Network Security, Vol.7, No.3, PP.348–357, Nov. 2008 357

• KeyGen: A chooses an identity ID. C computes
KeyGen(ID) = SID and sends the result to A.

• Sign: A chooses n group of users’ identities {Ui},
where 1 ≤ i ≤ n and Ui = {IDij

}, and any mes-
sage m. C outputs an ID-based ring signature from
anonymous subset σ.

Forgery: The adversary A outputs an ID-based ring sig-
nature σ and n group of users’ identities {Ui}, where
1 ≤ i ≤ n and Ui = {IDij

}. The only restriction is
that (m, {Ui}) does not appear in the set of previous Sign

queries and for each group of identities {Ui}, at least one
secret key in {SIDij

} is never returned by any KeyGen

query. It wins the game if Verify(σ, {Ui}) is equal to >.
The advantage of A is defined as the probability that it
wins.

Definition 5. An ID-based ring signature scheme
from anonymous subset has the existential unforgeabil-
ity against adaptive chosen-message-and-identity attacks
property (EUF-IDRSAS-CMIA2 secure) if no adversary
has a non-negligible advantage in the EUF-IDRSAS-
CMIA2 game.

Definition 6. An ID-based ring signature scheme from
anonymous subset has the unconditional group of sign-
ers ambiguity if for any n group of users’ identities {Ui},
where 1 ≤ i ≤ n and Ui = {IDij

}, any message m and
any signature σ, where σ = Sign(m, {Ui}); any verifier
A not from the actual signer group, even with unbounded
computing resources, cannot identify the actual group of
signers with probability better than a random guess. That
is, A can only output the actual signers group indexed by
s with probability no better than 1

n
.

Sherman S. M. Chow is currently a PhD candidate in
the Courant Institute of Mathematical Sciences at New
York University. He has been a research intern of Fuji
Xerox Palo Alto Laboratory and a visiting scholar of the
Information Security Institute at Queensland University
of Technology. In summer 2008, he is a research intern of
Crypto and Anti-Piracy Group, Microsoft Research.

He has published over 30 papers in the area of identity-
based cryptography, certificateless cryptography, two-
factor encryption, key agreement, group-oriented signa-
ture, and distributed system security (e.g. e-voting, e-
cash, P2P, privacy-preserving queries). He has also served
on the program committee of ProvSec ’07, ACIS ’06 (as
a program co-chairman), and as reviewers for many con-
ferences and journals including TCC ’08, ISC ’08, Crypto
’07, ACM E-Commerce ’07, Eurocrypt ’06, Asiacrypt ’05,
DKE and JUCS.

