
International Journal of Network Security, Vol.7, No.2, PP.240-248, Sept. 2008 240

Fault Tolerant Weighted Voting Algorithms

Azad Azadmanesh1, Alireza Farahani2, and Lotfi Najjar3

(Corresponding author: Azad Azadmanesh)

Department of Computer Science, University of Nebraska, Omaha, 68182, USA1

(Email: azad@unomaha.edu)

Department of Computer Science & Information Systems, National University, San Diego, 92037, USA2

Department of Information System & Quantitative Analysis, University of Nebraska, Omaha, 68182, USA3

(Received Dec. 21, 2006; revised and accepted Apr. 23, 2007)

Abstract

Agreement algorithms can be categorized in different
ways. One categorization of such algorithms is based on
whether the final decisions are exact or inexact. In inex-
act algorithms, also known as approximate agreement al-
gorithms, each node produces its final decision that may
not be necessarily the exact same decision value produced
by a different non-faulty node. Most studies on such algo-
rithms are either oblivious to the confidence level placed
on each node or the impact of malicious behavior is not
accounted for. This study introduces a family of inex-
act agreement algorithms taking into account both the
confidence level placed on each node and the presence
of malicious behavior. Expressions are developed for the
convergence rate and fault tolerance of these algorithms,
and the effect of weights are shown when the agreement
process favors nodes with a specific level of trust. The
study also describes the difficulties for applying weights
to the existing voting algorithms.

Keywords: Approximate agreement, Byzantine, data fu-
sion, network security, sensor networks

1 Introduction

Voting algorithms have been used in many domains such
as political elections, neural networks, sensor networks,
and distributed systems. Voting algorithms, often called
agreement algorithms, specify how the votes are inte-
grated leading to the final results. They are used to create
consistency and to mask out the effect of faulty behav-
ior. The votes are the input values provided by multiple
sources1, and the final result that can be in either a scalar
or in a vector form is referred to by many phrases such
as the “decision value”, “agreed value”, “voted value”, or
simply the “final decision”.

A simple example of an algorithm that produces the

1Depending on application, a source might be referred to as a

“node”,“process”, ”host”, or a “peer”. In this article, these terms

are used interchangeably.

final result in a scalar form is a bit-voter based on the
majority rule. The bit-voter receives the input values as
a mixture of 0s and 1s, and outputs a 1 if the majority
of input values is a 1, otherwise a 0. An example of an
agreement algorithm that produces a vector result is in
a fault tolerant software environment where multiple ver-
sions of a program are run on different platforms. The
programs might produce conflicting results but all within
the acceptable range of accuracy.

As some of the input values might be erroneous, the fu-
sion of data in an appropriate way becomes of paramount
importance vis-a-vis performance of the agreement algo-
rithms and the impact of errors or misbehavior. The
agreement algorithms can be categorized in different
ways. One categorization is based on whether the final
decision is exact or inexact. An exact value is in refer-
ence to agreeing on the same value by every non-faulty
node [6]. An inexact agreement algorithm decides on real
values that may not be a subset of the input values or nec-
essarily be the same, but are within the acceptable range.
The focus of this research is based on inexact algorithms,
also known as Approximate Agreement (AA) [9].

In AA, each node decides on a final value based on
its own input and the input values received from other
nodes. The decision values, one from each node, may not
be the same due to many conditions such as round-off
errors, variation in message transmission times, or be-
cause of faulty nodes transmitting conflicting values to
other nodes. AA algorithms have been used in the syn-
chronization of distributed clocks that can drift from each
others. They are also used in the growing field of sensor
networks, where raw data from sensors are collectively an-
alyzed producing greater precision about an object or an
event [7, 8, 16]. Sensors have limited accuracy and many
applications require them to be placed in hostile envi-
ronments. Therefore, the design of an appropriate fault
tolerant voting algorithm is vital. Some applications of
sensor networks are in military surveillance, flight control
systems, robotics, nuclear reactor systems, target trajec-
tory and detection.

Given an arbitrarily small positive real value ε, an AA

International Journal of Network Security, Vol.7, No.2, PP.240-248, Sept. 2008 241

algorithm must satisfy two conditions [9, 12]:

• Agreement – The decision values of any pair of non-
faulty hosts are within ε of each other.

• Validity – The decision value for each non-faulty host
is within the range of the initial correct values.

Most agreement algorithms follow rounds of message
exchange. In AA algorithms, each non-faulty node ex-
ecutes the same voting algorithm in rounds as follows.
Each node broadcasts its initial value to all nodes in-
cluding itself. Each node then collects the values it has
received into a multiset and according to some a priori-
known rules the multiset is filtered out to produce a voting
multiset. The node will then apply a function F to the
voting multiset to attain its latest estimate of the final
value to be used in the next round of message exchange.
The AA conditions are achieved if every voting round is
single-step convergent, i.e. the voted value by each non-
faulty node is in the range of correct values and the di-
ameter of voted values among the correct nodes shrinks
in each round.

Approximate agreement algorithms in general are dif-
ferent from each other in the filtration aspect of the values
received in each round. In addition, these algorithms do
not distinguish among hosts in terms of amount of trust
placed upon them. Having a different weight of trust on
each host makes the process of obtaining the performance
expressions for the existing algorithms very complex if not
impossible, as will be explained in a later section. There-
fore, it becomes necessary to introduce a new family of
weighted voting algorithms. These algorithms employ the
appropriate filtration step in such a way to ensure con-
vergence (agreement) will take place while being able to
measure the performance of these algorithms in the worst
case possible.

Section 2 provides some research background on
weighted voting. Section 3 explains the general voting
process for the new family of weighted voting algorithms,
and obtains the convergence rate and fault tolerance for
such algorithms. Section 3.5 presents a working example
on obtaining the worst convergence rate. Section 4 deals
with the optimal performance of the weighted voting al-
gorithms and Section 5 remarks on the number of nodes
required to reach a desired level of performance. Section
6 compares these algorithms against the existing AA al-
gorithms. Finally, Section 7 concludes the paper with a
summary and some directions for future research.

2 Background

Weights have been used in different fields and applica-
tions with the goal of reconciling the domain values to a
final, agreeable decision. Wu and Chen in [22] use the
weights on k-out-of-n systems, where a system is said to
be operating correctly if the cumulative sum of weights is
at least k. Tong and Kain [21] employ votes as weights
that are assigned to system components in such a way

to maximize reliability. Other studies such as in [1, 10]
utilize vote assignments for manipulating replicated data.
Specifically, a replicated file is assigned a number of votes,
and the transaction coordinator needs to reach a quorum
by collecting a certain number of votes for a read or write
operation, to successfully finish the transaction.

Parhami in [17] defines a weighted inexact voting algo-
rithm, where a decision is made on a set of real numbers
with their associated vote tallies. The algorithm requires
the maximal set of numbers with the property that the
threshold difference between each pair of the numbers is
not greater than a small positive value ε. Then an aver-
aging function is applied on the maximal set to reach a
final decision. The averaging function can be specified in
different ways, such as selecting the value with the highest
number of votes in the maximal set. These algorithms,
however, do not consider malicious behavior or necessarily
guarantee the AA conditions.

With respect to treatment of values in the voting pro-
cess, AA algorithms can in general be partitioned into
different families: Oblivious, Egocentric, and Egophobic.
These algorithms place the same level of trust on each
host. Basically, if n values are voted upon, the trust
weight for each node is 1/n.

The family of oblivious algorithms do not place any
preference on any input value. In other words, such algo-
rithms are oblivious to the state or source of input values
[12]. The Egocentric and Egophobic voting algorithms
are normally used for applications where the diameter of
correct values is known, but further synchronization is
needed to prevent divergence in the future, or to provide
more coordinated results among nodes. In Egocentric al-
gorithms, a node favors values that are closer to its own or
using its own value when possible [5, 14, 15, 18]. On the
other hand, a node using an Egophobic algorithm places
favoritism on values that are further away from its own.
Such algorithms have been used for hardware clock syn-
chronization [3, 11, 13, 19].

The research herein introduces a new family of non-
oblivious algorithms with respect to a confidence level
placed on each node. The new family of algorithms is
called Weighted Approximate Agreement (WAA). Each
member of this family attempts to reach a final decision
closer to the values with higher weight of confidence. The
study obtains the convergence rate and fault tolerance ex-
pressions. The WAA algorithms not only provide decision
values based on confidence levels, but also guarantee that
the decided values are among the range of correct values
in the presence of faults.

3 Weighted AA (WAA)

Assume the network consists of N nodes. Further assume
that the network is completely connected and the commu-
nication system is synchronous. In synchronous commu-
nication, the processing time and communication delay
among nodes are bounded. Therefore, any data item re-

International Journal of Network Security, Vol.7, No.2, PP.240-248, Sept. 2008 242

ceived beyond the allocated period of time is considered
erroneous.

The fault model considered consists of asymmetric and
benign faults. Benign faults are self-incriminating or self-
evident to “every” host. Examples of benign faults in-
clude out of bound data, or data received outside of the
bounded communication delay. The maximum number of
benign faults is assumed to be b. An asymmetric fault oc-
curs when multiple hosts receive conflicting information
from the same transmission source, due to faults in the
communication network or the sending host maliciously
transmits conflicting values to other hosts. The maximum
number of asymmetric faults is assumed to be a.

Normally a large percentage of faults are benign and
since these faults must be globally self-evident to all non-
faulty nodes, every non-fault node can safely remove them
from further consideration. Therefore, it is only necessary
to address the agreement process using multisets of values
not containing benign errors [12]. Hence, the size of the
voting multiset is n = N − b, and the total number of
faults is t = a + b.

3.1 Voting Process of WAA Algorithms

The WAA algorithms contain the following steps for each
round of the voting process:

1) Broadcast – Each host i broadcasts its current value
to every host including itself.

2) Collect – Each host i collects the current values
broadcast by other hosts including its own value into
a multiset Ni.

3) Sample – Each host i filters Ni producing the voting
multiset Vi. Host i removes the benign faults from
Ni. If Ni does not contain a value from a specific
host, host i will use its own value as the default value
to be used in Vi. Host i will also replace the highest
a and the lowest a values in Ni with its own value.
By replacing the extreme elements, the range of Vi

will be within the range of correct values, so that
the validity condition can be satisfied. Therefore,
|Vi| = n.

4) Execute – During this step, the approximation-
function F is applied to generate a single voted value.

Consider a weight multiset W = 〈w1, . . . , wn〉, where
wi is a positive trust-weight placed on node i and the sum
of weights is equal to one. Also consider a non-faulty node
i has the voting multiset Vi = 〈vi,1, . . . , vi,n〉. WAA algo-
rithms utilize the common weighted averaging function.

F (Vi) =
n
∑

g=1

wgvi,g. (1)

Some approximation functions use a selection function [4,
5, 12]. A selection function allows a certain number of
elements of Vi to participate in the evaluation of voted

value in each round. At the end of Subsection 3.2, it
will be shown how F (Vi) can be modified to include a
selection function.

3.2 Convergence Rate

Before describing the voting process formally, define the
following:

Uall = The multiset of all correct values received by

non-faulty nodes.

Uvoted = The multiset of voted values by non-faulty

nodes, i.e. Uvoted = 〈F (V1), . . . , F (Vn)〉.

ρ(Vi) = The range of multiset Vi, i.e.

[min(Vi), max(Vi)].

δ(Vi) = The diameter of multiset Vi, i.e. the difference

between the maximum and minimum values of

Vi.

A voting algorithm is single-step-convergent if both of the
following conditions are true following every round of vot-
ing:

• Convergence – For each pair of non-faulty nodes, i
and j, the difference between their decision values is
strictly less than the diameter of the multiset of cor-
rect values received, i.e. |F (Vi) − F (Vj)| < δ(Uall).

• Validity – For each non-faulty node i, the deci-
sion value is within the range of correct values,
i.e. F (Vi) ∈ ρ(Uall).

The effectiveness of a convergent voting algorithm is
measured by its convergence rate C. Assuming that
δ(Uall) > 0, C is the ratio:

C =
δ(Uvoted)

δ(Uall)
. (2)

If C < 1 in each round, given enough number of rounds,
it is then guaranteed that the system will achieve the
Agreement condition. To obtain C, the maximum diame-
ter of voted values in a round must be determined. There-
fore, it is necessary to find the conditions under which
F (V) is maximized and minimized. To better understand
these conditions, the following provides a simple example,
which will be used as the basis for presenting these con-
ditions formally.

3.3 Working Example 1

Consider a system with n = 20, a = 5, max(Uall) = >,
and a node i holding the value α. Let Mi be the filtered
multiset right before replacing the extreme values. Sort
Mi and resequence its corresponding weight multiset. As-
sume Mi can be partitioned into Uall and error multiset

International Journal of Network Security, Vol.7, No.2, PP.240-248, Sept. 2008 243

X such that xk ≥ >, k ∈ {1, . . . , a}. Accordingly,

Uall = 〈u1, . . . , u15〉

X = 〈x1, . . . , x5〉

Mi = 〈u1, . . . , u15, x1, . . . , x5〉

Vi = 〈α, α, α, α, α, u6, . . . , u15, α, α, α, α, α〉

W = 〈w1, . . . , w5, w6, . . . , w15, w16, . . . , w20〉 .

Let M′

i be a multiset similar to Mi except the first 2
elements of X are changed to be less than >:

Uall = 〈u1, . . . , u15〉

X′ = 〈x′

1, x
′

2, x3, x4, x5〉

M′

i = 〈u1, . . . , u13, x
′

1, x
′

2, u14, u15, x3, x4, x5〉

V′

i = 〈α, α, α, α, α, u6, . . . , u13, x
′

1, x
′

2, α, α, α, α, α〉

W′ = 〈w1, . . . , w5, w6, . . . , w13, w16, w17, w14, w15,

w18, . . . , w20〉 .

Then,

F (Vi) =

5
∑

j=1

wjα +

15
∑

k=6

wkuk +

20
∑

`=16

w`α

F (V′

i) =

5
∑

j=1

wjα +

13
∑

k=6

wkuk + (w16x
′

1 + w17x
′

2)

+

15
∑

m=14

wmα +

20
∑

`=18

w`α.

The diameter between the two weighted mean is:

F (Vi) − F (V′

i) =

(

15
∑

k=6

wkuk −
13
∑

k=6

wkuk

)

+

(

20
∑

`=16

w`α −

20
∑

`=18

w`α

)

−

(

w16x
′

1 + w17x
′

2 +

15
∑

m=14

wmα

)

.

Therefore,

F (Vi) − F (V′

i) =
15
∑

k=14

wkuk +
17
∑

`=16

w`α −

(

w16x
′

1 + w17x
′

2 +

15
∑

m=14

wmα

)

=

(

15
∑

k=14

wkuk −

15
∑

m=14

wmα

)

+

(

17
∑

`=16

w`α − (w16x
′

1 + w17x
′

2)

)

=

15
∑

k=14

wk(uk − α) +

17
∑

`=16

w`(α − x′

`−15).

If α = >,

F (Vi) − F (V′

i) =

15
∑

k=14

wk(uk −>) +

17
∑

`=16

w`(> − x′

`−15).

Since x′

`−15 < >, the second term is positive. Also,
the first term will be zero if uk happens to be equal to
>. Given ρ(Uall), this example showed that F (Vi) can
produce a value larger than any other voted value if α = >
and no erroneous value is less than >.

Lemma 1. Let α be the value held by non-faulty node i
and Vi be its voting multiset after replacing the extreme
a elements of multiset Mi. Assume the error multiset
received by node i is X = 〈x1, . . . , xa〉. F (Vi) can produce
a voted value larger than any other one if α = max(Uall)
and xk ≥ max(Uall), ∀ k ∈ {1, . . . , a}.

Proof. According to the hypothesis:

Mi = 〈u1, . . . , un−a, x1, . . . , xa〉 ,

so that

Vi = 〈α, . . . , α, ua+1, . . . , un−a, α, . . . , α〉

W = 〈w1, . . . , wn〉

F (Vi) =

a
∑

j=1

wj α +

n−a
∑

k=a+1

wkuk +

a
∑

`=1

wn−a+` α.

Consider a different multiset M′

i with its corresponding
V′

i and X′. Assume f < a elements of X′ are less than
max(Uall) = >. This enables at most f elements of Uall

to be pushed to the right, causing them to be replaced
with α. Without loss of generality assume the first f
elements of X′ are less than max(Uall). Thus,

F (Vi) − F (V′

i) =
n−a
∑

k=n−a−f+1

wk(uk − α) +

n−a+f
∑

`=n−a+1

w`(α − x′

`−(n−a)).

Given ρ(Uall), uk can happen to be >. If α = >,

F (Vi) − F (V′

i) =

n−a+f
∑

`=n−a+1

w`(> − x′

`−(n−a)). (3)

Since x′

`−(n−a) ≤ >, Equation (3) will be positive.

Lemma 2. Let β be the value held by non-faulty node j
and Vj be its voting multiset after replacing the extreme
a elements of multiset Mj. Assume the error multiset re-
ceived by node j is Xj = 〈x1, . . . , xa〉. F (Vj) can produce
a voted value smaller than any other one if β = min(Uall)
and xk ≤ min(Uall), ∀ k ∈ {1, . . . , a}.

International Journal of Network Security, Vol.7, No.2, PP.240-248, Sept. 2008 244

Proof. The proof is similar to Lemma 1.

Let α and β be values of two arbitrary correct nodes,
with the property of |α − β| ≤ ϕ, where ϕ is a predeter-
mined positive threshold. Thus, δ(Uall) = ϕ. The ratio-
nale for ϕ is that in some applications, hosts, although
working correctly, may not be able to produce the same
precision, such as in sensor data management, clock syn-
chronization, or in N-version programming applications
[2, 15, 20].

Now we are ready to obtain |F (Vi) − F (Vj)| that will
lead to determining C.

Theorem 1. Given a WAA voting-algorithm,

|F (Vi) − F (Vj)| ≤ ϕ(sum of the highest 3a weights).

Proof. According to Lemma 1, F (Vi) can produce the
largest voted value if α = max(Uall) and no received er-
ror is less than max(Uall). Similarly, F (Vj) can reach
its minimum value when β = min(Uall) and all erroneous
values are less than or equal to min(Uall). Therefore,
the maximum diameter of |F (Vi) − F (Vj)| is achieved
when α − β = ϕ. The values common to Vi and Vj

are the correct values in Uall and thus can be consid-
ered fixed. The variable elements are associated with the
faulty nodes, which can send conflicting values to nodes
i and j. Without loss of generality, let the elements with
weights 〈wn−a+1, . . . , wn〉 be the variable elements shown
as 〈x1, . . . , xa〉 for node i and as 〈x′

1, . . . , x
′

a〉 for node j.
Accordingly, node i receives the multiset:

〈u1, . . . , ua, ua+1, . . . , un−a, x1, . . . , xa〉 ,

and node j has the multiset:

〈x′

1, . . . , x
′

a, u1, . . . , un−2a, un−2a+1, . . . , un−a〉 .

Thus:

Vi = 〈α, . . . , α, ua+1, . . . , un−a, α, . . . , α〉 ,

and

Vj = 〈β, . . . , β, u1, . . . , un−2a, β, . . . , β〉 .

Therefore:

F (Vi) =

a
∑

g=1

wgα +

n−a
∑

h=a+1

whuh +

n
∑

k=n−a+1

wkα

=

a
∑

g=1

wgα +

(

n−2a
∑

h=a+1

whuh +

n−a
∑

m=n−2a+1

wmum

)

+

n
∑

k=n−a+1

wkα, (4)

and

F (Vj) =

n
∑

k=n−a+1

wkβ +

n−2a
∑

g=1

wgug +

n−a
∑

m=n−2a+1

wmβ

=

n
∑

k=n−a+1

wkβ +

(

a
∑

g=1

wgug +

n−2a
∑

h=a+1

whuh

)

+

n−a
∑

m=n−2a+1

wmβ. (5)

As a result:

|F (Vi) − F (Vj)| =

a
∑

g=1

wg(α − ug) +

n−a
∑

m=n−2a+1

wm(um − β) +

n
∑

k=n−a+1

wk(α − β). (6)

In Equation (6), maximum of (α − ug) occurs if ug =
β. Similarly, (um − β) is at its maximum if um = α.
Therefore:

|F (Vi) − F (Vj)| ≤

a
∑

g=1

wg(α − β) +

n−a
∑

m=n−2a+1

wm(α − β) +

n
∑

k=n−a+1

wk(α − β)

=

a
∑

g=1

wgϕ +

n−a
∑

m=n−2a+1

wmϕ +

n
∑

k=n−a+1

wkϕ

= ϕ

(

a
∑

g=1

wg +

n−a
∑

m=n−2a+1

wm

+

n
∑

k=n−a+1

wk

)

= ϕ

(

a
∑

g=1

wg +

n
∑

m=n−2a+1

wm

)

. (7)

There are 3a weights in Equation (7). To maximize the
difference in |F (Vi) − F (Vj)|, the weights in Equation
(7) must be among the highest weights in W. Therefore:

|F (Vi) − F (Vj)| ≤ ϕ(sum of highest 3a weights). (8)

International Journal of Network Security, Vol.7, No.2, PP.240-248, Sept. 2008 245

Theorem 1 showed max|F (Vi) − F (Vj)| when every
element participates in the average function. If average
function does not include every element, the sum of the
selected weights no longer equals one. Therefore, the
weighted averaging function can not be applied, unless
those weights are normalized with respect to the weight
sum of the selected elements, to ensure the sum of their
weights is 1. Accordingly, function F (V) as described
in Equation (1) needs to be modified to account for the
selection function, as explained below.

Let Selσ be the selection function that selects σ ele-
ments from W:

S = Selσ(W) = 〈s1, . . . , sσ〉 .

Let g be the index of any element of S and let k(g)
be the index of the corresponding element in W. Also
reorder the elements in Vi such that vi,g corresponds to
wg. Therefore, for each g ∈ {1, . . . , σ} there exists exactly
one k(g) ∈ {1, . . . , n}. Define:

Sum(S) =
σ
∑

g=1

sg,

so that the selected weights can be normalized as:

Snrm = 〈snrm
1 , . . . , snrm

σ 〉 ,

where:

snrm
g =

wk(g)

Sum(S)
.

Accordingly, each non-faculty node i applies the fol-
lowing approximation function:

F (Vi) =

σ
∑

g=1

snrm
g ∗ vi,k(g).

The next lemma finds max|F (Vi) − F (Vj)| when the
selected weights are normalized, as described above.

Theorem 2. Given a WAA voting-algorithm and a se-
lection function Selσ,

|F (Vi) − F (Vj)| ≤ ϕ(sum of highest 3a

normalized weights in Selσ).

Proof. According to WAA voting process, the nodes se-
lect the same weights. Resequence the weight indices
of the selected elements symbolically, then normalize
the weights. By assuming the a highest normalized
weights belong to the faulty nodes, the process for find-
ing max|F (Vi) − F (Vj)| will become exactly the same as
that of Theorem 1.

Using Theorem 2 and the fact that δ(Uall) = ϕ, the

convergence rate is:

C =
δ(Uvoted)

δ(Uall)

=
max |F (Vi) − F (Vj)|

δ(Uall)

=
ϕ(sum of highest 3a normalized weights in Selσ)

ϕ

= (sum of highest 3a normalized weights in Selσ). (9)

3.4 Fault-Tolerance

Recall that the sum of weights equals 1 and convergence
is guaranteed if C < 1. Therefore, more than 3a ele-
ments must be selected to ensure Equation (9) is less
than 1, which implies |V| > 3a. Consequently, to tol-
erate a faults, |V| = n ≥ 3a + 1. This limit can also be
observed in Equations (4) and (5) of Theorem 1. More
specifically, the term:

n−2a
∑

h=a+1

whuh, (10)

is cancelled in |F (Vi) − F (Vj)|. If Equation (10) does
not exist, the sum of weights in Equation (8) will equal
one. For this term to exist n − 2a ≥ a + 1 must be true,
which implies n ≥ 3a + 1.

Since n = N−b, the total number of hosts to guarantee
the existence of a convergent WAA algorithm must be:

N ≥ 3a + b + 1.

3.5 Working Example 2

Consider a system with 14 nodes, i.e. n = 14, with the
following normalized weights:

w1 = 0.01 w2 = 0.02 w3 = 0.03
w4 = 0.03 w5 = 0.05 w6 = 0.05
w7 = 0.06 w8 = 0.07 w9 = 0.08
w10 = 0.1 w11 = 0.1 w12 = 0.11
w13 = 0.14 w14 = 0.15

Assume a = 3 and σ = 12. Further assume that the
selection function selects the lowest weights in W. Under
these assumptions, the sum of the selected weights is 0.71.
After normalization over the 12 weights, the new weights
will be:

0.014, 0.028, 0.042, 0.042, 0.071, 0.071,

0.085, 0.099, 0.113, 0.140, 0.141, 0.154.

For example, the lowest weight under normalization is
0.01/0.71 = 0.014. The convergence rate is the sum of
the highest 3a = 9 normalized weights , i.e. C = 0.916.

International Journal of Network Security, Vol.7, No.2, PP.240-248, Sept. 2008 246

Now consider a different example with the same as-
sumptions except the selection function selects the high-
est weights. With this change, the sum of the 12 weights
is 0.97 and the new normalized weights are:

0.031, 0.031, 0.052, 0.052, 0.061, 0.072,

0.082, 0.104, 0.104, 0.113, 0.144, 0.154.

Under this new example, C = 0.886. Therefore, the
choice in selecting weights affects the convergence rate.
Consequently, depending on application, an appropriate
distribution of weights and selection function must be
applied to reach the desired level of performance. For
instance, in a harsh environment, one may wish to dis-
tribute low weights to a large number of nodes to ensure
a better average. On the other, if some nodes can be
better trusted than others, one can use higher weights for
these nodes, to tilt the final results toward the values held
by such nodes.

4 The Optimal Convergence Rate

As shown in Theorem 2, the convergence rate is the sum
of the largest 3a normalized weights. The optimal con-
vergence occurs when C is the lowest possible. Therefore,
out of all selections of σ elements, one needs to find the
selection function such that the sum of its highest 3a el-
ements is the lowest among all selection functions. The
following shows how to obtain the optimal convergence
rate formally, for a given multiset of weights.

The total number of possible selections of σ elements
out of n elements in W is:

Cn,σ =

(

n
σ

)

=
n!

σ!(n − σ)!
. (11)

After normalization, sort each selection and store in Snrm
k :

Snrm
k =

〈

snrm
k,1 , . . . , snrm

k,σ

〉

, where k ∈ {1, . . . , Cn,σ} .

Partition Snrm
k into two sub-multisets as:

Firstk =

σ−3a
∑

i=1

snrm
k,i

Lastk =

σ
∑

i=σ−3a+1

snrm
k,i .

The optimal convergence rate occurs when a selection
function, Snrm

q , is chosen with the following property:

(Lastq − Firstq) ≤ (Lastj − Firstj), ∀ j ∈ {1, . . . , Cn,σ} .

Looking back at the example used before in Section 3.5,
the highest 12 weights provide the best convergence, with
Last = 0.886, First = 0.114, and Last − First = 0.772.
The worst convergence occurs when w3 and w5 are not
selected with First = 0.065, Last = 0.935, Last−First =
0.870, and C = 0.935.

5 Performance Adjustment of

WAA Algorithms

WAA algorithms have the capability of determining the
feasibility of a convergence rate with regard to the up-
per bound of faulty nodes. Assume the minimum weight
value in the highest 3a normalized weights is m. Given
the desired C, the following relationship shows the upper
bound on the faulty nodes allowed:

C

m
≥ 3a, where C > m. (12)

For instance if a convergence rate of C = 0.5 is desired
and the minimum weight among the 3a highest normal-
ized weights is 0.1, then only one fault, i.e. a = 1, can be
tolerated.

Furthermore, (1 − C) provides the sum of the weights
for the rest of the selected elements. Since the weight of
each such element can not be greater than m, the least
number of such nodes is:

1 − C

m
.

As a result, n must satisfy the following, given that
Equation (12) is true:

n ≥
1 − C

m
+ 3a.

Using the previous example of m = 0.1, requiring C =
0.5 and a = 1, at least 8 nodes, i.e. n = 8, are needed.

Recall from Section 3.4 that n ≥ 3a + 1. If a = 1, the
minimum number of nodes needed is: n ≥ 3a + 1 = 4,
which appears to contradict with the minimum value of 8
obtained in this section. However, the reader should note
that the expression n ≥ 3a + 1 shows the absolute mini-
mum value to ensure the existence of a convergent voting
algorithm without any regards to the rate of convergence
that one might desire for.

Requiring both conditions of Agreement and Validity
of WAA algorithms guarantees precision and accuracy.
Precision refers to the tightness of decision values among
the nodes, and thus corresponds to the Agreement condi-
tion. Accuracy, on the other hand, defines the deviation
of decision values from the real correct result, and thus
corresponds to the Validity condition. The precision crite-
rion alone might be justified for some applications, such
as synchronization of internal clocks for the purpose of
coordinating events among processes.

WAA algorithms replace the lowest and the highest
a values by the node’s own value to ensure the Validity
condition. The replacement however creates more dis-
crepancies among nodes. By relaxing this condition, it
might be possible to find a way to increase the perfor-
mance of WAA algorithms. This approach is currently
under investigation.

International Journal of Network Security, Vol.7, No.2, PP.240-248, Sept. 2008 247

6 Comparison to other Algo-

rithms

Other than WAA, other families of AA algorithms have
been developed, such as Mean-Subsequence-Reduced
(MSR) [12], Mean-Subsequence-Egocentric (MSE) [5],
and Mean-Subsequence-Egophobic (MSEP) [3]. These
algorithms are different than WAA in the following:

• Selection of elements in MSR, MSE, and MSEP is
done without any attention to the trustworthiness of
the hosts. A selection function selects values from the
voting multiset based on their positions. For exam-
ple, a selection function may select all odd-numbered
positions. The selection process used for these algo-
rithms is thus oblivious. This has the impact that
the set of hosts corresponding to the selected values
for a pair of hosts may not be the same. Whereas in
WAA, the selection function is based on W. Thus
the selected hosts, whose received values are used in
the voting process, are the same among all nodes.

• In other voting algorithms, since the hosts are consid-
ered to have the same trust-weight, each host carries
the weight of 1/n. Whereas in WAA, nodes can have
different weights.

• Unlike other voting algorithms, a system designer by
using higher weights for trustworthy hosts can tilt
the decision values toward the values held by those
hosts.

Because the selection function of WAA algorithms is
based on weights, it may not be possible to apply the
same selection function to all families of algorithms. For
example, the Fault-Tolerant Midpoint [12], which aver-
ages the extreme two elements of the voting multiset, is
not applicable to WAA.

One selection function that is immune to these differ-
ences is the Fault-Tolerant Mean [12]. In Fault-Tolerant
Mean, every element in V is selected. By equalizing the
weights in WAA, i.e. 1/n, this selection function can be
applied to all families of algorithms mentioned here.

Ensuring the conditions of agreement and validity, the
convergence rates in MSR, MSE, and MSEP using the
Fault-Tolerant Mean are the same [3, 5, 12]. The conver-
gence rate is:

C =
a

n − 2a
.

Since the trust level is assumed to be the same for each
host, the convergence rate in WAA is:

C =
3a

n
.

The convergence rate in WAA using this selection func-
tion is thus lower than that of MSR, MSE, and MSEP. It
should be observed, however, that the major advantage of
WAA algorithms is the ability of using varying weights.

Using the hybrid fault modeling, such as incorporating
the symmetric faults, used in MSR or MSE does not af-
fect the performance or the fault tolerance of the WAA
algorithms. A symmetric fault occurs when a faulty host
transmits the same erroneous value to the receiving hosts.
Adding the symmetric faults to the fault model forces
hosts to replace more of the extreme values with their own
to ensure that the validity condition is met. Since hosts
hold different values, the impact of other failure modes,
such as symmetric faults, thus becomes like asymmetric
faults.

7 Summary

A number of studies have been done in AA with the
goal of creating families of algorithms whose convergence
rate and fault tolerance can be easily determined. Some
of these families were mentioned in this paper. These al-
gorithms treat every host the same, i.e. the trust-weight
placed on them are all equal. It is very difficult to apply
the weighted voting concept to these algorithms because
their premise in determining the convergence rate is based
on comparing values selected from the sorted voting mul-
tisets. If varying weights are used, the weight multisets
corresponding to the voting multisets may not all be the
same, which makes it difficult to keep track of the rela-
tionships among terms produced by the weighted voting
function F (V). This difficulty is compounded when the
weights of the selected elements are normalized, which
completely destroys any cohesiveness that might exist
among selected elements at different hosts.

Because of these difficulties, this study created a new
family of algorithms called WAA, with the property that
the selection is applied to the weights rather than on the
sorted values held by hosts. This ensures that hosts will
use the same weights in a round of voting process. As
this is the first study on weighted voting for approximate
agreement algorithms, it is not possible to compare the
WAA algorithms against other families that use weights
to reach consensus in the presence of faults.

As a voting algorithm has a better performance when
the convergence rate C is lowered, and the fact that the
convergence rate of WAA algorithms depends on the high-
est 3a normalized weights, it becomes important to adjust
the weights so that the performance is improved, yet the
decision values are leaned toward the values held by hosts
with higher confidence level. In general, WAA algorithms
show good performance when the number of hosts is rel-
atively larger than 3a.

With the insight obtained from this study, it will be
worthwhile to consider other strategies in reaching agree-
ment for weighted AA algorithms, such as using maximal
sets with the addition of incorporating different failure
modes. Another avenue of study is to challenge the feasi-
bility of applying weighted voting to existing algorithms
such as MSR.

International Journal of Network Security, Vol.7, No.2, PP.240-248, Sept. 2008 248

References

[1] M. Ahmmad, and M.H. Ammar, “Performance
characterization of quorum-consensus algorithms for
replicated data,” Proceedings of the 7th Symposium
on Reliability in Distributed Software and Database
Systems, pp. 161-167, 1987.

[2] A. Avizienis, “The n-version approach to fault-
tolerant Software,” IEEE Transactions on Software
Engineering, vol. SE-11, no. 12, pp. 1491-1501, Dec.
1985.

[3] M. H. Azadmanesh, and L. Zhou, “Egophobic voting
algorithms,” Journal of Computers & Applications,
vol. 25, no. 4, pp. 236-246, 2003.

[4] M. H. Azadmanesh, and R.M. Kieckhafer, “Ex-
ploiting omissive faults in synchronous approximate
agreement,” IEEE Transactions on Computers, vol.
49, no. 10, pp. 1031-1042, Oct. 2000.

[5] M. H. Azadmanesh, and A. W. Krings, “Egocentric
voting algorithms,” IEEE Transactions on Reliabil-
ity, vol. 46, no. 4, pp. 494-502, Dec. 1997.

[6] M. Barborak, M. Malek, and A. Dahbura, “The con-
sensus problem in fault tolerant computing,” ACM
Computing Surveys, pp. 171-220, Jun. 1993.

[7] R. Brooks, and S. Iyengar, “Robust distributed com-
puting and sensing algorithm,” IEEE Computer, pp.
53-60, June 1996.

[8] T. Clouqueur, K. Saluja, and P. Ramanathan, “Fault
tolerance in collaborative sensor networks for target
detection,” IEEE Transactions on Computers, vol.
53, no. 3, pp. 320-333, Mar. 2004.

[9] D. Dolev, et al., “Reaching approximate agreement
in the presence of faults,” Journal of ACM, vol. 33,
no. 3, pp. 499-516, Jul. 1986.

[10] D. K. Gifford, “Weighted voting for replicated data,”
Proceedings of the 7th Symposium on Operating Sys-
tems Principles, ACM SIGOPS, pp. 150-159, 1979.

[11] J. L. W. Kessels, “Two designs of a fault-tolerant
clocking system,” IEEE Transactions on Computers,
vol. C-33, no. 10, pp. 912-919, Oct. 1984.

[12] R. M. Kieckhafer, and M. H. Azadmanesh, “Reach-
ing approximate agreement with mixed mode faults,”
IEEE Transactions on Parallel Distributed Systems,
vol. 5, no. 1, pp. 53-63, Jan. 1994.

[13] C. M. Krishna, K. G. Shin, and R. W. Butler, “En-
suring fault tolerance of phase-locked clocks”, IEEE
Transactions on Computers, vol. C-34, no. 8, pp. 752-
756, Aug. 1985.

[14] C. M. Krishna, “Fault-tolerant synchronization us-
ing phase-locked clocks”, Microelectronics Reliability,
vol. 30, no. 2, pp. 275-287, 1990.

[15] L. Lamport, P. M. Melliar-Smith, “Synchronizing
clocks in the presence of faults”, Journal of ACM,
vol. 32, no. 1, pp. 52-78, Jan. 1985.

[16] K. Marzullo, “Tolerating failures of continuous-
valued sensors”, ACM Transactions on Computer
Systems, vol. 8, no. 4, pp. 284-304, Nov. 1990.

[17] B. Parhami, “Voting algorithms”, IEEE Transac-
tions on Reliability, vol. 43, no. 4, pp. 617-629, Dec.
1994.

[18] P. Ramanathan, D. D. Kandlur, and K. G. Shin,
“Hardware-assisted software clock synchronization
for homogeneous sistributed systems”, IEEE Trans-
actions on Computers, vol. C-39, no. 4, pp. 514-524,
Apr. 1990.

[19] P. Ramanathan, K. G. Shin, and R. W. Butler,
“Fault-tolerant clock synchronization in distributed
systems,” IEEE Computer, 23, pp. 33-42, Oct. 1990.

[20] P. M. Thambidurai, et al., “Clock Synchronization
in MAFT,” Proceedings of Nineteenth Fault-Tolerant
Computing Symposium, pp. 142-151, June 1989.

[21] Z. Tong, and R.Y. Kain, “Vote Assignments in
Weighted Voting Mechanism”, Proceedings of the 7th
Symposium on Reliable Distributed Systems, pp. 138-
143, 1988.

[22] J. Wu, and R. Chen, “Efficient Algorithms for
k-out-of-n & Consecutive-weighted-k-out-of-n sys-
tem”, IEEE Transactions on Reliability, vol. 43, no.
4, pp. 327-328, June 1994.

Azad Azadmanesh received the BS degree in Cost Ac-
counting. He received his MS and PhD degrees in Com-
puter Science from Iowa State University and University
of Nebraska-Lincoln, USA, respectively. He is currently a
professor in the Department of Computer Science at Uni-
versity of Nebraska-Omaha. His research interests include
Security and Survivability of Network Systems, Fault-
Tolerance, Reliability Modeling, and Distributed Agree-
ment.

Alireza Farahani received his BS degree in Math-
ematics from state University of New York at Buffalo.
He completed his MS and PhD degrees in Computer
Science and Applied Mathematical Sciences respectively
from University of Rhode Island. He is currently an
associate professor in the Department of Computer
Science and Information Systems at National University
in San Diego, California. His research interests include
Optimization, Control Theory and Algorithm Design.

Lotfi Najjar is an Assistant Professor in the Depart-
ment of Information Systems and Quantitative Analysis
(ISQA) in the College of Information Science and Tech-
nology at University of Nebraska-Omaha. He holds a
PhD in Industrial and Management Systems Engineering
with supporting areas in MIS and Operations Manage-
ment from University of Nebraska-Lincoln. His research
interests are in the areas of Quality Information Systems
in the service (banking industries) and manufacturing in-
dustries, Systems Reliability and Quality, Business Pro-
cess Reengineering, Data Mining, and Total Quality Man-
agement (TQM) & IT.

