
International Journal of Network Security, Vol.7, No.2, PP.218–222, Sept. 2008 218

Repairing Efficient Threshold Group Signature

Scheme

Zuhua Shao

Department of Computer and Electronic Engineering, Zhejiang University of Science and Technology

No. 318, LiuHe Road, Hangzhou, Zhejiang, 310023, P. R. of China

(Email: zhshao 98@yahoo.com)

(Received July 15, 2006; revised and accepted Apr. 21, 2007)

Abstract

To enhance the efficiency of threshold group signature
schemes, Yu and Chen, recently, proposed an efficient
threshold group signature scheme. By using elliptic
curves, the proposed scheme can use short secret key and
reduces the load of signature verification. However, in
this paper we find that there are many ambiguities in the
proposed scheme. The verifiers cannot verify valid sig-
natures, while adversaries can not only easily forge the
signatures of individual members, but also forge group
signatures without the knowledge of secret keys. Though
we can modify it to withstand this forgery attack, the
modified scheme cannot withstand a general coalition at-
tack inherent in many threshold signature schemes.
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1 Introduction

Globalization of Internet has accelerated the exchange
of electronic information on both the personal and busi-
ness levels. E-government, online tax filing and electronic
banking are important areas for developments. For elec-
tronic political and commercial applications, evidence of
possession of documents is especially important. A dig-
ital signature is analogous to an ordinary hand-written
signature and establishes both of sender authenticity and
data integrity assurance. At present, there are two most
popular public-key algorithms which can provide digital
signatures: One is the RSA-type signature scheme [8], the
security of which is based on factoring; the other is the
ElGamal-type signature scheme [3], the security of which
is based on the discrete logarithm problem over the finite
field GF (p). However, the length of the RSA signature
is too long and the verification of the ElGamal signature
requires too more computations.

However, elliptic curve cryptosystems ECC [1, 5, 6, 7],
which has a smaller secret key and similar level of security
to other cryptosystems, are very appealing. Hence, ECC
is already becoming a hot research area.

The concept of group-oriented cryptography, intro-
duced by Desmedt [2] in 1987, plays an important role in
the modern society. A group-oriented signature scheme is
a method which allows a group to decide its signing pol-
icy in such a way that only the authorized subsets of this
group can cooperate to sign messages. If the authorized
subsets are any set of t members of this group, then it
is called a threshold signature scheme. That is, a (t, n)
threshold signature scheme allows any t or more signers
of the group to cooperatively sign messages on behalf of
the group, but t − 1 or fewer signers cannot [4, 12].

Recently, Yu and Chen [11], by using elliptic curves,
proposed a (t, n) threshold group scheme that can use
short secret key and reduces the load of signature veri-
fication. However, in this paper we find that there are
many ambiguities in the proposed scheme. The verifiers
cannot verify valid signatures, while adversaries can not
only easily forge the signatures of individual members,
but also forge group signatures without the knowledge of
secret keys.

We also modify the Yu-Chen threshold signature
scheme against this forgery attack. However, the mod-
ified scheme cannot withstand a general coalition attack
inherent in many threshold signature schemes.

This paper is organized as follows: Section 2 briefly
reviews the Yu-Chen threshold group signature scheme,
Section 3 discusses the security of the signature scheme,
and Section 4 proposes a modification. We conclude this
paper in Section 5.

2 Brief Review of the Yu-Chen

Threshold Signature Scheme

The Yu-Chen (t, n) threshold signature scheme is over
an elliptic curve. For the sake of brevity, we omit the
introduction of the elliptic curve.

The proposed scheme consists of three phases: the key
generation phase, the signature generation phase and the
signature verification phase.

The CA (Center Authority) is responsible for generat-
ing the system parameters, a secretary authenticates the



International Journal of Network Security, Vol.7, No.2, PP.218–222, Sept. 2008 219

signature of each member and publicizes the group signa-
tures, and any recipient can verify the group signatures.

2.1 Key Generation

The CA generates and publicizes system parameters,
group public key, individual public keys, and retains the
threshold function. The system parameter generation
process can be divided into the following steps:

Step 1. The CA generates and publicizes the following
system parameters:

E: y2 = x3 + ax + b(mod p) represents an elliptic
curve, where a, b ∈ Zp, 4a3 + 27b2 6= 0(mod p).

p: A large prime number, such that GF (p) =
{0, . . . , p − 1}.

N : A large prime number which is the order of the
elliptic curve cryptosystem, where #E(GF (p))
lies between p + 1 − 2

√
p and p + 1 + 2

√
p.

H(·): A one-way hash function.

G: Base point with order n, representing a base point
G ∈ E(GF (p)) on the elliptic curve cryptosys-
tem.

xi: The public identity of group members Ui.

Step 2. The CA generates and retains the following sys-
tem parameters:

f(x): (t, n) threshold function. f(x) = at−1x
t−1 +

. . . + a1x + a0(mod n). ai is a random integer
between 1 and n − 1, i = 0, . . . , t − 1.

f(0) = a0: the group secret key.

f(xi): Secret key of individual group member Ui.

Step 3. The CA calculates and publicizes group public
key N :

Y = f(0)G,

N = −Y.

Step 4. The CA calculates and publicizes individual
public key Ni:

Yi = f(xi)G,

Ni = −Yi.

2.2 Threshold Digital Signature Genera-

tion

Suppose that there is a group that needs to sign a mes-
sage, the members U1, U2, . . . , Ut can represent the group
by signing message m. This stage requires the generation
of the individual digital signatures, verification of individ-
ual signatures and generation of (t, n) threshold signature.
The stages are as follows:

Step 1. Each member Ui uses their secret key f(xi) and
a random integer ki, 1 ≤ ki ≤ n− 1 to calculate their
signature (ri, si) for message m.

Ri = (xRi
, yRi

) = kiG, publicize Ri,

ri = xRi
(mod n),

risi = ki + f(xi)h(m)[

t∏

j=1,j 6=i

−xj

xi − xj

](mod n).

h(m) represents the message calculation using a one-
way hash function that improves the system secu-
rity. Member Ui sends his individual digital signature
(ri, si) to the secretary.

Step 2. On receiving the digital signature (ri, si) of all
members Ui, the secretary employs the following
equation to confirm the validity of the signature.

Di = (xDi
, yDi

)

= risiG + h(m)[
t∏

j=1,j 6=i

−xj

xi − xj

]Ni,

di = xDi
(mod n).

Check whether di = ri is satisfied. If yes, then (ri, si)
on message m is a valid signature of Ui. Otherwise,
the signature is invalid.

Step 3. On receiving the digital signature (ri, si) of all
members Ui, the secretary calculates and publicizes
the group signature (r, s) on message m: The sec-
retary first obtains the public Ri = (xRi

, yRi
) of all

members and then calculates R.

R =

t∑

i=1

Ri = (xR, yR),

r = xR(mod n),

s =
t∑

i=1

risi(mod n).

2.3 Threshold Digital Signature Verifica-

tion

Any recipient of (r, s) can verify the authenticity of the
group signature on message m.

Step 1. The receiver first calculates the following equa-
tion:

S =
t∑

i=1

risi(mod n),

to determine whether S = s is satisfied. If yes, Step
2 is performed. Otherwise, the signature is invalid.
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Step 2. The following equation is calculated next:

Q = (xQ, yQ) = sG + h(m)N,

q = xQ(mod n).

Determine whether q = r is satisfied. If yes, (r, s)
is an authentic group signature for message m, the
signature is invalid.

3 Comment on the Yu-Chen

Threshold Group Signature

Scheme

3.1 Ambiguities

In the review of the Yu-Chen threshold signature scheme,
we have corrected some typos in their paper. However,
there are many ambiguities:

1) The order N of the elliptic curve cryptosystem is the
same as the group public key N .

2) The order n of the base point G is the same as the
threshold (t, n).

3) Secret key of individual group member Ui should be
sent to the member Ui in a secure channel.

4) The elliptic scalar multiplication
h(m)Ni[

∏t

j=1,j 6=i

−xj

xi−xj
] should be denoted as

h(m)[
∏t

j=1,j 6=i

−xj

xi−xj
]Ni.

5) When the receiver verifies the signature (r, s), he is
required to compute:

S =

t∑

i=1

risi(mod n).

However, he does not know (r1, s1, . . . , rt, st). Hence
the group signature must be (r, s, r1, s1, . . . , rt, st).
This modification would reduce the efficiency of the
group signature scheme.

3.2 Forgery Attack Against the Group

Signature Scheme

3.2.1 Forge Signature of Group Member Ui

Suppose that an adversary wants to forge an individual
signature of a group member Ui for any message m.

Without the knowledge of the secret key f(xi), he does
the following steps:

Step 1. Choose a random integer ki, 1 ≤ ki ≤ n − 1 to
calculate Di and ri as follows:

Di = (xDi
, yDi

) = kiG + h(m)[

t∏

j=1,j 6=i

−xj

xi − xj

]Ni,

ri = xDi
(mod n).

Step 2. Compute si = ki/ri(mod n). Then the ad-
versary sends the forged individual digital signature
(ri, si) of the member Ui to the secretary.

Obviously, the secretary cannot find this forgery.

3.2.2 Forge Group Signature

Suppose that an adversary wants to forge a group signa-
ture for any message m. Without the knowledge of the
secret key f(0), he does the following steps:

Step 1. Choose a random integer s, 1 ≤ s ≤ n − 1 to
calculate Q and r as follows:

Q = (xQ, yQ) = sG + h(m)N,

r = xQ(mod n).

Step 2. Choose (r1, s1, . . . , rt, st) such that

s =

t∑

i=1

risi(mod n).

Obviously, the any recipient cannot find this forgery.

This kind of simple forgery attacks comes from the flaw
that h(m) does not contain the partial signature R.

Therefore, h(m) must be replaced by h(m, R).

4 Further Modification

In this section, we first present a modification to improve
the Yu-Chen threshold group signature scheme, and then
discuss a general coalition attack against threshold signa-
ture schemes.

4.1 The Modified Group Signature

Scheme

We would like to improve the Yu-Chen threshold signa-
ture scheme against the forgery attacks. The key genera-
tion is the same as that of the Yu-Chen threshold group
signature scheme.

4.1.1 Threshold Signature Generation

Suppose that there is a group that needs to sign a mes-
sage, the members U1, U2, . . . , Ut can represent the group
by signing message m.

Step 1. Each member Ui uses their secret key f(xi)
and a random integer ki, 1 ≤ ki ≤ n − 1 to calcu-
late their individual signature (Ri, si) for message m.

Ri = (xRi
, yRi

) = kiG, publicize Ri.
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Step 2. After receiving Rj from all other member Ui,
each member Ui calculates R, e, and si as follows:

R =

t∑

i=1

Ri,

e = h(m, R),

si = ki + f(xi)e[

t∏

j=1,j 6=i

−xj

xi − xj

](mod n).

Member Ui sends (Ri, si) to the secretary.

Step 3. On receiving the digital signature (Ri, si) of all
members Ui, the secretary employs the following
equations to confirm the validity of the signature:

R =

t∑

i=1

Ri,

e = h(m, R), and checks

Ri = siG + e[

t∏

j=1,j 6=i

−xj

xi − xj

]Ni.

If yes, then (Ri, si) on message m is a valid signature
of Ui. Otherwise, the signature is invalid.

Step 4. If all (Ri, si) are valid, the secretary calculates

s =

t∑

i=1

si(mod n).

The group signature for the message m is (e, s).

4.1.2 Threshold Group Signature Verification

Any recipient of threshold group signature (e, s) can verify
the authenticity of the group signature on message m by
checking the following equation:

e = h(m, sG + eN).

This verification equation is the elliptic curve version of
the Schnorr signature scheme [9], which is secure so far.

Because

si = ki + f(xi)e[

t∏

j=1,j 6=i

−xj

xi − xj

](mod n)

implies

Ri = siG + e[

t∏

j=1,j 6=i

−xj

xi − xj

]Ni,

the secretary is always to accept all individual signature
(Ri, si). Thus

t∑

i=1

Ri = (
t∑

i=1

Si)G + e
t∑

i=1

(
t∏

j=1,j 6=i

−xj

xi − xj

)Ni.

Hence, R = sG + eN implies e = h(m, sG + eN).
Therefore, the group signature (e, s) is always to satisfy

the verification equation.

4.2 A General Coalition Attack Against

Threshold Signature Schemes

Though our modification can withstand the forgery at-
tack suffered by the Yu-Chen threshold group signature
scheme, there is a general coalition attack against thresh-
old signature schemes. In the ordinary threshold signa-
ture scheme, the group’s secret key is f(0), and each mem-
ber Ui has the secret share f(xi). If t or more malicious
members pool their secret shares together, they can re-
cover f(0) by applying Lagrange interpolating polyno-
mial. Then each one of them can alone compute valid
signatures for new messages on behalf of the group after-
wards without the cooperation of other signers and with-
out being detected by verifiers. Obviously, this violates
the group’s signing policy. Otherwise, if such coalition is
permissive, other signers would follow this kind of dishon-
esty. Thus, each user can also alone compute valid group
signatures after one coalition. It’s terrible for threshold
signature schemes.

This coalition attack is inherent in many threshold sig-
nature schemes using threshold secret share scheme, as
long as the secret key can be recovered from secret shares.

The other paper of mine [10] provided approach to
withstand this kind of coalition attack. Though it is easy
to transpose it into elliptic curves, resulting scheme is per-
haps not applicable for smart cards since it requires some
more communication and computation.

5 Conclusions

We have pointed out that there are many ambiguities in
the Yu-Chen threshold signature scheme. The verifiers
cannot verify the signature, while adversaries can not only
easily forge the signatures of individual members, but also
forge group signatures without the knowledge of secret
keys. Though we can modify it to withstand the forgery
attack, the modified scheme cannot withstand the coali-
tion attack inherent in many threshold signature schemes.
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