
International Journal of Network Security, Vol.7, No.3, PP.335–341, Nov. 2008 335

Proof of Forward Security for Password-Based

Authenticated Key Exchange

Shuhua Wu and Yuefei Zhu

(Corresponding author: Shuhua Wu)

Zhengzhou Information Science Technology Institute

Mailbox 1001 no. 770, Zhengzhou, 450002, China

(Email: wushuhua726@sina.com.cn)

(Received Mar. 21, 2007; revised and accepted June 14, 2007)

Abstract

Recently, M. Abdalla et al. proposed a slightly different
variant of AuthA, based on the scheme proposed by E.
Bresson et al., and provided the first complete proof of
forward-secrecy for AuthA. They claimed that under the
Gap Diffie-Hellman assumption the variant of AuthA was
forward-secure in the random-oracle model. In this paper,
we present an active attack to reveal a previously unpub-
lished flaw in their proof. To fix their proof, we have to
introduce one more variant Diffie-Hellman assumption. If
so, we found the scheme proposed by E. Bresson et al.
could be proved forward secure as well. Since the pro-
posal of E. Bresson et al. is simpler for implementation
in practice, we only provided the rigorous proof of forward
security for it.

Keywords: Key exchange, password, security proof

1 Introduction

The Password Authenticated Key Exchange (PAKE) is
a protocol which allows one party authenticate the other
party by a simple password known by the two parties
(that is, password-based authentication), and to agree on
a fresh symmetric key securely such that it is known only
to these two parties (that is, key exchange). Humans di-
rectly benefit from this approach since they only need to
remember a low-quality string chosen from a relatively
small dictionary (e.g. 4 decimal digits). The vast major-
ity of protocols found in practice do not account, however,
for such scenario and are often subject to so-called dictio-
nary attacks. So there is a great need for provably secure
password-authentication key-exchange technologies, espe-
cially for provably forward-secure ones that can protect
the secrecy of session keys established before the corrup-
tion.

AuthA is a password-authentication key-exchange
technology considered for standardization by the IEEE
P1363.2 working group [6, 11]. Unfortunately in its orig-

inal form AuthA did not achieve the notion of forward-
secrecy in a provably-secure way. The forward-secrecy of
AuthA was indeed explicitly stated as an open problem
in [6, 11]. Recently, M. Abdalla et al. proposed a slightly
different variant of AuthA, based on the scheme proposed
by E. Bresson et al. [9], and argued that their proposal
was not created for the sake of having one more vari-
ant, but simply because it allows them to prove forward-
secrecy for AuthA [3]. They claimed that under the Gap
Diffie-Hellman assumption [12] the variant of AuthA was
forward-secure in the random-oracle model.

In this paper, we present an active attack to reveal a
previously unpublished flaw in their proof. Indeed, we
found a significant gap in the reasoning of the proof given
in [3]. To fix their proof, we have to introduce one more
variant Diffie-Hellman assumption. If so, we found the
slight variance, which made the scheme quite complicated,
was unnecessary any longer and the original scheme pro-
posed by E. Bresson et al. could also be proved forward
secure based on this new algorithmic assumption. Since
the proposal of E. Bresson et al. is simpler for implemen-
tation in practice, we only provide the rigorous proof of
forward security for it. There were ever many schemes
that were claimed to be provably secure but were found
insecure subsequently. And the paradox was found often
due to incorrectness of the proof, e.g. [10]. So the rigorous
proof of security is especially important.

The remainder of this paper is organized as follows.
In Section 2, we introduce the formal model of security
for password-based authenticated key exchange. Next,
in Section 3, we presents algorithmic assumptions upon
which the security of the protocol is based upon. Section
4 then reveals a previously unpublished flaw in the proof
given in [3]. Section 5 presents the rigorous proof of for-
ward security for the proposal of E. Bresson et al.. Some
important remarks are also presented in this section. In
the last section, we conclude this paper.

International Journal of Network Security, Vol.7, No.3, PP.335–341, Nov. 2008 336

2 Security Models for Password-

based Key Exchange

A secure password-based key exchange is a key exchange
protocol where the parties use their password in order to
derive a common session key sk that will be used to build
secure channels. Loosely speaking, such protocols are said
to be secure against dictionary attacks if the advantage of
an attacker in distinguishing a real session key from a
random key is less than O(n/ |D|) + ε(l) where |D| is the
size of the dictionary D, n is the number of active sessions
and ε(l) is a negligible function depending on the security
parameter l.

In this section, we recall the security model for
password-based authenticated key exchange of Bellare et
al. [5]. In this paper, we prove the protocol is secure in
this model(referred as BPR2000 model).

2.1 The Security Model

We denote by A and S two parties that can participate
in the key exchange protocol. Each of them may have
several instances called oracles involved in distinct, pos-
sibly concurrent, executions of the protocol. We denote
A (resp. S) instances by Ai (resp. Sj), or by U when we
consider any user instance. The two parties share a low-
entropy secret pw which is drawn from a small dictionary
D, according to the uniform distribution.

The key exchange algorithm P is an interactive pro-
tocol between Ai and Sj that provides the instances of
A and S with a session key sk. The interaction between
an adversary A and the protocol participants occurs only
via oracle queries, which model the adversary capabilities
in a real attack. The types of oracles available to the
adversary are as follows:

• Execute(Ai, Sj): This query models passive attacks
in which the attacker eavesdrops on honest execu-
tions between a client instance Ai and a server in-
stance Sj. The output of this query consists of the
messages that were exchanged during the honest ex-
ecution of the protocol.

• Send(U i, m): This query models an active attack,
in which the adversary may intercept a message and
then either modify it, create a new one, or simply
forward it to the intended participant. The output
of this query is the message that the participant in-
stance U i would generate upon receipt of message
m.

• Reveal(U i): This query models the misuse of the
session key by instance U i (known-key attacks). If
a session key is not defined for instance U i or if a
Test query (see Section 2.2) was asked to either U i

or to its partner, then return ⊥. Otherwise, return
the session key held by the instance U i.

2.2 Security Definitions

In order to define a notion of security for the key exchange
protocol, we consider an experiment in which the proto-
col P is executed in the presence of the adversary A. In
this experiment, we first draw a password pw from a dic-
tionary D, provide coin tosses and oracles to A, and then
run the adversary, letting it ask any number of queries as
described above, in any order.

Forward Security. In order to model the forward se-
crecy (semantic security) of the session key, we consider
a game Gameake−fs(A,P), in which two additional or-
acles are available to the adversary: the Test(U i) and
Corrupt(U): oracle.

• Test(U i): This query tries to capture the adversary’s
ability to tell apart a real session key from a random
one. In order to answer it, we first flip a (private)
coin b and then forward to the adversary either the
session key sk held by U i (i.e., the value that a query
Reveal(U i) would output) if b = 1 or a random key
of the same size if b = 0.

• Corrupt(U): This query returns to the adversary the
long-lived key pwU for participant U . As in [5], we
assume the weak corruption model in which the inter-
nal states of all instances of that user are not returned
to the adversary.

The Test-oracle can be queried at most once by the
adversary A and is only available to A if the attacked
instance U i is FS-Fresh, which is defined to avoid cases
in which adversary can trivially break the security of the
scheme. In this setting, we say that a session key sk is
FS-Fresh if all of the following hold:

1) the instance holding sk has accepted,

2) no Corrupt-query has been asked since the beginning
of the experiment; and

3) no Reveal-query has been asked to the instance hold-
ing sk or to its partner (defined according to the ses-
sion identification).

In other words, the adversary can only ask Test-queries
to instances which had accepted before the Corrupt query
is asked. Let Succ denote the event in which the adver-
sary successfully guesses the hidden bit b used by Test
oracle. The FS-AKE advantage of an adversary A is then
defined as Advake−fs

P,D (A) = 2Pr[Succ] − 1 when pass-
words are drawn from a dictionary D. The protocol P is
said to be (t, ε)-FS-AKE-secure if A’s advantage is smaller
than ε for any adversary A running with time t. The def-
inition of time-complexity that we use henceforth is the
usual one, which includes the maximum of all execution
times in the experiments defining the security plus the
code size [1].

International Journal of Network Security, Vol.7, No.3, PP.335–341, Nov. 2008 337

3 Algorithmic Assumptions

The arithmetic is in a finite cyclic group G = 〈g〉 of order
a l-bit prime number q, where the operation is denoted
multiplicatively.

3.1 GDH-Assumption

A (t, ε) − CDHg,G attacker in G is a probabilistic ma-

chine ∆ running in time t such that: Succcdh
g,G(A) =

Pr[∆(gx, gy) = gxy] ≥ ε, where the probability is taken
over the random values x and y(can equal to x). The
CDH-Problem is (t, ε)- intractable if there is no (t, ε)-
attacker in G. The CDH-assumption states that is the
case for all polynomial t and any non-negligible ε.

A (t, n, ε) − GDHP,G attacker A is a (t, ε) − CDHP,G

attacker, with access to an additional oracle: a DDH-
oracle, which on any input (gx, gy, gz) answers whether
z = xy mod q. Its number of queries is limited to n.
Similarly, we can define the GDH-Problem and the GDH-
assumption. More information about them can be found
in [12]. We denote by Succ

gdh
g,G(n, t) the maximal success

probability over every such adversaries A.

3.2 PCGDH-Assumption

The so-called Password-based Chosen-basis CDH (PC-
CDH) problem is a variation of the computational Diffie-
Hellman that is more appropriate to the password-based
setting: Let D = {1, · · · , |D|} be a dictionary contain-
ing |D| equally likely password values and let M be a
public injective map from {1, · · · , |D|} into Zq. Now let
us consider an adversary A that runs in two stages. In
the first stage, the adversary is given as input three ran-
dom elements P (can be 1),Q and X(can equal to Q) in G
as well as as the public injective map M and it outputs
an element Y in G (the chosen-basis). Next, we choose
a random password k ∈ {1, · · · , |D|} and give it to the
adversary. We also compute the mapping r = M(k) of
the password k. The goal of the adversary in this sec-
ond stage is to output K = CDHg,G(X/P r, Y/Qr). The
idea behind the password-based chosen-basis computa-
tional Diffie-Hellman assumption is that the success prob-
ability Succ

pccdh
g,G,M(A) cannot be significantly larger than

1/|D| for any A running in polynomial time t, where |D|
is the size of the dictionary D. More information about
them can be found in [2, 4].

Similarly, we can define the PCGDH-Problem and the
PCGDH-assumption. We denote by Succ

pccdh
g,G,M(n, t) the

maximal success probability over every such PCGDH-
adversaries A.

4 Flaws in the Security Proof

Given by M. Abdalla

In this section, we revisit the protocol presented by M.
Abdalla et al. (2005), which carries a proof of forward

security in the BPR2000 model, and then reveal the flaws
in their proof for it.

The protocol was based on password-based key ex-
change protocols in [9], which in turn were based on the
encrypted key exchange(EKE) of Bellovin and Merritt
[7, 8]. As illustrated on Figure 1, the protocol ran be-
tween two parties A and S, where H represents a hash
function from {0, 1}? to {0, 1}l and G represents a full-
domain hash function from {0, 1}? to G. It ran as follows.
The client chose at random a private random exponent x
and computed its Diffie-Hellman public value gx. The
client encrypted the latter value using a password-based
mask, as the product of a Diffie-Hellman value with a full-
domain hash of the password, and sent it to the server.
The server in turn chose at random a private random ex-
ponent y and computed its Diffie-Hellman public value gy

which it encrypted using another password-based mask.
The client (resp. server) then decrypted the flow it had
received and computed the session key sk using H.

Figure 1: An execution of M. Abdalla’s protocol

M. Abdalla et al. claimed that under the Gap Diffie-
Hellman assumption the protocol was forward-secure in
the random-oracle model. Here we present an active at-
tack (called Attk) to reveal a previously unpublished flaw
in their proof. We assume the adversary A tries to imper-
sonate S to A. When A initiates the protocol execution
with the first message 〈A, X∗〉, A intercepts this mes-
sage, produces an element Y ∗ ∈ G and then replies to A
with 〈S, Y ∗〉 as if it originated from S. Since, from A’s
point of view,the message 〈S, Y ∗〉 is perfectly indistin-
guishable from that of an honest execution, A believes
that the message is from S and accepts the execution
after A receives it. When A accepts the execution, A
asks Test-queries to the instance of A. Later, A cor-
rupts the user A, thereby learning the shared password
with S, pw. Then A tries to find K ∈ G such that
K = CDHg,G(X∗/PWas, Y ∗/PWsa) if he can. Finally,
A asks the random oracle H with A‖S‖X∗‖Y ∗‖pw‖K as
input to obtain sk (denoted by the event AskHSK)and
thus knows the bit b involved in the Test-queries. The
attacker completely compromises the sematic security of
the session key but one can not build an attacker against
the GDH-assumption over G simply using A. M. Abdalla

International Journal of Network Security, Vol.7, No.3, PP.335–341, Nov. 2008 338

et al. argued that the probability that the event AskHSK
occurs was no larger than 1/|D| (For easy analysis, we
assume D is a uniformly distributed dictionary). It is not
correct.

Indeed, an adversary that correctly guessed the pass-
word pw in its first stage can easily find K ∈ G by com-
puting PWsa = G(S‖A‖pw), PWas = G(A‖S‖pw) and
making, for instance, Y ∗ = gy × PWsa so that K = Xy.
If an adversary chose to guess the password and followed
this strategy, he can succeed with probability 1/|D|. How-
ever, one can not justly proved that no adversary can do
better than the adversary described above. Therefore,
there is a significant gap in the reasoning of the proof
given in [3]. Fortunately, we can prove that the protocol
is forward-secure in the BPR2000 model by introducing
another algorithmic assumption— PCGDH-assumption.
Furthermore, we find the original scheme proposed by E.
Bresson et al. could also be proved forward secure based
on this new algorithmic assumption. So their slight vari-
ance, which made the scheme quite complicated, was un-
necessary any longer. Due to this, we only provide the
rigorous proof of forward security for the E. Bresson’s
scheme in the next section.

Notes. In the attack Attk, the adversary A queried
the random oracle H only once. If the adversary is not
allowed to ask Corrupt-oracle throughout the attack, we
can have Pr[AskHSK] ≤ 1/|D| because the adversary has
to guess the password pw when he queries H. After all,
pw appears explicitly as part of input to H query.

5 Security Proof for E. Bresson’s

Protocol

E. Bresson’s protocol is also a variation of the password-
based EKE, where both flows are encrypted using a com-
mon mask PW instead of separate ones, as shown in Fig-
ure 2. The protocol is simpler than that of M. Abdalla et
al. and thus more practical. It is so because a full-domain
hash function G onto the represented group G is difficult
to implement directly in practice for some discrete groups
and usually contains an implicit exponentiation over G.
In that case, the computational cost of such hashes would
be quite high. E. Bresson’s protocol require one less such
operations for each side.

In the rest of this section, we prove the E. Bresson’s
scheme is forward secure in the BPR2000 model. More
specifically, as Theorem 1 states, the password-based key
authenticated protocol is forward secure in the random or-
acle model as long as we believe that the PCGDH problem
is hard in G.

Theorem 1. Let D be a uniformly distributed dictionary
of size |D|. Let P describe the password-based authenti-
cated key exchange protocol associated with these prim-
itives as defined in Figure 2. Then, for any adversary
A within a time bound t, with less than qs active in-
teractions with the parties (Send-queries) and qp pas-

Figure 2: An execution of E. Bresson’s protocol

sive eavesdroppings (Execute-queries), and asking qh,qg

hash queries to any H,G respectively, Advake−fs
P,D (A) ≤

(qp+qs)2

q
+

3q2

g

q
+

q2

h

2l +6Succ
pcgdh
g,G,D(qh, t+2τ), where τ rep-

resents the computational time for an exponentiation in
G.

Proof. Let A be an adversary against the semantic secu-
rity of P . The idea is to use A to build adversaries for
each of the underlying primitives in such a way that if
A succeeds in breaking the semantic security of P , then
at least one of these adversaries succeeds in breaking the
security of an underlying primitive. Our proof consists of
a sequence of hybrid games, starting with the real attack
and ending in a game in which the adversary’s advantage
is 0, and for which we can bound the difference in the ad-
versary’s advantage between any two consecutive games.
In the following games Gamen, we study the event Sn

which occurs if the adversary correctly guesses the bit b
involved in the Test-query. Let us remember that in this
attack game, the adversary is provided with the Corrupt-
query.

Game0: This is the real protocol in the random-oracle
model. By definition, we have

Advake−fs
P,D (A) = 2Pr[S0] − 1.

Game1: In this game, we simulate the hash oracles
(G,H but also additional hash function H

′

: {0, 1}∗ →
{0, 1}l that will appear in the Game3) as usual by main-
taining hash lists ∧G , ∧H and ∧H

′ (see Figure 3). We also
simulate all the instances, as the real players would do,
for the Send, Execute, Corrupt, and Test-queries. From
this simulation, we easily see that the game is perfectly
indistinguishable from the real attack. Thus, we have

Pr[S1] = Pr[S0].

Game2: For an easier analysis in the following, we can-
cel games in which some unlikely collisions Coll appear:
collisions on the partial transcripts((A, X?), (S, Y ?)) and
on hash values. Since transcripts involve at least one hon-
est party, and thus the probability are bounded by the

International Journal of Network Security, Vol.7, No.3, PP.335–341, Nov. 2008 339

For a hash query G(m) for which there exists a record
(m, r, ∗) in the list ΛG , return r. Otherwise the answer
r is defined according to the following rule:
Rule G
| Choose an element r. The record (m, r,⊥) to the

list ΛG

For a hash query H(m) for which there exists a record
(m, r) in the list ΛH, return r. Otherwise the answer r
is defined according to the following rule:
Rule H
| Choose an element r ∈ {0, 1}l.

One adds the record (m, r) to the list ΛH.

For a hash query H
′

(m) for which there exists a record
(m, r) in the list Λ

H
′ , return r.Otherwise the answer r

is defined according to the following rule:
Rule H

′

| Choose an element r ∈ {0, 1}l.
One add the record (m, r) to the list ΛH

′ .

Figure 3: Simulation of random oracles G,H and H
′

birthday paradox:

|Pr[S2] − Pr[S1]| ≤ Pr[Coll] ≤
(qp + qs)

2

2q
+

q2
g

2q
+

q2
h

2l+1
.

Game3: In this game, we compute X?, Y ? simply as
X? = gx, Y ? = gy for two random integers x, y. Mean-
time, we compute the session key sk using the private
oracles H

′

instead so that the values sk is completely in-
dependent not only from H, but also from pw and thus
both KA and KS . More specifically, we computes it as
follows: sk = H

′

(A‖S‖X?‖Y ?).
Due to it, we do no longer need to compute the values

KA and KS , and we can postpone choosing the value of
the password pw until the Corrupt query is asked by the
adversary A.

The games Game3 and Game2 are indistinguish-
able unless A queries the hash function H on
A‖S‖X?‖Y ?‖PW‖K for some execution transcript
((A, X?), (S, Y ?)), where K = KA or KA. To avoid the
trivial difference in the sessions on which A uses the pass-
word he corrupted to mount an active attack, we make
answers from H and H

′

to be the same for such sessions
when they correspond to the same query. To do so, we
replace the Rule H and Rule H

′

with the following rules:
Rule NH
If a) pw is corrupted ;

b) m is the form of A‖S‖X?‖Y ?‖PW‖K,
where K = CDHg,G(X?/PW, Y ?/PW)
(checked using the DDH- oracle);

c) no instance accepts the session before the
corruption;

Then set r to H
′

(A‖S‖X?‖Y ?).
Else

Then randomly choose r ∈ {0, 1}l.

Rule NH
′

If a) pw is corrupted ;
b) m is the form of A‖S‖X?‖Y ?;

c) there is a record (m
′

, r
′

) in the list
ΛH, where m

′

=A‖S‖X?‖Y ?‖PW‖K
and K = CDHg,G(X?/PW, Y ?/PW)
(checked using the DDH- oracle);

Then set r to r
′

.
Else

Then randomly choose r ∈ {0, 1}l.

Note we still stimulates the random oracle H and H
′

perfectly since we just replaces some random values by
other random values. We can safely do so because colli-
sions of partial transcripts have been excluded in Game2.

The Games Game3 and Game2 are now indis-
tinguishable unless A queried the hash function H
on A‖S‖X?‖Y ?‖PW‖K for some session transcript
((A, X?), (S, Y ?)) that corresponds to the session ID of
a session accepted before the corruption: event DiffH.
This means that, for some transcript of this kind, the
tuple A‖S‖X?‖Y ?‖PW‖K lies in the list ∧H. Note the
adversary can only ask Test-queries to instances which
had accepted before corrupting the password. Since the
session key is computed with the random oracle H

′

that
is private to the simulator before the corruption, one can
remark that the bit b involved in the Test-query cannot
be guessed by the adversary, better than at random for
each attempt.

|Pr[S3] − Pr[S2]| ≤ Pr[DiffH] Pr[S3] =
1

2
.

To bound the difference between this game and previ-
ous, our goal at this point shifts to computing the prob-
ability of the event DiffH. We prove that the probability
of such an event is negligible in Game4.

Game4: In order to evaluate the event DiffH, we re-
place the Rule G with the new rule Rule NG, where Q is
a random element in G. The simulation introduces values
in the third component of the elements of ∧G , but does
not use it. It would let the probabilities unchanged.

Rule NG
Randomly choose k ∈ Zq , and compute r = Qk ;
The record (m, r, k) is added to ∧G .

For a more convenient analysis, we firstly exclude the
case Case0: PW = 1 . Since we just exclude k = 0, we

have Pr[Case0] ≤
qg

q
≤

q2

g

q
. Without Coll and Case0,

the event DiffH can be split in 3 disjoint sub-cases as
follows. Note that both X? and Y ? are produced before
the corruption.

• CaseA: Both X? and Y ? have been sim-
ulated and there is an element PW such
that (C, S, X?, Y ?, PW, K) is in ∧H, with
K = CDHg,G (X?/PW, Y ?/PW) =
(Y ?/PW)x/(CDHg,G(Q, Y ?/kQ))k. As a con-
sequence, one can solve the PCGDH-problem. Thus,
we have Pr[CaseA] ≤ Succ

pcgdh
g,G,,D(qh, t + 2τ).

• CaseB: X? has been simulated, but Y ? has been
produced by the adversary. Due to Rule NH and

International Journal of Network Security, Vol.7, No.3, PP.335–341, Nov. 2008 340

Rule NH
′

, we just need to consider those ses-
sions accepted before the corruption. If here is
an element PW such that (A, S, X?, Y ?, PW, K) is
in ∧H, with K = CDHg,G (X?/PW, Y ?/PW) =
(Y ?/PW)x/(CDHg,G(Q, Y ?/kQ))k, we can have:

Pr[CaseB] ≤ Succ
pcgdh
g,G,D(qh, t + 2τ).

• CaseC: Y ? has been simulated, but X? has been
produced by the adversary. Due to Rule NH and
Rule NH

′

, we just need to consider those ses-
sions accepted before the corruption. If here is
an element PW such that (A, S, X?, Y ?, PW, K) is
in ∧H, with K = CDHg,G (X?/PW, Y ?/PW) =
(X?/PW)y/(CDHg,G(Q, X?/kQ))k, we can have:

Pr[CaseC] ≤ Succ
pcgdh
g,G,D(qh, t + 2τ).

As a consequence,

Pr[DiffH] ≤
q2
g

q
+ 3Succ

pcgdh
g,G,D(qh, t + 2τ).

Finally, combining all the above equations, one gets
the announced result as follows.

Advftg−ake
P,D (A) = 2Pr[S0] − 1 = 2(Pr[S0] −

1
2)

= 2(Pr[S1] −
1
2)

≤ 2(|Pr[S1] − Pr[S2]| + |Pr[S2] − Pr[S3]|)

≤
(qp+qs)2

q
+

3q2

g

q
+

q2

h

2l + 6Succ
pcgdh
g,G,D(qh, t + 2τ).

Remark 1. In our proof, we reduce the problem to
the SPGDH one when we evaluate Pr[DiffH]. We can not
use the technique in [9] to upper-bound Pr[DiffH] since
the main idea of it is to reduce the problem to password-
guessing. The event DiffH can be due to some query that
occurs after the corruption. An example has been given
in the previous section. This technique in [9] can work
only when the Corrupt-oracle is not allowed in the model.
That is why the proof given in [3] was not correct.

Remark 2. In [9], E. Bresson et al. also proposed
a password-based authenticated key exchange protocol,
where only one flow was masked. The protocol can be
proved forward secure as above. Since the proof is very
similar, we omit it here.

6 Conclusion

We have revealed a previously unpublished flaw in the
proof given by M. Abdalla. To fix their proof, we intro-
duce one more variant Diffie-Hellman assumption. Since
their scheme is very similar to that of E. Bresson and
the latter is more practical, we only present the rigor-
ous proof of forward security for the latter. Finally, we
should point out that provable security is claimed against
all attacks, not just against known attacks. If the proof
is not correct, there is no guarantee that it will prevent
some potential attacks not identified. There were many

schemes that were claimed to be provably secure but were
found insecure subsequently. And the paradox was found
often due to incorrectness of the proof. So the rigorous
proof of security is especially important.

Acknowledgments

This work was supported by the National Natural Science
Fundation of China (60473021). The authors are grateful
to the anonymous reviewers for valuable comments.

References

[1] M. Abdalla, M. Bellare, and P. Rogaway, “The or-
acle Diffie-Hellman assumptions and an analysis of
DHIES,” CT-RSA ’01, LNCS 2020, pp. 143-158,
Springer-Verlag, 2001.

[2] M. Abdalla, E. Bresson, O. Chevassut, B. Möller,
and D. Pointcheval, “Provably secure password-
based authentication in TLS,” ACM AsiaCCS ’06,
pp. 35-45, 2006.

[3] M. Abdalla, O. Chevassut, and D. Pointcheval,
“One-time verifier-based encrypted key exchange,”
PKC ’05, LNCS 3386, pp. 47-64, Springer-Verlag,
2005.

[4] M. Abdalla, and D. Pointcheval, “Simple password-
based encrypted key exchange protocols,” CT-RSA
’05, LNCS 3376, pp. 191-208, Springer-Verlag, 2005.

[5] M. Bellare, D. Pointcheval, and P. Rogaway, “Au-
thenticated key exchange secure against dictionary
attacks,” Eurocrypt ’00, LNCS 1807, pp. 139-155,
Springer-Verlag, 2000.

[6] M. Bellare, and P. Rogaway, The AuthA Protocol for
Password-Based Authenticated Key Exchange, Tech-
nical Report, IEEE P1363, Mar. 2000.

[7] S. M. Bellovin, and M. Merritt, “Encrypted key ex-
change: Password-based protocols secure against dic-
tionary attacks,” Proceedings of the IEEE Sympo-
sium on Security and Privacy, pp. 72-84, 1992.

[8] S. M. Bellovin, and M. Merritt, “Augmented en-
crypted key exchange: A password-based protocol
secure against dictionary attacks and password file
compromise,” Proceedings of the 1st ACM Confer-
ence on CCS, pp. 244-250, 1993.

[9] E. Bresson, O. Chevassut, and D. Pointcheval,
“New security results on encrypted key exchange,”
PKC’04, LNCS 2947, pp. 145-158, Springer-Verlag,
2004.

[10] N. Junghyun, K. Seungjoo, and W. Dongho,
“Security weakness in a three-party password-
based key exchange protocol using weil pair-
ing,” Cryptology ePrint Archive Report, 2005,
http://eprint.iacr.org/2005/269.ps.

[11] P. D. MacKenzie, The PAK Suite: Protocols
for Password-Authenticated Key Exchange, IEEE
P1363.2, Oct. 2002.

International Journal of Network Security, Vol.7, No.3, PP.335–341, Nov. 2008 341

[12] T. Okamoto, and D. Pointcheval, “The Gap-
problems: A new class of problems for the security of
cryptographic schemes,” PKC ’01, LNCS 1992, pp.
104-118, Springer-Verlag, 2001.

Shuhua Wu is a Ph. D. candidate at Zhengzhou In-
stitute of Information Science Technology. His research
interest is information security.

Yuefei Zhu is a professor of Zhengzhou Institute of In-
formation Science Technology. His research interest is in-
formation security and cryptology.

