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Abstract

A new concept of society-oriented designated confirmer
signatures (SDCS) is introduced in this paper. SDCS
is well suited to applications where the capability of the
signer and that of the confirmer are both expected to be
shared among a group of individuals. The ways to share
the signing capability and the confirming capability are
different due to the distinct stabilities of the signer group
and the confirmer group. Based on the techniques of
threshold cryptography, a concrete SDCS scheme is pro-
posed and its security is analyzed. Ordinary designated
confirmer signatures and threshold designated confirmer
signatures can be regarded as special cases of the proposed
society-oriented designated confirmer signatures. Mean-
while, our scheme can be converted into an ordinary sig-
nature scheme or a designated verifier signature scheme.

Keywords: Designated confirmer signature, digital sig-
nature, society-oriented designated confirmer signature,
threshold cryptography

1 Introduction

Digital signatures [6] are used in the open distributed sys-
tems to guarantee the authenticity of data. The non-
repudiation property is achieved by providing universal
verifiability for the conventional signatures. This is a
property suitable for such situations as the dissemina-
tion of announcements or public keys, where the more
copies distributed the better. However, this property is
not always desirable. Sometimes the signer wishes that
the recipient of the signature would not be able to present
it to any other party at will. Undeniable signatures intro-
duced by Chaum and van Antwerpen [4], were proposed as
a solution to this issue where the signature can not be ver-
ified without collaboration of the legitimate signer. After
their initial work, various undeniable signature schemes

have been proposed [1, 5, 9, 11, 13, 19].
One limitation in these undeniable signatures is that

valid signatures would no longer be verifiable if the signer
is absent or unwilling to cooperate. The notion of the
designated confirmer signature (DCS) was proposed by
Chaum [3] to solve this weakness of undeniable signa-
tures. In this situation, the ability to verify signatures is
delegated to a third party, namely, the confirmer. The
confirmer, previously designated by the signer, is able to
either confirm or disavow the validity of a signature but
not able to forge any signature. Since its invention, sev-
eral concrete realizations of designated confirmer signa-
tures were presented [2, 7, 8, 15, 16].

Consider the scenario where the capability of the signer
and that of the confirmer are both needed to be shared
among groups of individuals. For example, in a big
software company where all kinds of signatures on dig-
ital products are signed coordinately by several directors
rather than just by the chairman of the board. On the
other hand, to make the customers more convinced, the
signatures are suggested to be confirmed by more than
one agent. Customers can appeal to agents they are fa-
miliar with. Also can a customer appeal to other agents
if he does not trust the original agents any longer. It im-
plies that the stability of the signer group and that of the
confirmer group are quite different. Accordingly, the ways
to share the signing capability and the confirming capa-
bility are different. A fixed private key may be shared by
members of the signer group while there should not be a
similar key among the confirmer group. Ordinary DCS
can not solve this problem. In this paper, we introduce
the concept of society-oriented designated confirmer sig-
nature (SDCS) as a solution. Based on the techniques
of threshold cryptography, a concrete SDCS scheme is
proposed and its security is analyzed. Ordinary DCS and
threshold DCS can be regarded as special instances of the
proposed SDCS. In the meantime, our scheme can be con-
verted into an ordinary signature scheme or a designated
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verifier signature scheme.

1.1 Related Works

The first realization of a DCS was presented in [3]. In their
scheme, the DCS signature σ on the message m is con-
structed as a triple (a, b, α), where a = gr, b = PKr

C , and
the RSA signature α = (F (a, b)⊕H(m))SKS . Since both
the inverse function F and the hash function H are public,
the RSA signature is forgeable. Therefore, another proce-
dure to verify if b = aSKC holds is necessary. Obviously,
only the confirmer can initiate this procedure. Forging an
RSA signature by calculating (a, b) = F−1(αPKS ⊕H(m))
with the previously fixed α can not guarantee the specific
structural property of b = aSKC .

Okamoto provided in [16] the first formal definition
for a DCS scheme and showed constructively that a DCS
scheme was equivalent to a public-key encryption scheme
with respect to existence. A straightforward way to con-
struct a DCS scheme was suggested by Okamoto: firstly,
the message was signed by using an ordinary signature
scheme, then the signature was encrypted by using the
designated confirmer’s public key and finally, the result-
ing ciphertext would serve as the DCS signature. General
zero-knowledge proofs for NP statements should be used
in such constructions and cannot really be used in prac-
tice. Two concrete practical schemes based on three-move
identification protocols were presented in [16]. The princi-
pal idea was to mix an undeniable signature related to the
confirmer with the hash of the message and the commit-
ment from the signer. Unlike the original idea of Chaum,
the authentication of the signer was not independent any
longer but merged into the verification of the undeniable
signature by the confirmer.

Michels and Stadler [15] showed that one of Okamoto’s
schemes suffered from a weakness that the confirmer could
forge signatures universally. They suggested to use the
so called designated confirmer commitments to construct
designated confirmer signature schemes. The resulting
DCS schemes could be proved secure in the random or-
acle model, inheriting this property from the use of the
Fiat-Shamir paradigm for constructing signatures. How-
ever, as pointed out by Camenisch and Michels in [2],
their models (and all previous schemes) were vulnera-
ble to an adaptive signature-transformation attack when
several signers shared the same confirmer. In order to
prevent the attacks, Camenisch and Michels presented a
confirmer signature scenario based on RSA signature and
Cramer-Shoup public-key encryption scheme.

Using strong witness hiding proofs of knowledge, Gold-
wasser and Waisbard [8] presented simple transformations
of several specific signature schemes into DCS schemes
which could be proved secure without resorting to random
oracles and without appealing to generic zero-knowledge
proofs. Later, Gentry et al. [7] provided an alternate
generic transformation to convert any signature scheme
into a DCS scheme without adding random oracles. The
key technique used was a signature on a commitment and

a separate encryption of the random string used for com-
mitment.

Harn and Yang presented (t, n) threshold undeniable
signature schemes [9] for the cases t = 1 and t = n. How-
ever, the latter was successfully attacked by Landau [12].
Lin et al. [13] proposed a solution that works for any
t, 1 ≤ t ≤ n. Unfortunately, it was flawed as well if sign-
ers were not assumed to be honest.

2 Definitions

2.1 Formal Definition for an SDCS

A society-oriented designated confirmer signature scheme
involves several entities listed below.

Signer group: A group that consists of n individuals
who share the same responsibility of signing mes-
sages.

Signing group: Any subgroup that consists of at least t
members of the signer group. Each signature is gen-
erated by such a group. No other subgroup of less
than t members from the signer group nor anyone
outside the signer group can produce any valid sig-
nature, and is not referred to as a legitimate signing
group.

Signing combiner: Any member from the signing
group whose task, on behalf of the signing group,
is to

1) choose some random values,

2) compute the commitments,

3) encrypt the random values and,

4) collect all the partial results,

to generate the final signature for the receiver.

Verifier: The signature holder who wants to obtain the
validity of a signature.

Confirmer group: A group that is composed of l indi-
viduals who are designated as confirmers of a specific
message signed.

Confirming group: Any subgroup composed of at least
k members of the confirmer group, whose members
will work together to prove the validity of a signa-
ture on a message. Any other subgroup of less than
k members from the confirmer group or anyone out-
side the confirmer group can not provide the validity
proof for a signature, and is not referred to as a le-
gitimate confirming group.

Confirming combiner: Any member from the confirm-
ing group whose task, on behalf of the confirming
group, is to collect partial witness produced by the
confirmers and provide the final validity proof of the
alleged signature.



International Journal of Network Security, Vol.7, No.2, PP.293–300, Sept. 2008 295

Given a message m to be signed, the signing combiner
chooses randomly a value r and encrypts it as c, by em-
ploying a threshold encryption scheme and with all l pub-
lic keys of the confirmer group as the encryption keys.
Then, a commitment ϕ on m and r is calculated. Finally,
t numbers of the signing group produce the threshold sig-
nature σ on the concatenation ϕ||c. The resulting SDCS
signature is the tuple σ∗ = (ϕ, c, σ).

In the subsequent confirmation or disavowal procedure,
a random value r′ is worked out from the ciphertext c by
k members of the confirming group selected by the veri-
fier, followed by checking whether c is a valid ciphertext
for r′. If c is not a valid ciphertext for r′, the confirm-
ing group proves that its decryption is carried out in an
appropriate way and the resulting r′ does not agree with
the ciphertext c in the SDCS signature. Otherwise the
confirmation or disavowal procedure continues to gener-
ate the validity proof or invalidity proof for the alleged
signature by means of proving the equality or inequality
of two discrete logarithms.

More precisely, a society-oriented designated confirmer
signature scheme includes the following algorithms and
protocols.

• System Parameters Generation PG(2λ): An ef-
ficient probabilistic algorithm that on input a secu-
rity parameter λ, outputs system parameters SP =
(P, G, g, h, n, t, l, k, N, p, q, M, H, u, v), as explained
in next section.

• Keys Generation SKGen(SP ) ∧ CKGen(SP ):
This procedure consists of two efficient probabilis-
tic algorithms SKGen(SP ) and CKGen(SP ), both
with the system parameters SP as the input. The
former outputs for all members of the signer group
secret shares SKS1, ..., SKSn

of the signing key,
the associated verification values PKS1, ..., PKSn

and a public verifying key PKS . The latter out-
puts the public/private key pairs (PKC1 , SKC1),...,
(PKCl

,SKCl
) for all members of the confirmer group.

• Signature Generation SG(m; r; PKC1 , ..., PKCl
;

SKS1 , ..., SKSt
): An efficient algorithm run by the

signing group that on input an arbitrary message m,
a random value r, all public keys of the confirmer
group PKC1 , ..., PKCl

, and at least t signing key
shares SKS1, ..., SKSt

of the signing group, outputs
the SDCS signature on the message: σ∗ = (ϕ, c, σ).

• Signature Confirmation or Disavowal SV (m,
σ∗, PKS, SKC1,..., SKCk

): An efficient protocol be-
tween the confirming group and the verifier that on
input a message m, a purported SDCS signature σ∗,
a public verifying key related to the signer group, at
least k private keys SKC1, ..., SKCk

of the confirm-
ing group, outputs the validity or invalidity of the
alleged SDCS signature: either 1(true) or 0(false).

2.2 Security Requirements

We use the similar notations in [2] to define the security
properties of society-oriented designated confirmer signa-
ture schemes.

In the definitions followed, two oracles OS and OV will
be used. OS is an oracle which on input m returns a sig-
nature σ∗ generated according to the probability distribu-
tion of SG(m; r; PKC1 , ..., PKCl

; SKS1, ..., SKSt
). OV is

an oracle which on input a message-signature pair (m, σ∗)
outputs whether or not (m, σ∗) is correct with respect to
the signing secrets of the signing group and the public keys
of the confirming group. A message-signature pair (m, σ∗)
is correct with respect to the signing secrets of the signing
group and the public keys of the confirming group if and
only if Pr[SG(m; r; PKC1 , ..., PKCl

; SKS1 , ..., SKSt
) =

σ∗] > 0, which implies that σ∗ could have been gener-
ated by SG(m; r; PKC1 , ..., PKCl

; SKS1, ..., SKSt
). Fur-

thermore, MS and MV denote the sets of messages that
are sent to the oracles OS and OV , respectively, during
an experiment.

Now, we proceed to the security requirements of SDCS
schemes.

• Completeness of confirmation/disavowal: If
the confirming group and the verifier are honest, then
for all (SKSi

, PKSi
, PKS) ∈ {SKGen(SP )})(i =

1, ..., n), all (SKCj
, PKCj

) ∈ {CKGen(SP )}(j =
1, ..., l), all m ∈ {0, 1}∗, and all σ∗ ∈ {0, 1}∗, it is
required that

SV (m; σ∗; PKS; SKC1, ..., SKCk
) = 1,

if σ∗ ∈ {SG(m; r; PKC1 , ..., PKCl
; SKS1, ..., SKSt

)},
and

SV (m; σ∗; PKS; SKC1, ..., SKCk
) = 0,

if σ∗ /∈ {SG(m; r; PKC1 , ..., PKCl
; SKS1, ..., SKSt

)}.

• Soundness of confirmation/disavowal: For
all sufficiently large λ, (SKSi

, PKSi
, PKS) ∈

{SKGen(SP )}(i = 1, ..., n), all (SKCj
, PKCj

) ∈
{CKGen (SP )}(j = 1, ..., l), all m ∈ {0, 1}∗, and
all σ∗ ∈ {0, 1}∗, and for every polynomial p(·), it is
required that

Pr[SV (m; σ∗; PKS; SKC1, ..., SKCk
) = 0] < 1/p(λ),

if σ∗ ∈ {SG(m; r; PKC1 , ..., PKCl
; SKS1, ..., SKSt

)},
and

Pr[SV (m; σ∗; PKS; SKC1, ..., SKCk
) = 1] < 1/p(λ),

if σ∗ /∈ {SG(m; r; PKC1 , ..., PKCl
; SKS1, ..., SKSt

)}.

• Security for signers: Let A be a polyno-
mial time forging algorithm, on input public keys
PKS1 , ..., PKSn

of the signer group, public keys
PKC1, ..., PKCl

of the confirmer group, at most
t−1 secret keys SKS1 , ..., SKSt−1 of the signer group,
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and given access to the oracle OS for polynomi-
ally many adaptively chosen inputs of its choice,
outputs the SDCS signature σ∗ = (ϕ, c, σ) on the
message m /∈ MS of its choice. We require that
Pr[SV (m; σ∗; PKS; SKC1 , ..., SKCk

) = 1] < 1/p(λ)
for all sufficiently large λ.

• Security for Confirmers: Let A be a confirming-
adversary. Given the public/private key-pairs
(PKS1 , SKS1), ..., (PKSn

, SKSn
) of the signer group,

public keys PKC1 , ..., PKCl
of the confirmer group,

he is allowed to choose any public/private key-
pairs (PK ′

S1
, SK ′

S1
), ..., (PK ′

Sn
, SK ′

Sn
) and to make

polynomially many adaptively queries to the ora-
cle OV about the validity of the message-signature
pair (mi, σ∗

i = SG(mi; r; PKC1 , ..., PKCl
; SK ′

S1
, ...,

SK ′
St

)). Then he may present two messages m0, m1

/∈ MV and is given the corresponding σ∗ = SG(mb; r;
PKC1 , ..., PKCl

; SKS1, ..., SKSt
) for mb (b ∈ {0, 1}).

Now the adversary is again allowed to query the ora-
cles OS and OV except that σ∗ are not allowed in any
of these queries. Finally, the adversary must output
the value of b. The probability that the adversary
gets the right value of b is smaller than 1/2+1/p(λ).

• Non-transferability of verification: The confir-
mation or disavowal should not be transferable. In
other words, although he knows whether a given
SDCS signature is valid or not by participating in
an execution of the interactive verification, the ver-
ifier does not obtain any information that could be
used to convince a third party about the validity of
this SDCS signature.

3 Preliminaries

3.1 Notations

In this subsection, we will list all notations for the param-
eters involved in our schemes.

P : A large prime P (2159 < P < 2160).

G: A cyclic group with order of P .

g, h: Random generators of G, with logarithms loghg and
loggh unknown.

n: The number of members in the signer group.

t: The minimal number of members in a signing group.

l: The number of members in the confirmer group.

k: The minimal number of members in a confirming
group.

p, q: Two secret large secure primes s.t. 2511 < (p =
2p′ + 1) < 2512 and 2511 < (q = 2q′ + 1) < 2512 with
p′ and q′ also primes.

N : An RSA modulus s. t. N = pq.

M : The order of the cyclic group QRN of quadratic
residues as M = p′q′.

H: A collision-free hash function {0, 1}∗ → {0, 1}1024.

H: A collision resistant hash function {0, 1}∗ → Z∗
P .

e, d: n < e < min(p′, q′) is the public prime exponent for
the signer group while d is the private signing key s.t.
de = 1 mod M .

v: A random generator in the quadratic residue group
QRN .

u: An element in Z∗
N whose Jacobi symbol with respect

to N is −1, i.e., J( u
N ) = −1.

f(x): A random polynomial with degree of t−1 as f(x) =∑t−1
i=0 aix

i, where a0 = d and ai ∈R Z∗
M (i=1,2,...,t-

1).

di(i = 1, 2, ..., n): The signing-key share evaluated as di =
f(i)(n!)−1 mod M which is sent in private to the i-th
member of the signer group.

vi(i = 1, 2, ..., n): the public verification value associated
with di s.t. vi = vdi mod N .

(SKCi
, PKCi

)(i = 1, 2, ..., l): Private/public key pair of
the i-th confirmer, where SKCi

∈R Z∗
P andPKCi

=
gSKCi .

We sketch a threshold encryption scheme and a thresh-
old signature scheme before we outline the details of the
proposed SDCS scheme.

3.2 A (k, l) Threshold Encryption Scheme

In the (k, l) secret sharing schemes, the recovery of
the secret depends on the knowledge of k points (x1,
y1), ..., (xk, yk). If we publish only one coordinate of the
point (xi, yi) and associate the other one with a pri-
vate key, then we can obtain a (k, l) threshold encryp-
tion scheme. In the following scheme, which is a sim-
plified version of that scheme in [10], the public part is
the second component of (PKr

Ci
, wi). Only with the pri-

vate key SKCi
can the first component be worked out as

PKr
Ci

= RSKCi = (gr)SKCi .
For the message r ∈R Z∗

P to be encrypted, the signing
combiner:

1) Selects randomly k − 1 numbers b1, ...bk−1 ∈R Z∗
P ,

and,

2) constructs a polynomial with degree of k−1: F (x) =∑k−1
i=0 bix

i ∈ ZP [x], where b0 = r.

3) With l public keys PKC1, ..., PKCl
of the designated

confirmer group, computes the values R = gr and
w1 = F (PKr

C1
), ..., wl = F (PKr

Cl
).

The ciphertect for the message r is c = (R, w1..., wl).
To decrypt the ciphertext, at least k out of the l des-

ignated confirmers come together for this work.
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1) Each confirmer Cj calculates a partial result cj =

RSKCj = PKr
Cj

with his private key SKCj
, and then

sends it to the confirming combiner in a secure chan-
nel.

2) Upon receiving at least k partial results, the con-
firming combiner produces the final result, i.e., the
message r =

∑k
j=1 wj

∏
t∈{1,...k},t6=j

ct

ct−cj
.

Notice in the description of the scheme that, any ele-
ment of G in the form of gk involved in the evaluations of
a polynomial will always be viewed as an integer in Z∗

P .

Note that, without the private keys of the confirmers,
no cj = RSKCj can be calculated. Moreover, no one can
obtain the message r unless at least k pairs of (cj , wj) are
available.

3.3 A (t, n) Threshold Signature Scheme

Unlike the other kinds of signatures, in applications of
the society-oriented designated confirmer signatures, the
confirmer groups rather than the signer group vary from
signature to signature. In other words, there might exist
only one signer group but many confirmer groups in the
settings of SDCS. It is natural to set a fixed pair of private
signing key and public verifying key for the signer group.
But it is not a good idea, from viewpoints of security and
cost, to treat the confirmer group in similar manner since
it will lead to the distribution of so many keys. Random
values are introduced to take the place of fixed keys. Thus
the RSA threshold signature scheme presented by Wang
et al. in [19], improved from that of Shoup’s scheme [18],
is applicable for our situations. We apply the improved
scheme in the following manner.

It is assumed that all parameters involved have been
well generated as listed in Subsection 3.1.

To sign a message m0 (the concatenation of ϕ and c
in the coming scheme) whose digest is calculated as m′ =

H(m0)u
(1−J(

H(m0)
N

))/2,

1) each member of the signer group can compute his
partial signature as σi = m′2di mod N and provide
zero-knowledge proof Proofσi

= PK{(β) : vi = vβ ∧
σi = (m′2)β}. The partial signature and the proof
are sent securely to the signing combiner.

2) After collecting at least t valid partial signatures
σ1, σ2, ..., σt from the signing group, the signing com-
biner computes the threshold signature as

σ =

t∏

i=1

σ
2n!

∏
j∈{1,...,t},j 6=i

j
j−i

i mod N.

A verifier who holds the message-signature pair (m0, σ)
can simply check the validity if the equation σe =
m′4 mod N holds.

4 The Proposed SDCS Scheme

4.1 The Scheme

With the techniques of threshold encryptions and thresh-
old signatures as described above, we construct our
society-orient designated confirmer signature scheme as
follows.

• System Parameters Generation PG(2λ): Given
the security parameter λ, produce the system param-
eters SP = (P, G, g, h, n, t, l, k, N, M, H, u, v; p, q).
Here, G is a cyclic group with order of P (2159 <
P < 2160). g, h are two random generators of G
with logarithms loghg and loggh unknown. The
number of members in the signer group is set as
n, at least t out of which are required to sign a
message. The number of members in the confirmer
group is set as l, at least k out of which are re-
quired to confirm the validity of a signature. The
RSA modulus N is the product of two secret large
secure primes p, q: 2511 < (p = 2p′ + 1) < 2512 and
2511 < (q = 2q′ + 1) < 2512 with p′ and q′ also
primes. M is a product of p′ and q′. H denotes a
collision-free hash function {0, 1}∗ → {0, 1}1024. v
is a random generator in the quadratic residue group
QRN and u is an element in Z∗

N whose Jacobi symbol
with respect to N is −1.

• Keys Generations SKGen(SP ) ∧ CKGen(SP ):
Given the system parameters SP , generate the keys
related to all players in the scheme. n < e <
min(p′, q′) is the public prime exponent for the signer
group while d is the private signing key. di =
f(i)(n!)−1 mod M(i = 1, 2, ..., n) is the signing-key
share for the i-th signer, where f(x) is a random poly-

nomial with degree of t − 1 as f(x) =
∑t−1

i=0 aix
i ∈

ZP [x] and a0 = d. vi = vdi mod N(i = 1, 2, ..., n)
is the public verification value associated with di.
(SKCi

, PKCi
)(i = 1, 2, ..., l) is the private/public key

pair of the i-th confirmer, where SKCi
∈R Z∗

P and
PKCi

= gSKCi .

• SDCS Signature Generation: Let the message to
be signed be m ∈ Z∗

P .

– The signing combiner chooses a random value
r ∈R Z∗

P , and computes a Pedersen commit-
ment [17] ϕ = gmhr on the message m.

– He calculates the ciphertext c of the random
number r under the public keys PKC1 , ..., PKCl

of l members of the confirmer group as

c = EnPKC1 ,...,PKCl
(r) = (R, w1, ..., wl),

where R = gr and wj = F (PKr
Cj

). The random

function F (x) is constructed in the same way as
described in Section 3.2.
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– He sends to each member of the signing group
secretly (m, ϕ, c) with a proof PK{(α) : ϕ =
gmhα∧R = gα∧w1 = PKα

C1
∧ ...∧wl = PKα

Cl
}.

– After validating the proof of (m, ϕ, c), mem-
bers of the signing group compute m′ =

H(ϕ||c)u(1−J( H(ϕ||c)
N

))/2 and the partial signa-
tures σi = m′2di mod N . Then they sends them
secretly back to the signing combiner together
with the proofs PK{(β) : vi = vβ ∧ σi =
(m′2)β}.

– After collecting at least t valid partial signa-
tures σ1, σ2, ..., σt, the signing combiner com-

putes σ =
∏t

i=1 σ
2n!

∏
j∈{1,...,t},j 6=i

j
j−i

i mod N
and publishes the SDCS signature on the mes-
sage m as σ∗ = (ϕ, c, σ).

• SDCS Signature Confirmation or Disavowal:

1) If σ is a valid signature on m′, i.e., σe =
m′4 mod N holds, the verifier submits the
message-signature pair (m, σ∗ = (ϕ, c, σ)) to k
members of the confirming group that he trusts.

2) Each member of the confirming group, with the
private key SKCj

, calculates cj = RSKCj and
sends it, with the proofs PKCj

{(γ) : cj = Rγ∧
PKCj

= gγ}, secretly to the confirming com-
biner who will compute a value

r′ =

k∑

j=1

wj

∏

t∈{1,...k},t6=j

ct

ct − cj
.

3) If R = gr′

does not hold, cj(j = 1, .., t) and
proofs PKCj

{(γ) : cj = Rγ ∧ PKCj
= gγ}

are sent to the verifier who will decrypt the ci-
phertext himself and be convinced that he has
submit an invalid ciphertext, and the procedure
terminates. Otherwise, a bi-proof analogous
to that in [14] is executed to prove the equal-
ity loggR = logh

ϕ
gm or the inequality loggR 6=

logh
ϕ

gm .

4) The verifier is required to choose two random
values µ, ν ∈ Z∗

P and compute a commitment
value α = gµRν . The value α is sent to the
confirming combiner.

5) The confirming combiner selects three random
values κ, κ̃, ω ∈ Z∗

P . He then calculates four
values rg = gκ, r̃g = gκ̃, rh = hκ, r̃h = hκ̃ and
sends them with the value ω to the verifier.

6) The verifier opens for the confirming combiner
the values µ, ν committed in the commitment
value α.

7) The confirming combiner checks if α = gµRν

holds. If does, he computes s = κ − (ν + ω)r′

modP , s̃ = κ̃− (ν +ω)κ mod P and sends them
to the verifier.

8) The verifier first checks whether gsRν+ω = rg,
gs̃rν+ω

g = r̃g and hs̃rν+ω
h = r̃h. If all these equa-

tion holds, he is convinced about the validity
of the SDCS signature in the following way. If
hs( ϕ

gm )ν+ω = rh, then loggR = logh
ϕ

gm and the

signature σ∗ = (ϕ, c, σ) is a valid SDCS signa-
ture on the message m. If hs( ϕ

gm )ν+ω 6= rh, then

loggR 6= logh
ϕ

gm and the signature σ∗ = (ϕ, c, σ)
is not a valid SDCS signature on the message m.

• Completeness of Confirmation or Disavowal:
Firstly, if σ in the SDCS signatue σ∗ is a valid sig-

nature on the message m′ = H(ϕ||c)u(1−J( H(ϕ||c)
N

))/2,
we have

σe = (
t∏

i=1

σ
2n!

∏
j∈{1,...,t},j 6=i

j
j−i

i mod N)e

= (

t∏

i=1

(m′2di)2n!
∏

j∈{1,...,t},j 6=i
j

j−i mod N)e

= (

t∏

i=1

m′4din!
∏

j∈{1,...,t},j 6=i
j

j−i mod N)e

= (m′4
∑ t

i=1 din!
∏

j∈{1,...,t},j 6=i
j

j−i mod N)e

= (m′4d mod N)e

= m′4 mod N.

Secondly, if c is a ciphertext of the random value
r encrypted under the public keys of the confirmer
group with R = gr and wi = F (PKr

Ci
) (i = 1, ..., l),

then k out of l points can be calculated by k confirm-
ers with their secret keys (RSKCj , wj) = (PKr

Ci
, wj).

With these points, the coefficient r = b0 of the func-
tion can be recovered in this way:

r =

k∑

j=1

wj

∏

t∈{1,...k},t6=j

RSKCt

RSKCt − RSKCi

=

k∑

j=1

wj

∏

t∈{1,...k},t6=j

PKr
Ct

PKr
Ct

− PKr
Ci

.

Finally, with the knowledge of r, it is not hard to con-
vince the verifier if ϕ = gmhr holds with the bi-proof
protocol. The protocol is proved in [14] to be com-
plete, sound, and zero-knowledge under the assump-
tion that there is no algorithm running in expected
polynomial time to decide whether two discrete loga-
rithms are equal, with non-negligible probability bet-
ter than guessing.

4.2 Convertibility

If the signature is needed to be selectively turned into a
universally verifiable one, the confirming group can pro-
duce the signature proof as follows. Two random val-
ues κ, κ̃ ∈ Z∗

P are chosen and four values rg = gκ, r̃g =
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gκ̃, rh = hκ, r̃h = hκ̃ are computed by a confirming group.
Then it sets ν = H(g, R, h, ϕ

gm , rg, rh, r̃g, r̃h) and computes

s = κ− νr′ and s̃ = κ̃− νk. The signature proof appears
as σ = (s, s̃, ν). The signature holder can verify the sig-
nature by checking the equality

ν = H(g, R, h,
ϕ

gm
, gsRν , hs(

ϕ

gm
)ν , gs+s̃Rν , hs+s̃(

ϕ

gm
)ν)

On the other hand, if the non-interactive zero-
knowledge proof can only be provided to a designated
verifier, the public key PKV = gSKV of the verifier is
necessary to construct such a designated verifier proof in
a similar manner as the preceding construction of the con-
vertible signature proof. The main difference is that two
more random values α, β are chosen to determine a trap-
door commitment C = PKα

V hβ which will be set as an
additional input of the hash function H.

5 Security Analysis

In the SDCS scheme, given a message-signature pair (m,
σ∗ = (ϕ, c, σ)), anyone can verify whether the ordinary
signature σ is a valid signature on the combination of
ϕ and c. However, only at least k confirmers can work
together to check if ϕ is a right commitment on the mes-
sage m and the plaintext associated to the ciphertext c.
In other words, only the confirming group can obtain the
complete relation between the signature and the message.

With the technology of threshold signatures, the signa-
ture σ can be generated by a group with at least t signers.
Given the public keys of the signer group and those of the
confirmer group, nobody outside the signer group, nor
any group of no more than t− 1 signers in collusion, even
with the secret keys of the confirmer group, can produce
a valid threshold signature. Moreover, partial signatures
σi = m′2di rather than secret shares of signing key are
sent to the signing combiner, in the signing procedure.
No secret shares can be obtained from the partial signa-
tures, so the signing combiner can not recover the signing
key on his own and has no advantage over the other sign-
ing members in this procedure. This prevents the signing
combiner from signing any message by himself next time.
In such a way, unforgeability of signatures is guaranteed.

The relation between the commitment ϕ and the orig-
inal message m depends on a random value r, i.e., the
plaintext of the ciphertext c which is produced by a
threshold encryption scheme. The fact that c is a cipher-
text for the plaintext r or on the contrary can only be
confirmed by the decrypting group, i.e., the confirming
group composed of at least k confirmers. Nobody outside
the confirmer group, nor any group of no more than k−1
confirmers in collusion, can do the same thing. Moreover,
what are sent to the confirming combiner are the partial
decryption results cj = RSKCj , from which no secret in-
formation is released. So, the confirming combiner can
not decrypt any other ciphertexts on his own. The ran-
dom value recovered this time does not help the next con-
firmation since another random value will be used. This

means that the confirming combiner has no advantage
over the other confirming members. Unlike the signing
procedure, no fixed decrypting keys are shared by the
confirmer group, which eliminates the cost of distribu-
tion and storage of secret shares. There exists no thread
against the exposure of the secret decrypting keys. In
such a way, the restrictive confirmation is achieved.

Upon obtaining the random value by decrypting the
ciphertext, the confirming group proves the validity or
invalidity of the alleged SDCS signature to the verifier
in a zero-knowledge way. The transcript of the proof
of knowledge will not convince a third party that σ∗ is
an SDCS signature on the message m or on the con-
trary. This is because the verifier can produce, at his
will, a similar transcript to validate or invalidate an
alleged SDCS signature in the following manner. He
firstly chooses randomly µ, ν, ω, s, s̃ ∈ Z∗

P and computes
α = gµRν , rg = gsRν+ω, r̃g = gs̃rν+ω

g . Then, if he wants
to validate the signature, he calculates rh = hs( ϕ

gm )ν+ω

and r̃h = hs̃rν+ω
h . And if he wants to invalidate the signa-

ture, he selects randomly rh 6= hs( ϕ
gm )ν+ω and calculates

r̃h = hs̃rν+ω
h . Therefore, nobody will believe of the tran-

script (µ, ν, ω, s, s̃, rg, r̃g, rh, r̃h) the verifier provides and
we have the property of non-transferability of verification.

Of course, as mentioned in Section 4, the proofs can be
changed into non-interactive ones that everyone or only a
designated individual can verify the signature. In such a
way, the SDCS signature becomes an ordinary or a desig-
nated verifier (threshold) signature.

6 Conclusions

The designated confirmer signature can only be verified
with the help of the confirmer designated by the signer,
which releases the signer from the task of verification.
We consider the applications of designated confirmer sig-
natures in the society-oriented situations, where the sig-
nature is produced by a group of signers and is verifiable
only with the help of a group of designated confirmers.
The model and the security requirements of the society-
oriented designated confirmer signature are proposed. A
concrete realization is provided with appropriate security
analysis. Ordinary designated confirmer signatures and
threshold designated confirmer signature schemes, where
the messages are signed by one individual, can be viewed
as special instances of our SDCS schemes.
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