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Abstract

In group communication, users often have different ac-
cess rights to multiple data streams. Based on the ac-
cess relation of users and data streams, users can form
partially ordered relations, and data streams can form
partially ordered relations. In this paper, we propose a
key management scheme for hierarchical access control,
which considers both partially ordered user relations and
partially ordered data stream relations. We also propose
an algorithm for constructing a logical key graph, which is
suitable even when users and data streams have complex
relations. Simulation results show that our scheme can
significantly improve the efficiency of key management.

Keywords: Group communication, hierarchical access
control, key management, logical key graph

1 Introduction

Many emerging Internet applications, such as teleconfer-
encing, e-newspaper, and IPTV, are based on group com-
munication, in which a user or a subgroup of users sends
(or receives) data streams to (or from) other users. In or-
der to widely commercialize these applications, the issue
of access control must be addressed. Access control for
group communication must ensure that legitimate users
are able to access authorized data streams, while prevent-
ing non-legitimate users from gleaning any unauthorized
data stream.

Access control for users having different access rights
to multiple data streams is referred to as hierarchical ac-
cess control. Some examples of hierarchical access control
include e-newspaper subscription and video multicast ser-
vices. For an e-newspaper subscription service, there may
be multiple data streams to send: Top News, Weather,
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Financial News, Stock, and Sports News. The service
provider classifies users into four membership groups:
Gold, Silver Sports, Silver Finance, and Basic. The ac-
cess rights of each membership group to the data streams
can be shown in Table 1. In a video multicast service, a
multicast video may be encoded into three types of data
streams: Base Layer (BL), Enhancement Layer 1 (EL1),
and Enhancement Layer 2 (EL2), using a multilayer cod-
ing format [11]. Users can subscribe to services with dif-
ferent video qualities. Users that receive the best video
quality are able to access all three data streams, users
that receive the moderate video quality are able to ac-
cess the BL and EL1 data streams, and users that receive
the basic video quality are able to access only the BL
data stream. Table 2 shows the access rights of each user
group in the multicast video service. More applications
of hierarchical access control can be found in areas such
as online banking and military group communications.

To implement access control for group communica-
tion, data encryption keys are often used to encrypt data
streams. A user is able to access the set of data streams
only if the user possesses the data encryption keys that
are used to encrypt the corresponding set of data streams.
When a user dynamically joins or leaves a group, data en-
cryption keys must be updated to ensure backward secrecy
and forward secrecy [12]. Backward secrecy is a property
to prevent a new user from decoding the data exchanged
before it joined the group. Forward secrecy is a property
to prevent a leaving or expelled user from continuing to
access data exchanged after it left the group.

Key management schemes aim to update the data en-
cryption keys in order to ensure backward secrecy and for-
ward secrecy. Key management schemes can be broadly
classified to two categories: centralized and distributed.
The distributed schemes [1, 4, 5, 6, 13, 14, 15, 18] have
no centralized group controller and generate group keys
based on the contribution of users in the group. In cen-
tralized schemes [2, 7, 8, 9, 10, 16, 21, 22, 23], a centralized
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Table 1: E-newspaper subscription service
Access Relation Sports Financial Stock Top News Weather

Gold
√ √ √ √ √

Silver Sport
√ √ √

Silver Finance
√ √ √ √

Basic
√ √

key server controls the entire group; it generates keys and
distributes keys to legitimate users via rekey messages.
In this paper, we focus on a centralized key management
scheme.

Table 2: Video multicast service

Access Relation EL2 EL1 BL

Best Video Quality
√ √ √

Moderate Video Quality
√ √

Basic
√

For systems with a large number of users, the efficiency
of a centralized key management scheme is a non-trivial
issue due to a single point of key management. As in
[12, 17], the efficiency of a centralized key management
scheme is primarily measured by: 1) rekey overhead at the
key server, defined as the average number of rekey mes-
sages transmitted by the key server to users per key up-
dating. 2) rekey overhead at users, defined as the average
number of rekey messages received by the users per key
updating, 3) storage overhead at the key server, defined
as the average number of keys stored at the key server,
and 4) storage overhead at the users, defined as the aver-
age number of keys stored at the users. It is critical to
minimize rekey overhead in order to reduce the cost for
communication and computation at the key server and
users. Storage overhead is directly associated with the
scalability of key management schemes. For users that
are memory constrained, such as cell phones and PDAs,
it is desirable to minimize the storage overhead at each
user.

Previous key management schemes for hierarchical ac-
cess control have failed to take into consideration either
user relations or data stream relations. In this paper, we
propose a centralized hierarchical access control (HAC)
key management scheme that considers the relations of
both users and data streams. The contributions of the
paper are:

1) The HAC scheme encrypts equivalent data streams
with a single data encryption key based on data
stream relations, which simplifies the constructed key
graph, thereby improving the efficiency of key man-
agement.

2) The paper provides a greedy algorithm for construct-
ing a key subgraph based on the combined relations
of users and data streams. The proposed algorithm
is suitable for complex access relations. The related
studies do not provide such an algorithm.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce the background and the related work

of our study. In Section 3, we present a key manage-
ment scheme for constructing a logical key graph based
on partially ordered relations of users and data streams.
Section 4 describes the rekey algorithm. Section 5 ana-
lyzes storage overhead and rekey overhead of the proposed
scheme. Section 6 evaluates the performance of our pro-
posed scheme. Section 7 concludes the paper.

2 Background and Related Work

In this section, we introduce the formalization of par-
tially ordered relations of users and data streams. We
also present the existing key management schemes for hi-
erarchical access control.

2.1 Formalization of Partially Ordered

Relations

In a hierarchical access control system, users may have
different access rights to multiple data streams. The work
in [3] has shown that users can form a partial order and
data streams can also form a partial order based on access
relations. The following notation is introduced:

• U : A set of users {u1, u2, · · · }

R - a set of data streams {r1, r2, · · · }, or overall re-
sources.

• A: An access relation, where A ⊆ U × R.

• R(ui): A set of data streams that user ui can access.

• U(ri): A set of users that can access data stream ri.

• Ui: Membership group i consisting of a subset of
users.

• Ri: Resource group i consisting of a subset of data
streams.

A partial order of users is defined as a binary relation
over a set of users which is reflexive, antisymmetric, and
transitive. In an access relation A, if the data streams
that user ui can access is a subset of data streams that
user uj can access, then ui is smaller than uj (reflexivity
property). We have

ui ≤U uj iff R(ui) ⊆ R(uj).

If users ui and uj can access exactly the same subset
of data streams, both users are equivalent. Then,

ui ≡U uj iff R(ui) = R(uj),
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Figure 1: (a)Membership group DAG, (b) resource group DAG, and (c) unified DAG

that is

if ui ≤U uj and uj ≤U ui, then ui ≡U uj.

Here, the equivalent users ui and uj are merged into a
membership group (antisymmetric property).

If user ui can access a subset of data streams that user
uj can access, and user uj can access a subset of data
streams that user uk can access, then ui is smaller than
uk (transitivity property). We have

if ui ≤U uj and uj ≤U uk, then ui ≤ uk.

Similarly, based on the access relation A, the data
streams also form partially ordered relations. If the set of
users that can access data stream rj is a subset of users
that can access data stream ri, then ri is smaller than rj

(reflexivity property). We have

ri ≤R rj iff U(rj) ⊆ U(ri).

Note that this formalization is reversed compared to
formalizing partially ordered relation of users.

If the set of users that can access data stream ri is ex-
actly same as the set of users that can access data stream
rj , the two data streams are equivalent. The relation of
ri and rj is:

ri ≡R rj iff U(ri) = U(rj).

The equivalent data streams ri and rj will be grouped
into a resource group (antisymmetric property).

If the set of users that can access data stream rj is a
subset of users that can access data stream ri, and the
set of users that can access data stream rk is a subset of
users that can access data stream rj , then ri is smaller
than rk (transitivity property).

if ri ≤R rj and rj ≤R rk, then ri ≤R rk.

In [3], the partially ordered relations of member-
ship groups and the partially ordered relation of resource

groups can each be represented by a directed acyclic graph
(DAG). In the DAG, a vertex represents a membership
group or a resource group. We say that Vertex Vj is ad-
jacent to Vertex Vi if (Vj , Vi) is an edge in the DAG.
Moreover, we say that Vertex Vj is reachable to Vertex Vi

if and only if there exists a directed path from Vj to Vi.

The connectivity of a DAG is determined as follows.
For a DAG that represents the partially ordered rela-
tion of membership groups, if ui ≤U uj for ui ∈ Ui and
uj ∈ Uj , then the vertex that represents Uj is reachable to
the vertex that represents Ui, which means that member-
ship group Uj has more access rights than membership
group Ui. For a DAG that represents the partially or-
dered relation of resource groups, if ri ≤R rj for ri ∈ Ri

and rj ∈ Rj , then the vertex that represents Rj is reach-
able to the vertex that represents Ri, which means that
resource group Rj can be accessed by fewer membership
groups than resource group Ri. Based on the access re-
lation shown in Table 1, the DAGs that represent the
partially ordered relation of membership groups and the
partially ordered relation of resource groups are shown in
Figure 1 (a) and (b) respectively.

A unified DAG, defined in [3], combines the member-
ship group DAG and the resource group DAG by merging
vertices in the two DAGs. The unified DAG must satisfy
the following conditions: 1) it must maintain the partial
orders of the membership group DAG and the resource
group DAG; 2) a user u ∈ U has access to a resource
r ∈ R if and only if the vertex representing U is the same
as the vertex representing R or is reachable to the ver-
tex representing R in the unified DAG; and 3) the unified
DAG is the smallest partial order satisfying the above
conditions. Figure 1 (c) shows the unified DAG for the
access relation shown in Table 1.
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Figure 2: A logical key graph

2.2 Related Work

A logical key graph is an important data structure to im-
prove the efficiency of key management. A logical key
graph [22] is a DAG consisting of k-nodes, each of which
represents a key, and u-nodes, each of which represents
a user. Figure 2 shows a logical key graph. A u-node
has one or more outgoing edges but no incoming edges,
while a k-node may have both outgoing edges and incom-
ing edges. A k-node that has no outgoing edges is called a
root. There are two types of keys represented by k-nodes,
data encryption keys and key encryption keys. Data en-
cryption keys are used to encrypt data streams, while key
encryption keys are used to encrypt data encryption keys
and other key encryption keys. K-nodes that are roots in
the logical key graph normally represent data encryption
keys. The k-node that represents Key K11 is a root in
Figure 2. Each user ui stores a set of keys that is notated
as Keyset(ui). Keyset(ui) includes all keys represented
by the k-nodes along the route from User ui to the root
of the key graph. In Figure 2, Keyset(u1) = { k1, k7, k9,
k11}. The set of users that possess Key k is notated as
Userset(k). Users in Userset(k) consist of u-nodes that
have a route in the key graph to the k-node that repre-
sents Key k. In Figure 2, Userset(k9) = { u1, u2, u3, u4}.
Key k is said to cover users in Userset(k).

In centralized key management schemes, logical key
graphs are maintained at key servers in order to efficiently
distribute keys to dynamically joining or leaving users.
When a user joins or leaves the group, the key server
sends rekey messages to update the keys affected by the
joining or leaving user [22]. The number of rekey mes-
sages sent by the key server for a user joining or leaving
increases linearly with the logarithm of group size. The
scheme proposed in [20] employs a different joining oper-
ation that requires only one rekey message: when a user
joins the group, the key server chooses a leaf position for
the user, and all keys along the route from the new leaf

to the root are passed through a one-way function. Every
user that already knew the old key can calculate the new
key locally. Hence, when a user joins, the key server needs
to send only one rekey message for a joining user that is
used to inform the joining user the updated keys. In this
paper, we adopt the second approach for a user joining.

Many key management schemes [2, 7, 8, 10, 16, 22, 23]
have been proposed to construct a logical key graph and
to update keys in the logical graph efficiently. However,
these schemes only provide key management for equiva-
lent users and equivalent data streams in which all users
in the group have the same access right to the same set
of data streams.

An intuitive key management scheme for hierarchical
access control, in which users have different access rights
to different data streams, is one in which a separate data
encryption key encrypts each data stream. For each data
encryption key, the centralized key server must maintain
a separate logical key tree containing the users that can
access the corresponding data stream. When this scheme
is used, a user that is able to access multiple data streams
will be contained in multiple logical key trees, which may
lead to key management inefficiency.

In order to improve key management efficiency, several
key management schemes [17, 19, 24] have been proposed
for constructing a single logical key graph for hierarchical
access control. In [19], users have different access levels,
and higher-level users can access more data streams than
lower-level users. Each level is associated with a level
key. A single unbalanced logical key tree is constructed,
in which higher-level users possess all level keys that are
possessed by lower-level users. However, this scheme only
provides key management for the case in which users form
linearly ordered relation, that is, the higher-level users
are able to access all data streams that the lower-level
users can access. Other researches [24] have proposed
a Chinese Reminder Theorem based hierarchical access
control scheme. However, this scheme is only suitable for
users having a tree-based partially ordered hierarchy.

The Multi-Group (MG) key management scheme con-
siders the case in which users form a partially ordered
relation, while the data streams are not partially ordered
[17]. In this scheme, each data stream i is encrypted by
a data encryption key, dki. Users that can access a data
stream i form a data group, and these users share the data
encryption key dki. Users that can access the same set
of data streams form a service group, and share a ser-
vice group key, ski. In order to construct a single logical
key graph, the scheme initially constructs a logical key
subtree, referred to as a service-group subtree, for every
service group. Then, the scheme constructs a logical key
subtree, referred to as a data-group subtree, to connect
the service-group subtrees to the data encryption keys.
The duplicated structures on the data-group subtrees are
merged in order to improve key management efficiency.
Using the MG scheme, Figure 3 (a) shows the logical key
graph constructed for the access relation in Table 1.

In the MG scheme, the algorithm for merging dupli-
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Figure 3: The key graphs constructed by (a) the MG scheme and (b) the HAC scheme

cated structures is not provided, which makes the merging
difficult when users have complex partially ordered rela-
tions. Furthermore, the MG scheme adopts a flat relation
of data streams, that is, each data stream is encrypted
by an individual data encryption key, which leads to key
redundancy. For example, in Figure 1 (b), Top News and
Weather are equivalent data streams and can be grouped
into the same resource group; Financial News and Stock
are also equivalent data streams and can be grouped into
the same resource group. All data streams within a single
resource group can share the same data encryption key,
which results in fewer data encryption keys. Hence, it is
beneficial to consider not only user relation, but also data
stream relation.

The HAC scheme that we propose in this paper focuses
on constructing a simplified key graph, thereby improving
the key management efficiency. The periodic batch rekey-
ing technique [23] can be applied to the HAC scheme in
order to further improve the key management efficiency,
which is the ongoing research of this study. Similar to
the study in [17], the constructed key graph can be used
for contributory key management schemes [8, 18] in dis-
tributed environments.

3 The HAC Scheme

In this section, we describe our proposed HAC scheme for
constructing a logical key graph. There are four steps to
construct the logical key graph.

Step 1. For each resource group, encrypt all data

streams in the resource group with a single data en-
cryption key, called the resource-group key.

Step 2. For each membership group, construct a bal-
anced logical key tree called the membership-group
subtree, where each user is represented by a u-node
and the root of the subtree is associated with a key,
called the membership-group key.

Step 3. Construct a relation subgraph to connect the
resources-group keys based on a unified DAG.

Step 4. Connect the roots of membership-group subtrees
to the corresponding resource-group keys.

Figure 3 (b) shows the key graph constructed by the
HAC scheme based on the unified DAG in Figure 1 (c).
We can see that the key graph constructed by the HAC
scheme results in a simpler key graph compared to the
MG scheme. In the key graph, for each membership group
Ui, users in Ui form a balanced binary tree, in which the
root represents the membership-group key, mki. For each
resource group Ri, all data streams in Ri are encrypted
by a resource-group key, dki. The membership-group keys
are connected with resource-group keys by the relation
subgraph.

Constructing the relation subgraph is an important
component in the HAC scheme, especially for complex
access relations. The algorithm for constructing the sub-
graph is to explore the unified DAG and use a greedy
algorithm for cover ing all membership groups that are
reachable to and equivalent to a resource group. In the



International Journal of Network Security, Vol.7, No.3, PP.323–334, Nov. 2008 328

dk
1

dk
2

dk
3

rk
2 rk

3

rk
4

k
25

mk
1

mk
2 mk

3
mk

4

rk
1

4 3 3 1

Relation

Subgraph

(a)

dk
1

dk
2

dk
3

rk
2

rk
3

rk
4

k
25

mk
1

mk
2 mk

3
mk

4

rk
1

3 2 3 2

Relation

Subgraph

(b)

dk
1

dk
2

dk
3

rk
2 rk

3

rk
4

k
25

mk
1

mk
2 mk

3
mk

4

rk
1

3 3 2 2

Relation

Subgraph

(c)

Figure 4: Different cover operations when vertex V4 is
visited

process of exploring the unified DAG, the algorithm col-
ors each vertex white or black. All vertices are colored
white initially. A vertex is colored black only if it has
been visited and all vertices that are adjacent to it are
colored black. The algorithm starts by selecting a vertex
that has no incoming edge, and colors the selected vertex
black. While the unified DAG is explored in a breadth-
first search manner, the algorithm constructs the relation
subgraph from bottom to the top. When a vertex Vi is
colored black, a cover operation is performed, in which a
balanced tree is constructed for the membership groups
that are in all vertices reachable to and equivalent to Vi.
In the resulting balanced tree, the root is called the rep-
resentative k-node of Vi, notated as rki, and the leaves
are the membership groups that are in Vi and in all ver-
tices reachable to Vi. If there is only a single membership
group in Vi and in all vertices reachable to Vi, then rki

will be the same as the root of the membership-group sub-
tree. If Vi contains a resource group Ri, K-node rki will

represent the resource-group key dki, so that dki covers
all membership groups that are in Vi and in all vertices
reachable to Vi.

For example, in Figure 1 (c), Vertex V1 will be visited
first and will be colored black since no vertex is adjacent
to it. After Vertex V1 is colored black, the algorithm
explores Vertex V2. V2 will be colored black since only
Vertex V1 is adjacent to it, and V1 is colored black. A
cover operation will then cover the membership groups
in Vertices V1 and V2, resulting in a balanced tree with
the root rk1, shown in Figure 3 (b). Similarly, a cover
operation will cover the membership groups in Vertices
V1 and V3 when V3 is visited, resulting in a balanced tree
with the root rk3.

When the remaining Vertex V4 is visited and is colored
black, the cover operation for Vertex V4 has to cover the
membership groups in Vertices V1, V2, V3, and V4. One
simple approach is to join the roots rk1 and rk3 using
a new key node in order to cover membership groups in
Vertices V1, V2, and V3, and then graft the membership
group in Vertex V4 as shown in Figure 4 (a). The root of
the resulting binary tree is the resource-group key for R3,
dk3. In this cover operation, the number of keys along
the routes from mk1 to the root dk3 is, |Keyset(mk1)| =
4, and the total number of keys from all mki to dk3 is∑4

i=1 |Keyset(mki)| = 11. Figure 4 (b) and (c) show
two binary trees after a cover operation that result in∑4

i=1 |Keyset(mki)| = 10. Note that one less key node
in the relation subgraph may result in many membership
groups possessing fewer key nodes, thereby improve the
efficiency of key management. We also observe that the
overlap of Userset(rk2) and Userset(rk3) causes higher∑4

i=1 |Keyset(mki)| in Figure 4 (a).

We provide a greedy algorithm for an optimal cover op-
eration that results in a binary tree with minimum num-
ber of k-nodes and with each k-node covering disjoint user
sets. In the cover operation, Vertex Vi is visited. Let M

be the set of the membership groups that are to be cov-
ered, i.e., the set of the membership groups in Vi and in
all vertices reachable to Vi. And let K be a set of k-nodes
that covers disjoint sets of membership groups, C be a
set of membership groups in M that has been covered
by the k-nodes in K, and U be the set of the uncovered
membership groups in M . Let RK be the set of represen-
tative k-nodes that has been generated and Userset(rkj)
be the set of membership groups covered by a represen-
tative k-node rkj . Initially, K = {mki}, C = {Ui},
and U = M − C. In each step, the algorithm selects
an existing representative k-node, say rkj , that contains
the membership groups in U and covers most uncovered
membership groups in U , notate as Max(|Userset(rkj)|),
where rkj ∈ RK and Userset(rkj) ⊆ U . Then remove
remove rkj from RK, Userset(rkj) from U , insert the k-
node rkj to K, and insert Userset(rkj) into C. If M =
C, the algorithm constructs a balanced binary tree for all
the k-nodes in K.

We summarize the algorithm for an optimal cover op-
eration when Vertex Vi is visited.
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Input: M and RK

Output: a balanced binary tree for k-nodes in K

begin
K = {mki}, C = {Ui}, and U = M − C

while C 6= M {
Find Max(|Userset(rkj)|), where rkj ∈ RK

and Userset(rkj) ⊆ U

RK = RK − {rkj}
U = U − Userset(rkj)
C = C + Userset(rkj)
K = K + {rkj}

}
Construct a balanced tree for the k-nodes in K

end

The algorithm to explore the unified DAG and to
construct the relation subgraph is as follows. The in-
put unified DAG is represented by a collection of lists
Outgoing[vi], where vi is a vertex in the unified DAG.
Each Outgoing[vi] contains the vertices connected from
vi by outgoing edges. The algorithm also maintains sev-
eral additional data structures with each vertex vi: a list
incoming[vi] that contains all vertices connected to vi by
incoming edges, an array color[vi] that stores the color of
Vertex vi, and a First-In First-Out queue Q to manage
the set of vertices that will be visited by the algorithm.

Input: the unified DAG
Output: the relation subgraph

// Check if all vertices that are adjacent to vi are
colored black
Function bool Check-Black (Vertex vi) {

for every vertex vj ∈ incoming[vi] {
if color[vj ] 6= BLACK { return FALSE };

}
return TRUE;

}

begin
for every vertex vi in the unified DAG {

color[vi] = WHITE;
Obtain incoming[vi] based on adjacency lists;

}
Find S, a set of vertices that has no incoming edge
in the unified DAG;
for each s ∈ S {

EnQueue(Q, s);
while Q 6= ∅ {

v = head(Q);
if Check-Black(v) {

color[v] = BLACK;
Do cover operation for Vertex v;
for each vi ∈ Outgoing[v] {

EnQueue(Q, vi);
}

}
DeQueue(Q);

}
}
end

4 Rekey Algorithm

A rekey process is required to update the keys in the key
graph if users join, leave, or switch membership groups
dynamically, or if the service provider changes access re-
lations dynamically.

The rekey algorithm for a user joining, leaving, or
switching between membership groups is similar to the
rekey algorithm in [17]. Let θi,k = Keyset(uk), where
User uk ∈ Ui. If User uk switches from a position in
a membership group Ui to a new position in a member-
ship group Uj , the key server must update the keys in
θj,k ∩ θi,k using one-way functions [20] and must update
keys in θi,k ∩ θj,k by distributing rekey messages [20, 22].
If User uk leaves Ui, then θj,k = ∅. If User uk joins Uj ,
then θi,k = ∅.

For example, in Figure 3 (b), User u8 switches from U2

to U1. The key server chooses a position for u8 that is the
sibling of u1, and creates a new k-node representing Key
k26 that is shared between u8 and u1. Some related key
sets are listed as follows:

θ1,8 = { k8, k26, k17, mk1, dk1, dk2, dk3 },
θ2,8 = { k8, k20, mk2, dk1, dk3 },
θ2,8 ∩ θ1,8 = { k20, mk2 }, and
θ1,8 ∩ θ2,8 = { k26, k17, mk1, dk2 }.

We notate ki as the individual key of User ui. Since
k26 is a new key, the key server distributes k26 via rekey
messages {k26}k8 (sent to User u8) and {k26}k1 (sent to
User u1). The remaining keys in θ1,8 ∩ θ2,8 are updated
using one-way functions. Since the k-node representing
k20 no longer exists after User u8 leaves the group, the
key server updates the keys in θ2,8 ∩ θ1,8 except k20 by
distributing rekey messages. In this case, the key server
only needs to generate a new key mk′

2 and to distribute
mk′

2 through rekey messages {mk′
2}k19 (sent to Users u5

and u6 simultaneously) and {mk′
2}k7 (sent to User u7).

The service provider may update the access relation,
such as adding a new data stream or a new member-
ship group. Updating access relations may result in re-
formalization of membership group relation and resource
group relation, such as splitting and combining member-
ship groups and resource groups, or adding and removing
membership groups and resource groups. Hence, the re-
lation subgraph must be updated. When we update the
relation subgraph, we reuse the representative k-nodes to
reduce the number of rekey messages required to be sent.

For example, the access relation in Table 1 is changed
by adding a new Flight Schedule data stream, and a
new Silver Frequent Traveler membership group with
four users. Only the Gold and Silver Frequent Traveler
membership groups can access the Flight Schedule data
stream. The new unified DAG and the new key graph are
shown in Figure 5. For the new relation between V1 and V5

(V1 is adjacent to V5) in Figure 5 (a), Key dk4, represented
by K-node rk5, must cover U1 and U5 as shown in Fig-
ure 5 (b). For the new relation between V4 and V5 (V5 is
adjacent to V4) in Figure 5 (a), we reuse the existing Key
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Figure 5: (a) The new unified DAG and (b) the new key graph constructed by the HAC scheme

dk3, and generate a new key dk′
3. Key dk′

3, represented by
the new k-node rk′

4, covers the new membership group V5

and Userset(dk3), as shown in Figure 5 (b). The set of
rekey messages for updating the new keys, colored grey in
Figure 5 (b), are {k21}k17, {k21}k18, {k22}k19, {k22}k20,
{mk5}k21, {mk5}k22, {dk4}mk5, {dk4}mk1, {dk′

3}mk5,
and {dk′

3}dk3.

5 Performance Analysis

Storage overhead reflects the scalability of a key manage-
ment scheme and rekey overhead is proportional to the
cost of communication and computation for a key man-
agement scheme. Hence, in this section, we analyze the
storage overhead and rekey overhead of the HAC scheme
with a large number of users.

5.1 Storage Overhead

In the key graph constructed by the HAC scheme, each
membership group forms a balanced membership-group
subtree. For membership group Ui, let mi notate the
number of users and kUi

notate the number of keys in the
subtree. We assume that the membership-group subtree
is balanced and fully loaded with degree d. Hence, the
total number of keys in the subtree is

kUi
= mi

log
d

mi∑

k=0

1

dk
=

dmi − 1

d − 1
. (1)

In the construction of the relation subgraph, for a se-
lected vertex with a resource group Ri, the cover opera-

tion constructs a balanced tree in which the membership
groups that are in the selected vertex and in all vertices
reachable to the selected vertex become the leaves of the
balanced tree, and the resource-group key of Ri becomes
the root of the balanced tree. Let N be the total number
of resource groups and M be the total number of member-
ship groups in a system. In the worst case, if keys are not
able to be reused in any cover operation, the relation sub-
graph consists of N non-overlapped balanced trees, each
of which has a resource-group key as the root and has M

leaves. Let kRi
be the number of keys in the balanced tree

constructed for Ri and k∑
Ri

be the total number of keys
in the relation subgraph. In each of the balanced trees,
since some leaves might be on the branches with length
(dlogd Me − 1), the number of keys in the balanced tree
is

kRi
≤ ddlogd

Me

dlog
d

Me∑

k=1

1

dk
. (2)

The total number of keys in the relation subgraph is

k∑
Ri

≤ N × kRi
.

Let SServer be the storage overhead at the key server.
We obtain SServer by combining the number of keys on all
membership-group subtrees and on the relation subgraph.
Hence, we have

SServer =

M∑

i=1

kUi
+ k∑

Ri
(3)

≤
M∑

i=1

dmi − 1

d − 1
+ Nddlogd

Me

dlog
d

Me∑

k=1

1

dk
.
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Let SUi
be the storage overhead at a user in mem-

bership group Ui. In the worst case, SUi
is the sum of

the length of Ui subtree and the number of keys on the
relation subgraph. Hence, we have

SUi
≤ logd mi + k∑

Ri
= logd mi + Nddlogd

Me

dlog
d

Me∑

k=1

1

dk
.

(4)
Since dlogd Me ≤ logd M + 1 = logd (dM), we have

ddlogd
Me ≤ dlog

d
(dM) = dM . Also,

∑dlog
d

Me
k=1

1
dk ≤ 1.

Hence, Equations (4) and (4) can be further relaxed as

SServer ≤
M∑

i=1

dmi − 1

d − 1
+ dMN. (5)

SUi
≤ logd mi + dMN. (6)

From Equations (5) and (6), if the number of users in a
system is very large, the storage overhead at the key server
is approximately proportional to the number of users in
the system. If the number of users in a membership group
is very large, the storage overhead at a user is approxi-
mately proportional to the logarithm of the number of
users in its membership group.

5.2 Rekey Overhead

As described in Section 2.2, when a user joins a mem-
bership group, only one rekey message is sent out by the
key server to notify the joining user of the updated keys
using one-way functions [20]. When a user leaves from
a membership group, the key server needs to update the
keys possessed by the leaving user, some of which are on
the membership subtree of the leaving user and some of
which are on the relation subgraph. For a logical key tree,
the number of rekey messages sent by the key server for
a leaving user is (d − 1)(h − 1), where h is the length of
the path from the parent node of the leaving u-node to
the root in the logical key tree [22]. Hence, when a user
leaves from a membership group Ui, the number of rekey
messages sent in order to update the keys from the parent
node of the leaving u-node to the root of Ui subtree is up
to (d − 1)(dlogd mie − 1).

In the worst case, the relation subgraph consists of
N non-overlapped balanced trees, each of which has a
resource-group key as the root and M leaves that are the
roots of membership-group subtrees. When a user leaves
from a membership group Ui, the keys along N paths from
the root of Ui subtree to N resource-group keys need to be
updated. Hence, the number of rekey messages sent in or-
der to update the keys on the relation subgraph possessed
by the leaving user is up to N(d − 1)(dlogd Me − 1).

Thus, we obtain the total number of rekey messages
sent in order to update the keys possessed by the leaving
user in a membership group Ui as

RServer
Ui

≤ (d − 1)(dlogd mie − 1) +

N(d − 1)(dlogd Me − 1). (7)

Table 3: Three cases in the simulation

No. of Data Streams R1 R2 R3 Total

Case I 1 1 1 3

Case II 1 2 2 5

Case III 2 3 3 8

Since dlogd mie ≤ logd mi +1, we can further relax Equa-
tion (7) as

RServer
Ui

≤ (d − 1)(logd mi + N logd M). (8)

If the number of users in membership group Ui be-
comes very large, the rekey overhead at the key server is
proportional to the logarithm of the number of users in
membership group Ui. For a user leaving, the number of
rekey messages received by a user is at most the number
of rekey messages sent by the key server. Hence, the rekey
overhead at a user is up to RServer

Ui
. When a user switches

from membership group Ui to membership group Uj , the
amount of rekey messages should be at most RServer

Ui
since

the keys on the relation subgraph that are possessed by
users in both Ui and Uj do not need to be updated.

6 Performance Comparison

In this section, we compare the performance of the HAC
scheme with the MG scheme. The performance of both
schemes is measured by the storage overhead at the key
server and at every user, as well as the rekey overhead of
the key server and users. We develop a simulation model
to construct logical key graphs with d = 2 based on access
relations and to simulate user actions in the system.

We simulate four membership groups and three re-
source groups with relations as shown in Figure 1 (c).
We consider three cases where there are equivalent data
streams to group, and the number of data streams per
resource group is shown in Table 3. Since, in the HAC
scheme, all data streams in a resource group are encrypted
by the same resource-group key, the logical key graphs for
the three cases are the same. However, by using the MG
scheme, the logical key graphs for Cases I, II, and III have
3, 5, and 8 data encryption keys respectively. The HAC
scheme constructs a simpler key graph compared to the
MG scheme due to the reduced data encryption keys. If
there are no equivalent data streams to group in certain
access relations, the number of data encryption keys re-
quired in the HAC scheme will be the same as that in the
MG scheme, and then both schemes will have the same
performance.

In each experiment, a sequence of user actions is gen-
erated, in which the ratio of the number of joining, leav-
ing, and switching actions is 1:1:1. For each joining ac-
tion, a user uniformly selects a membership group to join.
For each switching action, a user is uniformly selected to
switch from its current membership group to a member-
ship group that is also uniformly selected. In the sim-
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Figure 6: Storage overhead (a) at the key server and (b) at every user
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Figure 7: Rekey overhead (a) at the key server and (b) at the users

ulation, the initial number of users in each membership
group is 16. The user actions are generated according to a
Poisson process with a rate 0.1 action per minute. Hence,
the number of users in the key graph changes over time,
up to 550 users in the simulation.

Figure 6 plots the average storage overhead per user ac-
tion verus the total number of user actions. Figure 6 (a)
shows the average storage overhead at the key server.
Since the difference of storage overhead at the key server
between the two schemes primarily depends on the num-
ber of data encryption keys stored in the key server, both
schemes have the same storage overhead at the key server
for Case I. The HAC scheme has two fewer data encryp-
tion keys than the MG scheme for Case II, and five fewer
data encryption keys than the MG scheme for Case III.
Figure 6 (b) shows the average storage overhead at ev-
ery user. We can see that both schemes have the same
storage overhead at every user for Case I. This is because

the number of data encryption keys in both schemes is
three for Case I. For Cases II and III, the HAC scheme
requires fewer data encryption keys, which results in less
storage overhead at every user. We can also see that the
storage overhead difference between the HAC scheme and
Case III is much higher than the difference between the
HAC scheme and Case II, which shows that the advantage
of the HAC scheme becomes larger when more equivalent
data streams are grouped.

Figure 7 plots rekey overhead for each leaving or
switching action verus the total number of user actions.
Figure 7 (a) shows the rekey overhead at the key server.
Figure 7 (b) shows the rekey overhead at the users. We
observe that the HAC scheme and the MG scheme have
the same rekey overhead at the key server and at the users
for Case I. However, the HAC scheme results in less rekey
overhead than the MG scheme at the key server and at
the users for Cases II and III. The rekey overhead com-
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parison also shows that the advantage of the HAC scheme
over the MG scheme becomes larger when more equivalent
data streams are grouped.

7 Conclusion

In this paper, we proposed a hierarchical access control
key management scheme for group communication. We
employed an algorithm to construct a key graph based
on a unified relation of membership groups and resource
groups, which can handle complex access relations. In
the key graph constructed by the hierarchical access con-
trol key management scheme, equivalent data streams are
grouped in a resource group and are encrypted by a single
data encryption key, which leads to fewer data encryp-
tion keys than the multi-group key management scheme.
We compared the performance of the hierarchical access
control key management scheme to the multi-group key
management scheme by simulation. The simulation re-
sults showed that the hierarchical access control key man-
agement scheme is more efficient than the multi-group
key management scheme when multiple equivalent data
streams are grouped in a resource group. Also, the hier-
archical access control key management scheme becomes
more beneficial when more equivalent data streams are
grouped. An area of future work is to employ the batch
rekeying [23] scheme in order to further improve the key
management efficiency. Another area of future work is to
consider the distributed environments in the study.
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