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Abstract

In a hierarchical structure, a user in a security class has
access to information items of security classes of lower
levels, but not of upper levels. Based upon cryptographic
techniques, several schemes have been proposed for solv-
ing the problem of access control in hierarchal structures,
which are based on only one cryptographic assumption.
In this paper, we propose a scheme for access control in
hierarchical structures that achieves better security, effi-
ciency, flexibility and generality compared to the schemes
previously published.
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1 Introduction

The concept of hierarchical access control is that an user
of a higher security level class has the ability to access
the information items (e.g., a message, data) in users of
lower security level classes. Hierarchical structures are
used in many applications including military, government,
schools and colleges, private corporations, computer net-
work systems [16, 19], operating systems [6] and database
management systems [5].

In many situations, the hierarchical systems can be rep-
resented by a partially ordered set. We consider an orga-
nizational structure in which users and their own informa-
tion items are divided into a number of disjoint set of secu-
rity classes, say, C0, C1, . . ., Cn−1, where i represents the
identity of the class Ci. For a set C = {C0, C1, . . . , Cn−1},
we call the relation “≤” is partially ordered if it satisfies
the following three properties:

1) Reflexivity property: For all Ci ∈ C, Ci ≤ Ci;

2) Anti-symmetric property: If Ci, Cj ∈ C, Ci ≤ Cj and
Cj ≤ Ci implies Ci = Cj ;

3) Transitivity property: If Ci, Cj , Ck ∈ C, Ci ≤ Cj and
Cj ≤ Ck implies Ci ≤ Ck.

A set is partial ordered on “≤” is called partially or-
dered set (poset, for short). We assume that the set
C = {C0, C1, . . . , Cn−1} is partially ordered with respect
to the relation “≤”, where Ci ≤ Cj means that Ci has se-
curity clearance lower than or equal to Cj . In other words,
users in Cj can access the encrypted information held by
users in Ci. But the opposite is not allowed. Figure1
shows an example of four level hierarchial structure. The
top level classes posses the highest security, and security
decreases with increase in the level. Users in bottom level
classes have the least security. If Ci ≤ Cj , Ci is called a
successor of Cj , and Cj is called a predecessor of Ci. If
there is no Ck such that Ci ≤ Ck ≤ Cj , the class Ci is
called an immediate successor of Cj and Cj is called an
immediate predecessor of Ci. If there is no Ck such that
Cj ≤ Ck, the class Cj is called leaf security class; other-
wise, the class Cj is called a non-leaf security class. It is
obvious that a predecessor class of any class is a non-leaf
security class in a hierarchy.

Assume that a user in the security class C6 in Figure 1
encrypts a message with his/her own encryption key. Be-
cause of access control in a hierarchical structure, only
the users in the security class C6 and his/her predeces-
sors classes (i.e., C3, C1, C0) can decrypt this message.
Nobody else can decrypt this message.

A straightforward access control scheme for poset or-
dered hierarchy is to assign each security class with a key,
and each class has the keys of all its successors. The in-
formation items belonging to a class is encrypted with
the key assigned to that class. As a result, if a class en-
crypts the information items, its predecessors can only
decrypt the encrypted information items. The drawback
of such scheme is to store the keys in higher hierarchi-
cal classes. Many authors have proposed different meth-
ods for solving such type of problem using the concept of
master key. In 1983, Akl-Taylor [1] proposed a scheme
based on cryptography to access of information in a hier-
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Figure 1: An example of a hierarchical structure

archy. Their solution was based on the RSA cryptosystem
[26]. The advantage of this scheme is that the key gen-
eration/derivation algorithms are quite simple. In 1985,
Mackinnon et al. [17] proposed an improved algorithm
for the Akl-Taylor scheme based on top-down approach of
poset ordered hierarchy for reducing the value of public
parameters. In 1988, Sandhu [27] introduced a crypto-
graphic implementation of a tree structural hierarchy for
access control based on one-way function. In 1990, Harn-
Lin [7] proposed a scheme which is similar to the scheme
of Akl-Taylor, but, it is based on bottom-up approach
for key generation. These above mentioned schemes have
some drawbacks. Firstly, if the security classes in the
hierarchy is large, a large storage space is required for
storing the public parameters. Secondly, on the solutions
of dynamic access control problems, the key assignment
scheme encounters great difficulties in re-updating key.
Finally, it is difficult to provide the user with a conve-
nient way to change his/her secret key for the security
considerations. To overcome these problems, a number
of schemes [3, 13, 14, 15, 30, 32] related to access con-
trol have been proposed. In 1992 and 1993, both Chang
et al. [3] and Liaw et al. [13, 14] proposed a scheme
based on Newton’s interpolations method and one-way
function. In 2000, Hwang [9] proposed an access control
scheme for a totally ordered hierarchy based on asym-
metric cryptosystem. In 2001, Wu-Chang [32] proposed a
cryptographic key assignment scheme to solve the access
control policy using polynomial interpolations. But, this
scheme has security flaws as described in [8, 31]. In 2003,
Lin-Hwang-Chang [15] proposed a scheme for access con-
trol, where each security class contains a secret key SKi

and derivation key DKi which are kept secret by the class
Ci. If Ci ≤ Cj , the class Cj can derive the secret key
of the class Ci using the derivation key DKj and public
parameters. In this scheme requires only small amount
of storage space to store public parameters compared to

the Akl-Taylor’s scheme [1]. In 2002, Shen-Chen [30] pro-
posed a scheme which is based on discrete logarithm prob-
lems and the Newton’s interpolating polynomials. The
drawback of this scheme is that a large number of secret
parameters becomes inconvenient to administer and haz-
ardous to keep them secure. To overcome this problem,
we propose a scheme for access control in poset ordered
hierarchies based on one-way secure hash functions [21],
the discrete logarithm problems [11, 18, 22], the factoring
problems [12, 23, 24] and the Newton’s interpolating poly-
nomials [28]. Our scheme requires less amount of storage
space to store secret parameters compared to the Shen
and Chen’s [30] scheme. Further, our scheme is applica-
ble to a large-scale hierarchical model. This scheme also
supports dynamic access control policy. Moreover, our
scheme possesses the enhanced security compared to the
existing schemes.

The remainder of this paper is organized as follows.
Section 2 gives a brief review of the Shen and Chen
scheme. In Section 3, we describe our proposed scheme
for access control in poset ordered structural hierarchies.
Section 4 shows the dynamic key management. In Sec-
tion 5, we discuss the security analysis. Section 6 shows
the space and time complexity of our scheme. In Sec-
tion 7, our scheme is compared with previously published
schemes. Finally, Section 8 concludes the paper.

2 Review of the Shen and Chen

Scheme

In this section, we briefly review the Shen and Chen
scheme [30]. There is a central authority (CA, for short)
in the system. ID1, ID2, . . . , IDn denote the identifiers
of C1, C2, . . . , Cn respectively. CA selects two large
primes P and P ′, such that P = 2P ′ + 1. Next, CA
selects a primitive root g over Galois field GF (P ). Then,
CA publishes g and P as public parameters. Then,
CA assigns the secret parameters bi and SKi to the
class Ci, for i = 1, 2, . . . , n, where n is the number of
classes in the hierarchical system, and gcd(bi, P − 1) =
1 and gcd(SKi, P − 1) = 1. CA computes a pub-

lic parameter Qi = SK
b
−1

i

i mod P , for i = 1, 2, . . . , n.
Then, CA computes a Newton’s interpolating polyno-
mial fi(x) over GF (P ) by interpolating at all the points
(IDj ||(g

SKi mod P ), bj), where the index j corresponds
to every successor Cj of Ci, IDj is the identity of Cj and
|| is a bit concatenation operator. Then, CA publishes the
public parameter Qi of Ci and transmits (SKi, fi(x), bi)
to each class Ci in the hierarchy, where SKi and bi are
transmitted securely to Ci. In the key derivation proce-
dure, suppose Cj ≤ Ci. Then, Ci can derive Cj ’s private
key SKj by computing bj = fi(IDj ||(g

SKi mod P )) and

SKj = Q
bj

j mod P .
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3 The Proposed Scheme

In this section, we propose a new key assignment scheme
for access control in a poset ordered structure hierarchy.
We assume that there is a trusted central authority in the
system. The main purpose of CA is to generate keys and
distribute those keys to all classes in the hierarchy. Our
scheme consists of five following procedures, namely, sys-
tem setup procedure, relationship building procedure, key
generation procedure, public polynomial generation proce-
dure and key derivation procedure.

3.1 System Setup Procedure

CA chooses a large prime P so that P = 2P1 · P2 + 1,
where P1 and P2 are two distinct large primes. P1 and P2

are to be chosen at least 512 bits long primes for security
considerations. CA computes R = P−1

2 . CA then chooses
a primitive root g over Galois field GF (P ). CA selects a
prime Q such that dlog2 Qe ≥ dlog2 P e + dlog2 ne, where
n is the number of security classes in the system. CA
selects a symmetric cryptosystem (for example AES-256
[20]) in which Ek(·) and Dk(·) are the encryption and
decryption algorithms with the key k respectively and a
cryptographic one-way hash function h(·) (for example
SHA-256 [21]). CA keeps g, P , Q, h(·), and encryption
and decryption algorithms as public. In our scheme, we
use AES-256 as symmetric cryptosystem and SHA-256
as cryptographic one-way hash function.

It is noted that the AES-256 has block length, cipher
length and key length each of L = 256-bit. Further, in
case of SHA-256, the message digest length of h(·) is L,
which is same as the key length of AES-256. As a result,
one can use symmetric secret key as the hashed value
h(r) of a long message, say, r. However, if r or h(r) is not
disclosed to an unauthorized third party or an adversary,
it is computationally hard to recover m from c, where
c = Eh(r)(m).

3.2 Relationship Building Procedure

In this subsection, we construct a relationship list among
all classes in a hierarchy in order to store the information
regarding those relationships. It is noted that a hierarchy
is represented as a directed acyclic graph, say, G = (C, E),
where C = {C0, C1, . . . , Cn−1} and E = {ej,i | ej,i is an
edge from Cj to Ci ( i.e., there is a directed path from
Cj to Ci) with a relation Ci ≤ Cj for different Ci and
Cj , where Ci, Cj ∈ C}. C and E represent the vertex
set and edge set of the graph G respectively and each
Ci ∈ C is considered as a vertex in the graph G. Then,
CA publishes the graph G corresponding to the hierarchy.
CA has only access to update the published graph G,
i.e., the relationship among the classes C0, C1, . . . , Cn−1

in that hierarchy.

It is noted that if there exists a relation between two
different classes Ci and Cj with Ci ≤ Cj in a hierarchy,

a path from Cj to Ci exists in graph G corresponding to
that hierarchy.

3.3 Key Generation Procedure

In this subsection, we describe the key generation pro-
cedure to generate keys for all classes in a hierarchy by
CA.

CA randomly chooses a secret key SKi ∈ {0, 1}L for
each class Ci in the hierarchy, where L = 256. Then, CA
transmits securely the secret key SKi to each security
class Ci in the hierarchy. Ci keeps SKi as secret.

3.4 Public Polynomial Generation Proce-

dure

In this subsection, we describe the public polynomial gen-
eration procedure to generate the Newton’s interpolating
polynomial [28] for each non-leaf security class in the hi-
erarchy by CA.

The description of the public polynomial generation
procedure over GF (Q) is as follows:

1) CA chooses a class Ci ∈ C from the graph G corre-
sponding to the hierarchy, where i is the identity of
the class Ci.

2) To construct the public derivation Newton’s inter-
polating polynomials for the class Ci, CA first con-
structs the points containing the identities and se-
cret keys of the immediate successors of Ci, and
the identity i and the secret key SKi of Ci. Con-
sider that Ci has k number of immediate succes-
sors, say, Ci1 , Ci2 , · · · , Cik

, where iu is the identity
of the class Ciu

, u ∈ {1, 2, . . . , k}. CA constructs
the points (iu||DKi, Eh(i||iu||SK2

i
)(SKiu

)) for all u

such that u ∈ {1, 2, . . . , k}, where || is a bit con-

catenation operator and DKi = gSK3
i mod R mod P

is the derivation key of the class Ci. Then, con-
taining these points, CA derives the Newton’s inter-
polating polynomial for the class Ci, which is de-
noted by NIPi, i(x) over GF (Q). Next, CA com-
putes the Newton’s interpolating polynomial for the
class Ci after constructing the points containing the
identities and secret keys of the immediate succes-
sors of each Ciu

, u ∈ {1, 2, . . . , k}, and the iden-
tity i and the secret key SKi of Ci. Now, consider
the case for the immediate successor Ci1 of Ci. For
example, let Ci1 have only four immediate succes-
sors, say, Ca, Cb, Cc and Cd. Then, CA constructs
four points (a||DKi, Eh(i1||a||SK2

i
)(SKa)), (b||DKi,

Eh(i1||b||SK2
i
)(SKb)), (c||DKi, Eh(i1||c||SK2

i
)(SKc))

and (d||DKi, Eh(i1||d||SK2
i
) (SKd)). Then, contain-

ing these points, CA derives another Newton’s in-
terpolating polynomial for the class Ci, which is de-
noted by NIPi, i1(x) over GF (Q). Similarly, CA de-
rives NIPi, iu

(x) for all u ∈ {2, 3, . . . , k} and then
CA computes NIPi,a(x), NIPi,b(x), NIPi,c(x) and
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NIPi,d(x) for the class Ci and so on for all succes-
sors of Ci, which are non-leaf security classes in the
hierarchy. NIPi,j(x) stands for the Newton’s inter-
polating polynomial for the class Ci at the points
containing the identities and secret keys of all imme-
diate successors of Cj , and the identity j of Cj , and
the secret key SKi and the derivation key DKi of Ci.

To construct the public derivation Newton’s inter-
polating polynomials for the class Ci, CA first con-
structs the points containing the identities and se-
cret keys of the immediate successors of Ci, and
the identity i and the secret key SKi of Ci. Con-
sider that Ci has k number of immediate succes-
sors, say, Ci1 , Ci2 , · · · , Cik

, where iu is the identity
of the class Ciu

, u ∈ {1, 2, . . . , k}. CA constructs
the points (iu||DKi, Eh(i||iu||SK2

i
)(SKiu

)) for all u

such that u ∈ {1, 2, . . . , k}, where || is a bit con-

catenation operator and DKi = gSK3
i mod R mod P

is the derivation key of the class Ci. Then, con-
taining these points, CA derives the Newton’s inter-
polating polynomial for the class Ci, which is de-
noted by NIPi, i(x) over GF (Q). Next, CA com-
putes the Newton’s interpolating polynomial for the
class Ci after constructing the points containing the
identities and secret keys of the immediate succes-
sors of each Ciu

, u ∈ {1, 2, . . . , k}, and the iden-
tity i and the secret key SKi of Ci. Now, consider
the case for the immediate successor Ci1 of Ci. For
example, let Ci1 have only four immediate succes-
sors, say, Ca, Cb, Cc and Cd. Then, CA constructs
four points (a||DKi, Eh(i1||a||SK2

i
)(SKa)), (b||DKi,

Eh(i1||b||SK2
i
)(SKb)), (c||DKi, Eh(i1||c||SK2

i
)(SKc))

and (d||DKi, Eh(i1||d||SK2
i
) (SKd)). Then, contain-

ing these points, CA derives another Newton’s in-
terpolating polynomial for the class Ci, which is de-
noted by NIPi, i1(x) over GF (Q). Similarly, CA de-
rives NIPi, iu

(x) for all u ∈ {2, 3, . . . , k} and then
CA computes NIPi,a(x), NIPi,b(x), NIPi,c(x) and
NIPi,d(x) for the class Ci and so on for all succes-
sors of Ci, which are non-leaf security classes in the
hierarchy. NIPi,j(x) stands for the Newton’s inter-
polating polynomial for the class Ci at the points
containing the identities and secret keys of all imme-
diate successors of Cj , and the identity j of Cj , and
the secret key SKi and the derivation key DKi of Ci.

Note that if a successor of Ci is a leaf security class,
CA does not derive the Newton’s interpolating poly-
nomial for that successor.

3) CA repeats Step 2 until each non-leaf security class
is taken in the hierarchy.

The above procedure is summarized by the following
algorithm.

Algorithm 1.

input:

1) G = (C, E), a directed acyclic graph (as described in
Subsection 3.2).

2) SK, an array in the range from 0 to n−1, where SKi

contains the secret key of Ci for i = 0, 1, . . . , n − 1.

3) n, the number of vertices of G, i.e., number of classes
in the hierarchy.

output: The Newton’s interpolating polynomials for ev-
ery Ci ∈ C, where Ci is a non-leaf security class in G.

Polynomial Generation (G, SK, n)
{

1. Integer: l, T , DK, X[0:n−1], Y[0:n−1];
[comment: l, T and DK are three integer
variables, and X and Y are two arrays of
integer variables]

2. while(C 6= φ) do
[comment: φ represents null set]

{ 2.1. Choose an element Ci ∈ C;
2.2. Set IS1 contains all immediate successors

of Ci;
2.3. If IS1 = φ then goto step-2.9 ;
2.4. T = SK2

i ;
2.5. DK = gT ·SKi mod R mod P ;

[comment: DK = gSK3
i mod R mod P ]

2.6. Set S contains all successors of Ci;
2.7. Set A = S ∪ {Ci};
2.8. while (A 6= φ) do

{ 2.8.1. Select an element Cj ∈ A;
2.8.2. Set IS2 contains all immediate

successors of Cj ;
2.8.3. If IS2 = φ then goto step-2.8.8;
2.8.4. l = 1;
2.8.5. while (IS2 6= φ) do

{ 2.8.5.1. Choose an element
Ck ∈ IS2;

2.8.5.2. Xl = k||DK;
2.8.5.3. Yl = Eh(j||k||T )(SKk);

[comment: Yl = Eh(j||k||SK2
i
)(SKk)]

2.8.5.4. l = l + 1;
2.8.5.5. IS2 = IS2 \ {Ck};

[comment: “\” represents set minus]
}

2.8.6. l = l − 1;
2.8.7. Computes NIPi,j containing the

points (Xr, Yr) for 1 ≤ r ≤ l;
2.8.8. A = A \ {Cj};

}
2.9. C = C \ {Ci};

}
}

CA publishes all the Newton’s interpolating polyno-
mials (i.e., the coefficients of all the polynomials) corre-
sponding to each non-leaf security class Ci in the hierar-
chy. But, only CA owns the authority to update public
Newton’s interpolating polynomials.

Example 1. Let us revisit the hierarchical structure pre-
sented in Figure 1. Suppose CA runs the algorithm-1 to
compute all the Newton’s interpolating polynomials for all
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non-leaf security classes in the hierarchy, which are shown
below.

The Newton’s interpolating polynomials for the class C0:

NIP0,0(x) is computed containing the following two
points (1||DK0, Eh(0||1||SK2

0
)(SK1)) and (2||DK0,

Eh(0||2||SK2
0
)(SK2)).

NIP0,1(x) is computed containing the following two
points (3||DK0, Eh(1||3||SK2

0
)(SK3)) and (4||DK0,

Eh(1||4||SK2
0
)(SK4)).

NIP0,2(x) is computed containing the following two
points (4||DK0, Eh(2||4||SK2

0
)(SK4)) and (5||DK0,

Eh(2||5||SK2
0
)(SK5)).

NIP0,3(x) is computed containing the point (6||DK0,
Eh(3||6||SK2

0
)(SK6)).

NIP0,4(x) is computed containing the point (7||DK0,
Eh(4||7||SK2

0
)(SK7)).

NIP0,5(x) is computed containing the point (7||DK0,
Eh(5||7||SK2

0
)(SK7)).

The Newton’s interpolating polynomials for the class C1:

NIP1,1(x) is computed containing the following two
points (3||DK1, Eh(1||3||SK2

1
)(SK3)) and (4||DK1,

Eh(1||4||SK2
1
)(SK4)).

NIP1,3(x) is computed containing the point (6||DK1,
Eh(3||6||SK2

1
)(SK6)).

NIP1,4(x) is computed containing the point (7||DK1,
Eh(4||7||SK2

1
)(SK7)).

The Newton’s interpolating polynomials for the class C2:

NIP2,2(x) is computed containing the following two
points (4||DK2, Eh(2||4||SK2

2
)(SK4)) and (5||DK2,

Eh(2||5||SK2
2
)(SK5)).

NIP2,4(x) is computed containing the point (7||DK2,
Eh(4||7||SK2

2
)(SK7)).

NIP2,5(x) is computed containing the point (7||DK2,
Eh(5||7||SK2

2
)(SK7)).

The Newton’s interpolating polynomial for the class C3:

NIP3,3(x) is computed containing the point (6||DK3,
Eh(3||6||SK2

3
)(SK6)).

The Newton’s interpolating polynomial for the class C4:

NIP4,4(x) is computed containing the point (7||DK4,
Eh(4||7||SK2

4
)(SK7)).

The Newton’s interpolating polynomial for the class C5:

NIP5,5(x) is computed containing the point (7||DK5,
Eh(5||7||SK2

5
)(SK7)).

3.5 Key Derivation Procedure

When a class, say, Cj , needs to compute the secret key
of an another class, say, Ci, where Ci is a successor of
Cj (i.e., Ci ≤ Cj), Cj first finds a path from itself to the
class Ci from the graph G. Figure 2 shows an example of
a chain, where Cj wants to derive the secret key SKi of
the class Ci and there exists a path from Cj to Ci with
some intermediate classes, say, Ck1

, Ck2
, . . ., Ckl

. Here
Ci ≤ Ck1

≤ Ck2
≤ . . . ≤ Ckl

≤ Cj , where Ckr
is the

immediate successor of Ckr+1
for r = 1, 2, . . . , l − 1, and

Ci and Ckl
are the immediate successors of Ck1

and Cj

respectively.

C
j

Ck
1

C
2

k

Ck
l

C i

Figure 2: An example of a chain in a hierarchical structure

Cj computes the derivation key DKj as

DKj = gSK3
j mod R mod P. (1)

Using its secret key SKj. Cj then computes SKi as fol-
lows:

NIPj, kl
(i||DKj) = Eh(kl||i||SK2

j
)(SKi) (2)

⇒ SKi = Dh(kl||i||SK2
j
)(NIPj, kl

(i||DKj)),

where kl is the identity of Ckl
, Ckl

the immediate pre-
decessor of Ci and NIPj,kl

(x) stands for a Newton’s in-
terpolating polynomial for the class Cj at the points con-
taining the identities and secret keys of all the immediate
successors (including the class Ci) of Ckl

, and the iden-
tity kl of Ckl

, and the secret key SKj and the deriva-
tion key DKj of Cj . NIPj, kl

(i||DKj) is the value of the
Newton’s interpolating polynomial NIPj, kl

(x) at the x-
coordinate (i||DKj). If the x-coordinate to the Newton’s
interpolating polynomial NIPj, kl

(x) is known, one gets
the y-coordinate corresponding to the x-coordinate. For
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an example, if we supply x-coordinate as i||DKj, one gets
y-coordinate as Eh(kl||i||SK2

j
)(SKi) from Equation (2). It

is noted that even if the derivation key DKj of a class Cj

is known to an adversary, it is computationally infeasible
to compute the secret key SKj of that class Cj . In order
to derive SK3

j , the adversary needs to solve the discrete
logarithm problem over a large prime field GF (P ). The
secret key SKj of the class Cj is to be known by the ad-
versary from SK3

j mod R, where R = P−1
2 . Since R is

product of two large prime factors, it is computationally
difficult for the adversary to derive SKj due to the integer
factorization problem. Hence, we note that given DKj,
g and P to compute SKi from the Equation (1) is based
on both discrete logarithm as well as integer factorization
problems.

Example 2. Suppose the class C0 wants to compute the
secret key SK7 of the class C7 in Figure 1. At first C0

supplies the x-coordinate as 7||DK0 to the Newton’s in-
terpolating polynomial NIP0,4(x) (or NIP0,5(x)). Then
C0 derives Eh(4||7||SK2

0
)(SK7) (or Eh(5||7||SK2

0
)(SK7))

and decrypts that value with the key h(4||7||SK2
0) (or

h(5||7||SK2
0)) to compute the secret key SK7 correspond-

ing to the class C7.

4 Dynamic Key Management

In this section, we present the dynamic key management
problems like adding/deleting a class, adding/deleting a
relationship and changing a secret key.

4.1 Adding a New Class

Let Ca be a new class to be added as an immediate suc-
cessor of Ci into the existing system. Then, all the pre-
decessors of Ci will also be the predecessors of Ca. CA
does the following steps:

1) CA randomly chooses a secret key SKa ∈ {0, 1}L.

2) CA computes derivation key DKa = gSK3
a mod R mod

P .

3) If Ca is a leaf security class, CA constructs
NIPk, a(x) for all Ck such that Ci ≤ Ck including
the point (a||DKk, Eh(i||a||SK2

k
)(SKa)). Then, CA

publishes the coefficients of every NIPk, a(x) corre-
sponding to the class Ck.

4) Otherwise, if Ca is not a leaf security class, we
proceed as follows. Let Cj ≤ Ca ≤ Ci, where
Ca is an immediate successor and immediate pre-
decessor of Ci and Cj respectively. CA constructs
NIPa, k(x) for all Ck such that Ck ≤ Ca and pub-
lishes the coefficients of every NIPa, k(x) correspond-
ing to the class Ca. CA reconstructs NIPl, i(x) for
all Cl such that Ci ≤ Cl including one more point
(a||DKl, Eh(i||a||SK2

l
)(SKa)) and publishes the coef-

ficients of every NIPl, i(x) after deleting the old ones
corresponding to the class Cl.

5) CA transmits securely SKa to the class Ca.

4.2 Deleting a Class

Let Cd be a class to be deleted from the existing system.
Then the following steps are required:

1) Let Ci be an immediate predecessor of Cd. CA
reconstructs NIPk, i(x) for all Ck such that Ci ≤
Ck excluding the point (d||DKk, Eh(i||d||SK2

k
)(SKd)).

Then, CA publishes the coefficients of every
NIPk, i(x) after deleting the coefficients of old ones
corresponding to the class Ck.

2) CA deletes all information corresponding to the class
Cd.

4.3 Adding a Relationship

Suppose that a new relationship to be added between
two different Ci and Cj such that Ci ≤ Cj holds, where
Ci is an immediate successor of Cj . CA reconstructs
NIPk, i(x) for all Ck such that Cj ≤ Ck including the
point (i||DKk, Eh(j||i||SK2

k
)(SKi)) and then CA publishes

the coefficients of every NIPk, i(x) corresponding to the
class Ck.

4.4 Deleting a Relationship

Suppose that a relationship to be deleted between two
different Ci and Cj with a relation Ci ≤ Cj , where Cj

is the immediate predecessor of Ci. CA reconstructs
NIPk, j(x) for all Ck such that Cj ≤ Ck excluding the
point (i||DKk, Eh(j||i||SK2

k
)(SKi)) and then publishes the

coefficients of every NIPk, j(x) after deleting the coeffi-
cients of old ones corresponding to the class Ck.

4.5 Changing a Secret Key

Sometimes for security it is needed to change the secret
key of a class. Suppose old secret key SKi of the class Ci

will be changed by a new secret key SK ′
i ∈ {0, 1}L. CA

then performs the following steps:

1) CA recomputes derivation key:

DK ′
i = g(SK′

i)
3 mod R mod P.

2) Using new secret key SK ′
i and derivation key DK ′

i

of Ci, CA reconstructs NIPi,j(x) for all Cj such
that Cj ≤ Ci and publishes the coefficients of every
NIPi,j(x) after deleting the old ones corresponding
to the class Ci. Then, using the new secret key SK ′

i

of Ci, CA also reconstructs NIPk,i(x) for all Ck dif-
ferent from Ci such that Ci ≤ Ck and publishes the
coefficients of every NIPk,i(x) after deleting the old
ones corresponding to the class Ck.

3) CA securely transmits the secret key SK ′
i to the class

Ci.
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5 Security Analysis

In this section, we present the security analysis of our
scheme against different kinds of attacks from inside and
outside of the system.

Contrary attack: Let us consider Ci ≤ Cj . Let us
verify whether SKj can be calculated by a user
being an adversary at level Ci through the se-
cret key SKi of its own and all public parame-
ters. If Ck is the immediate predecessor of Ci

and Ck ≤ Cj , SKi can be computed by Cj as
SKi = Dh(k||i||SK2

j
)(NIPj, k(i||DKj)). Since DKj =

gSK3
j mod R mod P , SKj can be computed from

the equation Eh(k||i||SK2
j
)(SKi) = NIPj, k(i||DKj),

which is based on the difficulty of computing the dis-
crete logarithm problem over GF (P ) and the factor-
ing problem to R even if DKj is known to the adver-
sary. Also, it is known that the problem of computing
n-th root of xn mod R for any integer n ≥ 2 is as dif-
ficult as factoring R, where R is product of two large
primes and it has proved in [25] for the case of n = 2.
As a result, even if DKj is known to the adversary at
level Ci, it is also difficult to compute the secret key
SKj of the class Cj because of the fact that it is com-
putationally infeasible to compute SKj due to the
discrete logarithms and factorization problems. Fur-
ther, finding roots of a polynomial over a large prime
field by the adversary at level Ci may feasible due to
results based on [2, 4, 10]. In our scheme, SKi is en-
crypted using the encryption key h(k||i||SK2

j ), where
the computation of DKj is computationally hard to
the adversary at level Ci because of the fact that SKj

is not known to the adversary. As a result, even if
DKj is known to the adversary at level Ci, it is com-
putationally hard to compute SKj of the class Cj us-
ing root finding algorithms by the adversary at level
Ci, which is already discussed previously in Subsec-
tion 3.5. The adversary can also try to compute the
secret encryption key h(k||i||SK2

j ). Therefore, the
adversary has to compute DKj and then the adver-
sary has to solve the plaintext-ciphertext pair attacks
against the symmetric cryptosystem, which is again
difficult problem for insufficient number of plaintext-
ciphertext pairs because in practical situations, the
number of security classes is not more in order to
derive the encryption key from plaintext-ciphertext
pairs. Even if the encryption key is known to the ad-
versary, it is also difficult to compute the secret key
SKj from h(k||i||SK2

j ) because of the fact that it is
computationally infeasible to invert the secure one-
way hash function [29]. Since there are no efficient
algorithms available so far for solving discrete log-
arithm problems, integer factorization problems and
inversion of one-way hash functions, we conclude that
our scheme is secure against such type of attack.

Collaborative attack: Let us check whether the de-
cryption key of the upper level class can be derived

by two or more lower security level classes. Let us
consider Cj , Ck and Cl be the successors of Ci. As-
sume that Cj , Ck and Cl compromise their secret keys
SKj, SKk and SKl. We assume that Cx, Cy and Cz

are the immediate predecessors of Cj , Ck and Cl re-
spectively, where Cx ≤ Ci, Cy ≤ Ci and Cz ≤ Ci.
We investigate whether SKi can be calculated by
Cj , Ck and Cl using their secret keys and public pa-
rameters. The equations known to them are as fol-
lows:

SKj = Dh(x||j||SK2
i
)(NIPi, x(j||DKi)),

SKk = Dh(y||k||SK2
i
)(NIPi, y(k||DKi)),

SKl = Dh(z||l||SK2
i )(NIPi, z(l||DKi)),

where DKi = gSK3
i mod R mod P . From these above

equations, the derivation of SKi is based on the
difficulty of computing the discrete logarithms over
GF (P ) and the factoring a large composite integer
R as in contrary attack. Hence, it is computationally
hard to compute secret key of a class for the collab-
oration of two or more lower security level classes.
As a result, our scheme is secure against this kind of
attack.

Interior collecting attack: Let us consider the sub-
ordinate class Cj which be accessible by m pre-
decessors, say, Ci, Ci+1, . . ., and Ci+m−1. Again,
assume that the immediate predecessors of Cj be
{Ck, Ck+1, . . . , Ck+m−1}, where Ck+s ≤ Ci+s for all
s ∈ {0, 1, . . . , m − 1}. Let us verify whether a user
of Cj being an adversary can derive the secret key
of one of its predecessors Ci, Ci+1, . . ., and Ci+m−1.
Assume that the following equations are known to
the attacker.

SKj = Dh(k||j||SK2
i
)(NIPi, k(j||DKi)),

SKj = Dh(k+1||j||SK2
i+1

)(NIPi+1, k+1(j||DKi+1)),

...

SKj = Dh(k+m−1||j||SK2
i+m−1

)

(NIPi+m−1, k+m−1(j||DKi+m−1)).

It is also computationally hard as in contrary at-
tack to compute the secret key of one of the classes
{Ci, Ci+1, . . . , Ci+m−1} by the adversary. Hence, our
scheme is secure against this attack.

Exterior attack: Assume that an intruder enters from
outside the system, i.e., he/she is not an user of any
class of the hierarchy. He/she being an adversary
may try to compute the secret key SKi of a class
Ci using only the public parameters. The security
of our scheme resists the unauthorized intruder. Be-
cause, even if DKi and h(j||k||SK2

i ) are known to the
adversary, it computationally hard to compute SKi,
where k and j are the identities of the classes Ck and
Cj respectively, and Ck is the immediate successor of
Cj with Ck ≤ Cj ≤ Ci.
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Sibling attack: Let us consider Cj and Ck be the sib-
lings with same immediate predecessor Ci. Let us
investigate whether Cj can compute SKk of the class
Ck or vice versa. Let a user of Cj being an adver-
sary want to compute SKk. Cj already knows the
following equation:

SKj = Dh(i||j||SK2
i
)(NIPi, i(j||DKi)).

If Cj wants to compute SKk (= Dh(i||k||SK2
i )(

NIPi, i(j||DKi))) using its secret key SKj and all
public parameters, Cj needs to compute SKi first,
which is computationally hard as in contrary attack.
As a result, it is computationally hard to compute
SKk by the adversary without deriving SKi. Hence,
our scheme is secure against this attack.

Interior root finding attack: In this attack, a security
class being an adversary has to compute the roots of
a polynomial over a prime field GF (Q), which is fea-
sible due to [2, 4, 10]. Then, the adversary can try
to compute the secret key of a class which is not a
successor of the class. For an example, in Figure 1,
C2 can compute the secret keys SK4, SK5 and SK7

of the classes C4, C5 and C7 respectively. Then, C2

can try to compute the secret key of any one of the
classes {C0, C1, C3, C6}. However, Hus et al. [8] show
that C2 can compute the secret key SK3 of the class
C3 in the Shen and Chen’s scheme [30] for the same
hierarchical structure as in Figure 1 after computing
the secret key SK4 of the class C4 and then applying
the root finding algorithm supplying SK4 and the
identity 3 of the class C3 (more details can be found
in [8]). Further, using the secret key SK3, C2 can
also compute the secret key SK6 of the class C6 .
Now, let us consider our scheme. Consider that Ci

and Cj have a common successor Ck. Beside that
common successor, let Ci and Cj have other succes-
sors. Let us check whether Ci can compute the secret
key of any other successor of Cj which is not a suc-
cessor of Ci, or whether Cj can compute the secret
key of any successor of Ci which is not a successor of
Cj . If it is true, these violate the hierarchy require-
ment. However, such type of attack is not possible in
our scheme because of the fact that successors’ secret
keys are encrypted by the secret key of its predeces-
sor to construct the Newton’s interpolating polyno-
mials corresponding to that predecessor. Following
example shows that our scheme is secure against the
attack in [8]. In Figure 1, C1 and C2 have a common
successor C4. C1 has also another successor C3, and
C2 has another successor C5 and so on. Let us inves-
tigate whether C2 being an adversary can compute
the secret key SK3 of C3. As C4 is a successor of C2,
C2 can compute the secret key SK4 of the class C4.
But, it is computationally hard for the adversary C2

to compute the secret key SK3 of the class C3 from
the public parameters and the secret key SK4 of the
class C4 without knowing the secret key SK1 of the

class C1 from the following equations

SK3 = Dh(1||3||SK2
1
)(NIP1,1(3||DK1)),

SK4 = Dh(1||4||SK2
1
)(NIP1,1(4||DK1)).

As a result, it is computationally hard for C2 be-
ing an adversary to compute the secret key SK3 of
C3. Thus, our scheme is secure against this attack,
whereas such attack can be mounted on Shen and
Chen’s scheme (see in [8]).

Exterior root finding attack: In this attack, an ad-
versary who is not a user in any class in a hierarchy
can derive secret key of a class by root finding algo-
rithm over a large prime field. Such type of attacks
is shown in more details in [31]. All successors’ secret
keys of a class Ci are embedded in its public polyno-
mial, say, fi(x), where Ci can compute the secret keys
of its all successors. When CA adds or deletes some
immediate successors from Ci, CA updates the public
polynomial as f ′

i(x). But, for those successors, which
remain as successors of Ci, their secrets are still com-
puted by Ci using f ′

i(x). As a result, the adversary
can try to compute x-coordinates of points which are
used to construct the public polynomials by solving
the equation fi(x) − f ′

i(x) = 0. Then, the adversary
can try to compute the secret key of the successors
of Ci (more details can be found in [31]). But, in our
scheme, the adversary can compute the x-coordinates
from the equation NIPi,j(x) − NIP ′

i,j(x) = 0 cor-
responding to the class Ci, where j is the identity
of Cj with Cj ≤ Ci. That is adversary can get

k||gSK3
i mod R mod P , where k is the identity of an

immediate successor of Cj . From this value, it is com-
putationally infeasible to compute SKi. As a result,
it is computationally hard to derive the secret key
SKk of the class Ck, which is an immediate succes-
sor of the class Cj , and Ck ≤ Cj ≤ Ci. Since SKk is
encrypted by the encryption key h(j||k||SK2

i ), which
is composed by the secret key SKi of the class Ci,
our scheme is secure against such type of attack. But,
such type of attack can be possible for the Shen and
Chen’s scheme (see in [31]).

6 Efficiency of our Scheme

Storage space requirement: In our scheme, the secret
parameter is SKi for each class Ci, where SKi ∈
{0, 1}L. Therefore, the storage requirement for stor-
ing the secret parameter is L bits. Let us consider
Ci has k number of relations among all successors of
Ci and the class Ci itself. Then, from the key gen-
eration procedure, CA publishes k number of public
parameters (i.e., all coefficients of the Newton’s in-
terpolating polynomials) corresponding to the class
Ci, where each public parameter lies between 1 and
Q. Therefore, the storage requirement for storing
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Table 1: Functional comparisons

Items ⇒ Public storage for a Secret storage for a key derivation
Schemes ⇓ class with n successors, class with n successors complexity

and n′ relations among
these n successors
and the class itself

Akl-Taylor Ω(n3 log2 n) bits dlog2Ne bits Exponentiation
Harn-Lin Ω(n3 log2 n) bits dlog2Ne bits Exponentiation

2 Exponentiation
Shen-Chen O(ndlog2 P e) bits Ω(ndlog2P e) bits +

Interpolations
3 Multiplications +

Our scheme O(n′dlog2 Qe) bits L bits Exponentiation + Hash +
Decryption + Interpolations

the public parameters is kdlog2Qe bits correspond-
ing to the class Ci. In the Shen and Chen’s scheme,
3dlog2 P e + rdlog2 P ′′e bits are required to store the
secret parameters for each class Ci, where r is the
number of successors of Ci, P ′′ is a prime slightly
larger than P . Since L < 3dlog2 P e+kdlog2 P ′′e and
L < dlog2 P e because L = 256 and dlog2 P e ≥ 512
as P can be at least 512-bit for security on discrete
logarithm problems, our scheme requires less amount
of space to store secret parameters compared to the
Shen and Chen’s scheme.

Time requirement for deriving a key: Let n + 1 be
the number of successors of a class Cj , and Ci be a
successor of Cj . In worst case, there is n + 1 number
of successors which may be the immediate successors
of Cj , and as a result, the degree of the Newton’s
interpolating polynomial is n for the class Cj . More-
over, the evaluation of a n degree polynomial needs
n number of modular multiplications and n modu-
lar additions. Thus, the time required to evaluate
a polynomial of degree n at a point is O(n log2

2 Q)
in terms of bit operations, where the notation O (big
oh) denotes upper bound. Further, the time required
to compute the derivation key is O(log3

2 P ) bit op-
erations because it is exponentiation operation on
large modulus P . As a result, in our scheme, it takes
O(n log2

2 Q + log3
2 P ) computational time in terms of

bit operations to derive a secret key of lower secu-
rity level class by an upper security level class after
neglecting the computational time taken for multipli-
cation, hashing and decrypting operations because of
the fact that these operations take less computational
time compared to the exponentiation operations on
large modulus.

7 Comparison

In this section, we compare our scheme with the previ-
ously published schemes. Ω represents the lower bound.

Table 1 shows that the space requirement to store pub-
lic parameters and secret parameters, and time taken to
derive a key for different schemes. Let us assume that P

(a large prime) and N (product of two large primes) be
in the range between 1024-2048 bits for decent security
and are of the same size, and L = 256. However, in the
Shen and Chen’s scheme, when hierarchy becomes quite
large, the users in a higher security level classes need to
store a large number of secret parameters. As a result, a
large numfer of secret parameters becomes inconvenient
to administer and hazardous to keep them secure. But, in
our scheme, the size of secret parameter is always L bits,
which does not depend on the size of the hierarchy. As a
result, in our scheme, the size of secret parameter is much
less than the Shen and Chen’s scheme even if the hierar-
chy becomes large. Further, we observe from this table
that our scheme requires three modular multiplication,
one hashing, one modular exponentiation, computation
of one interpolating polynomial, and one symmetric de-
cryption operations. We know that cryptographic hashing
and symmetric encryption/decryption are much more ef-
ficient than modular exponentiation for a large exponent
compared to the computational point of view, whereas
two modular exponentiation and computation of one in-
terpolating polynomial are needed in the Shen and Chen’s
scheme. Since there is one more modulo exponentiation
is needed in the Shen and Chen’s scheme compared to our
scheme to derive a secret key of a class, our scheme is more
efficient than the Shen and Chen’s scheme. Furthermore,
sometimes the computation of interpolating polynomial
in our scheme is less than that of the Shen and Chen’s
scheme. In the Shen and Chen’s scheme, the Newton’s
interpolating polynomial for a class Ci consists of points
corresponding all successors of Ci. There is only one in-
terpolating polynomial corresponding to the class and the
degree of the polynomial depends on the number of suc-
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Figure 3: An example of poset ordered hierarchical struc-
ture

cessors of that class. If a class has n number of successors,
the degree of polynomial is n − 1 corresponding to that
class. On the other hand, in our scheme, the number of
the Newton’s interpolating polynomial may be more than
one corresponding to a class, which depends upon the
number of non-leaf successors of that class plus one. For
an example, in Figure 1, the number of the Newton’s in-
terpolation polynomials for the class C0 is 6, because the
number of non-leaf successors of C0 is 5 plus 1. Further,
the degree of the Newton’s interpolating polynomial in
our scheme is less then or equal to the degree that of the
Shen and Chen’s scheme corresponding to a class for com-
puting the secret key of a successor of that class, which
can be shown by the following example.

Example 3. In Figure 3, C0 has two immediate
successors C1 and C2. C1 has k1 number of im-
mediate successors, say, C3, C4, . . . , Ck1+2. Further-
more, C3 has k2 number of immediate successors, say,
Ck1+3, Ck1+4, . . . , Ck1+k2+2, and C4 has an immediate
successor Ck1+k2+2. Now, let C1 want to compute the
secret key of the class Ck1+3. In the Shen and Chen’s
scheme, the total number of successors of C1 is k1 + k2.
Therefore, the degree of the Newton’s interpolation poly-
nomial corresponding to the class C1 is k1+k2−1. As a re-
sult, (k1+k2−1) modular multiplications and (k1+k2−1)
modular additions are required to compute the secret key
of Ck1+3 by C1. But, in our scheme, to derive the secret
key of the class Ck1+3, C1 needs the Newton’s interpola-
tion polynomial NIP1,3(x) which is of degree k2−1. Thus,
k2 − 1 modular multiplications and k2 − 1 modular addi-
tions are required for our scheme. Hence, for deriving the
secret key of the class Ck1+3, the degree of NIP1,3(x) in
our scheme is less than the degree of the Newton’s interpo-
lating polynomial in Shen and Chen’s scheme correspond-

ing to the class C1. Due to less number of modular multi-
plications and additions, our scheme requires less compu-
tational time for interpolation than that of the Shen and
Chen’s scheme. If we consider the class C3 in Figure 3,
the degree of the Newton’s interpolating polynomial is k2,
which is same both in our scheme, and Shen and Chen’s
scheme. Hence, the degree of the Newton’s interpolating
polynomial in our scheme is less then or equal to the de-
gree that of the Shen and Chen’s scheme corresponding
to a class for computing the secret key of a successor of
that class. Further, when a user in a class wants to com-
pute the secret key of its successor, he/she first chooses
the appropriate Newton’s interpolating polynomial so that
degree of the polynomial is less.

Hence, our scheme is more efficient than the Shen and
Chen’s scheme. Further, when hierarchy becomes quite
large, Akl-Taylor’s, and Harn-Lin’s schemes are not ap-
plicable because of the fact that the size of public parame-
ters will increase dramatically. Moreover, in Akl-Taylor’s,
and Harn-Lin’s schemes, the key assignment technique
encounters great difficulties in re-updating key. Finally,
it is difficult to provide the user with a convenient way to
change his/her secret key for the security considerations
for these schemes. However, our scheme eliminates these
difficulties.

8 Conclusion

In this paper, we have proposed a scheme for solving the
multilevel key generation technique in poset ordered hier-
archies. The security of our proposed scheme is based
on the difficulties of simultaneously solving the strong
collision resistant of secure one way hash functions, the
discrete logarithms and the factoring a composite num-
ber, i. e. a mixture of multiple cryptographic difficulty
problems, to enhance the security of hierarchical access
control. Furthermore, our scheme is applicable to a large-
scale hierarchical model. By comparing with the Shen and
Chen’s scheme, our proposed scheme needs less computa-
tional time to derive a key and provides better security.
This scheme also supports the dynamic key management
techniques. Hence, the proposed scheme is more efficient,
flexible and secure.
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