
International Journal of Network Security, Vol.7, No.2, PP.193–201, Sept. 2008 193

Customizing Cellular Message Encryption

Algorithm

Debdeep Mukhopadhyay and Dipanwita RoyChowdhury

(Corresponding author: Debdeep Mukhopadhyay)

Department of Computer Science and Engineering, IIT Kharagpur

Kharagpur, West Bengal, 721302 India (Email: debdeep.mukhopadhyay@gmail.com)

(Received Jan. 13, 2006; revised and accepted Apr. 12, 2006)

Abstract

This paper observes the cryptanalysis of the Telecom-
munications Industry Association’s Cellular Message En-
cryption Algorithm (CMEA). The CMEA has been widely
used for wireless security and the breaking of the scheme
proves the requirement of alternatives. In the current pa-
per, the properties of CMEA which have lead to the suc-
cessful cryptanalysis, have been identified. Accordingly
the algorithm has been modified to prevent the attacks.
Finally the customized CMEA has been subjected to stan-
dard linear and differential cryptanalysis to evaluate its
security margin. The endeavour demonstrates that with
appropriate modifications the CMEA can be transformed
into a strong cipher, which is essential for wireless secu-
rity.

Keywords: CMEA, cryptanalysis, wireless security

1 Introduction

Cellular Message Encryption Algorithm (CMEA) [12] has
been developed by the Telecommunications Industry As-
sociation (TIA) to encrypt digital cellular phone data.
CMEA is one of the four cryptographic primitives speci-
fied for telecommunications and is designed to encrypt the
control channel, rather than the voice data. It is a block
cipher which uses a 64 bit key and operates on a vari-
able block length. CMEA is used to encrypt the control
channels of cellular phones. It is distinct from ORYX, an
also insecure stream cipher that is used to encrypt data
transmitted over digital cellular phones.

In March 1997, Counterpane Systems and UC Berke-
ley jointly [13] published attacks on the cipher showing
it had several weaknesses. In the paper the authors have
presented several attacks on CMEA which are of practical
threat to the security of digital cellular systems. The au-
thors describe an attack on CMEA which requires 40−80
known plaintexts, has time complexity about 224 − 232,
and finishes in minutes or hours of computation on a stan-
dard workstation. The authors point out that the crypt-

analysis of CMEA underscores the need for an open cryp-
tographic review process. Thus having faith on new algo-
rithms which are designed close door is always dangerous.
The use of such algorithms can lead to a total collapse of
the cellular telephonic industry. CMEA is used to pro-
tect sensitive control data, such as the digits dialed by
the cellphone user. A successful break of CMEA might
reveal user calling patterns. Finally compromise of the
control channel contents could lead to the leaking of any
confidential data (like credit card numbers, bank account
numbers and voice mail PIN numbers) that the user types
on the keypad.

Following the revelation of the weakness of CMEA, a
patchup algorithm called ECMEA was standardised by
TIA. A further enhancement of ECMEA, called SCEMA,
is also developed [12]. However according to [13] the pre-
vious cryptanalysis of all the crypto-algorithms proposed
by TIA clearly demonstrate that there is a need of explic-
itly stating security assumptions during every step of the
design. Also security components should not be reused
without thoroughly examining the implications of reuse.
Although it has been proposed that the future genera-
tion cellular networks (CDMA 2000 1X Revision A) will
use AES (Rijndael) [2], the implementation constraints
of a wireless network might prove to be a concern. This
motivates the design of special ciphers for wireless tele-
phones (networks) but at the same time which are eval-
uated meticulously. The security margins of such algo-
rithms must be stated so as to increase confidence in the
ciphers. In other words, dedicated as well as standard
block cipher security analysis should be presented for the
ciphers which are used to prevent frauds in such important
networks. In these lines, the present paper revisits the
CMEA algorithm. The algorithm has been analysed to
understand the reasons of its insecurity. Based upon the
analysis the CMEA has been modified to CMEA-I. The
new algorithm has been analysed and it has been shown
that the original attacks does not work against the cipher.
Also the diffusion and confusion properties of CMEA-I
has been demonstrated by means of Avalanche analysis.
The security of CMEA depends on the strength of the



International Journal of Network Security, Vol.7, No.2, PP.193–201, Sept. 2008 194

T-box. Hence, security margins have been presented to
establish that the T-box provides sufficient security mar-
gins against linear and differential cryptanalysis.

The paper is organised as follows. In Section 2 the
preliminaries have been stated which details the original
CMEA algorithm and the attacks against it. In Section
3 the CMEA algorithm has been analysed to understand
why the algorithm breaks in the face of the attacks de-
tailed in Section 2. Section 4 presents the customized
CMEA with necessary modifications to plague the exist-
ing weaknesses of CMEA. Section 5 performs a security
analysis of CMEA-I. The section shows how CMEA-I pre-
vents the attack proposed in [13]. The diffusion and con-
fusion properties of CMEA-I has also been analysed in the
section using Avalanche criterion. Linear and differential
cryptanalysis has been performed on the T-box in the sec-
tion. The efficiency of the cipher has been discussed in
Section 6. Finally Section 7 concludes the work.

2 Preliminaries

This section describes the CMEA algorithm and the ex-
isting cryptanalysis of CMEA. CMEA is a byte-oriented
variable width block cipher with a 64 bit key. Block sizes
may be any number of bytes. CMEA is optimized for
8-bit microprocessors with severe resource limitations.

2.1 The CMEA as It Is

CMEA has three layers. The first layer performs one non-
linear pass on the block, affecting left-to-right diffusion.
The second layer is a purely linear, unkeyed operation
intended to make changes in the opposite direction. One
can think of the second step as XORing the right half of
the block onto the left half. The third layer performs a
final non-linear pass on the block from left to right. In
fact, it is the inverse of the first layer.

CMEA obtains its non-linearity in the first and third
layer from an 8-bit keyed lookup table known as the T-
box. The T-box calculates its 8-bit output as T (x) =
C(((C(((C(((C((x ⊕ K0) + K1) + x) ⊕ K2) + K3) + x) ⊕
K4) + K5) + x) ⊕K6) + K7) + x, x is the input byte and
K0,··· ,7 represents the 8 byte key. In this equation C is an
unkeyed 8-bit lookup table known as the CaveTable. The
operation ⊕ represents a bit-wise xor, while + denotes
binary addition on the operands. All the operations are 8
bit operations. The algorithm encrypts an n-byte message
P0,··· ,n−1 to a ciphertext C0,··· ,n−1 under the key K0···7 as
follows:

Algorithm 1.

y0 = 0
for(i = 0; i < n; i + +)
{

P ′

i = Pi + T (yi ⊕ i)
yi+1 = yi + P ′

i

}
for(i = 0; i < bn/2c; i + +)

P ′
′

i = P ′

i ⊕ (P ′

n−i−1

∨
1)

z0 = 0
for(i = 0; i < n; i + +)
{

zi+1 = zi + P ′
′

i

Ci = P ′
′

i − T (zi ⊕ i)
}

Recovering the values of all the 256 T-box entries is
equivalent to the breaking of CMEA even if the keys are
not recovered. The values of T (0) occupies a position
of special importance. T (0) is always used to obtain C0

from P0. Without T (0) one cannot trivially predict where
other T-box entries are likely to be used. Knowing T (0)
lets us learn the inputs to the T-box lookups that modify
the second byte in the message. The CAVE Table has
very skewed statistical distribution. 92 of the possible
256 eight bit values never appear.

2.2 Attacks on CMEA

The attacks against CMEA are briefed next. The attacks
[13] can be categorised into two broad types:

2.2.1 A Chosen Plaintext Attack

CMEA is weak against chosen-plaintext attacks; one can
recover all the T-box entries with about 338 chosen texts
(on average) and very little work. The attacker does not
have control over the block length. The attack has two
steps.

1) Recovery of T (0)
For each guess of x, where x is a byte, the message
P = (1−x, 1−x, 1−x, · · · , 1−x) is encrypted, where
the sign − denotes binary subtraction. Each byte has
the value (1 − x). If the result is of the form C =
(−x, · · · ) then with very high probability T (0) = x.
There are only 256-92=164 possible values of T (0),
thus the correct value is expected to be guessed using
on the average 164/2 = 82 trials.

2) Recovery of the remaining T-box entries
For each byte j, to learn the value of T (j) let k =
((n − 1) ⊕ j) − (n − 2), where the desired blocks are
n bytes long. The encryption of P = (1 − T (0), 1 −
T (0), · · · , 1 − T (0), k − T (0), 0) is obtained. If the
result is of the form C = (t−T (0), · · · ) then with high
probability T (j) = t, with a possible ambiguity in
the LSB. The second phase requires 256 more chosen
plaintexts, thus requiring 338 chosen plaintexts on
the whole.

2.2.2 A Known Plaintext Attack on 3-byte

Blocks

Because of the skewed distribution of the CAVE Table
T (0) can have 164 possibilities. For each guess at T (0), a
256×256 array of pi,j is constructed which checks whether



International Journal of Network Security, Vol.7, No.2, PP.193–201, Sept. 2008 195

T (i) = j is possible for each i, j. All values for T (i),
i > 0, are initially listed as possible. Since, T (i) − i is a
CAVE Table output and the Cave Table has an uniform
distribution, one can immediately rule out the 92 values
for T (i).

Using each known plaintext/ciphertext pair lets us es-
tablish implications of the form, T (0) = t0, T (i) = j =>
T (i′) = j′.

If we have eliminated T (i′) = j′ as impossible, then
we can conclude T (i) = j is impossible. In this way pi,j

is reduced. One either reaches a conclusion or moves to
Phase 2.

The second phase recovers the CMEA key from the
information previously stored in the pi,j array. The key
recovery is based on pruned search. First one guesses K6

and K7. Then the effect of the last one-fourth of the T-
box is peeled off and checked whether it is a valid T-box
entry. Because of the skew in the CAVE Table incorrect
key guesses are easily identified. The pruned key search
is continued by guessing K4 and K5. Though the pruned
search complexity grows very fast, the T-box can be sub-
jected to a classic meet-in-the-middle attack. One can
work halfway through the T-box given only K0···3, and
one can work backwards up to the middle given just K4···7

and look for a match. The combination of the pruned
search and the meet-in-the-middle attack cryptanalysis
recovers the entire CMEA Key with 40-80 known plain-
texts.

3 Why is CMEA Weak?

A detailed study of the CMEA algorithm shows why
CMEA is susceptible to chosen plaintext and known plain-
text attacks. In this section the properties of the algo-
rithm which make the cipher weak have been identified.
The CMEA algorithm is modified to a new algorithm
named CMEA-I plaguing the weaknesses of the existing
CMEA. The security of CMEA-I has been analyzed in the
following section. Recovery of all values of the 256 T-box
entries is equivalent to the breaking of the cipher, so the
strength of the T-box requires special attention and hence
has been treated subsequently in details.

• Property 1: If the plaintext is of the form P =
{1− x, 1 − x, · · · , 1 − x} and the ciphertext is of the
form C = {−x, · · · } then with very high probability
T (0) = x.

Analysis: P ′

0 = P0+T (0)=1−x+T (0). If T (0) = x,
we have P ′

0 = 1. Thus, y1 = y0 + P ′

0 = 0 + 1 = 1.
Likewise, P ′

1 = P1 + T (1 ⊕ 1) = 1 − x + T (0). If
T (0) = x, we have P ′

1 = 1. Thus, y2 = y1 + P ′

1 =
1 + 1 = 2. Thus continuing we have P ′

n−1 = 1.

So, P ′
′

0 = P ′

0 ⊕ (P ′

n−1

∨
1) = 1 ⊕ 1 = 0. Hence,

C0 = P ′
′

0 − T (0) = −T (0) = −x.

The probability when using the CaveTable is depen-
dent on the fact that the initial guess for T (0) is

correct and the possible number of trials is thus only
(256-92)/2 = 82 on the average.

• Property 2: If the plaintext is of the form
P = {1 − T (0), 1 − T (0), · · · , 1 − T (0), k − T (0), 0}
and the ciphertext is C = {t − T (0), · · · } where
k = ((n − 1) ⊕ j) − (n − 2) then with very high
probability t = T (j).

Analysis: It has been shown that P ′

i = 1 and yi+1 =
(i + 1), where 0 ≤ i ≤ (n − 3). Now,

P ′

n−2 = Pn−2 + T (yn−2 ⊕ (n − 2))

= Pn−2 + T (0), since yn−2 = n − 2

= k − T (0) + T (0) = k.

Using this fact, yn−1 = yn−2 + P ′

n−2 = (n− 2) + k =
(n−1)⊕j. Therefore, P ′

n−1 = Pn−1+T (yn−1⊕(n−1))

= 0 + T (j). Thus, C0 = P ′
′

0 − T (0) or t − T (0) =
P ′

0 ⊕ (P ′

n−1

∨
1) − T (0) or t = 1 ⊕ (T (j)

∨
1) = T (j),

with a very high probability, with some confusion
with the LSB.

• Property 3: The CMEA algorithm uses a skewed
CAVE Table [13]. The CAVE Table is not a per-
mutation and 92 of the possible 256 values does not
occur.

• Property 4: The CMEA algorithm uses a four
round T-box which can be subjected to meet-in-the-
middle attack [13].

Using the above properties one can explain why the
CMEA algorithm is weak against the chosen plaintext
and known plaintext attacks. The causes of the attacks
are enlisted as follows:

1) Chosen Plaintext Attack: The CMEA algorithm
is weak against chosen plaintext attack because of
Properties 1 and 2.

2) Known Plaintext Attack: The known plaintext at-
tack is powerful against the CMEA algorithm be-
cause of Properties 3 and 4.

4 Customized Cellular Mes-

sage Encryption Algorithm :

CMEA-I

Analyzing the above properties the CMEA algorithm has
been modified. The resultant cipher is presented in this
section.

• Modification 1: Clearly the update equation of Pi

needs to be changed so that Properties 1 and 2 work
no more. The modified equation is of the form:

P ′

i = Pi + T (yi ⊕ f(i, n)),



International Journal of Network Security, Vol.7, No.2, PP.193–201, Sept. 2008 196

such that as we vary i from 0 to (n − 1) (where n is
the number of byte blocks in the plaintext) the T-box
is not predictably accessed. In the original CMEA
Property 1 exists because for a particular nature of
the input plaintext and key the T-box was always
referred at the point 0. So, the function f(i, n) should
be such that the T-box is accessed at different points.
After considering several forms of the function f(i, n)
the proposed function is f(i, n) = (2i)%n, where %
represents the modulo operation. Hence the update
equation is:

P ′

i = Pi + T (yi ⊕ ((2i)%n)).

Thus the algorithm is transformed into:

Algorithm 2.

y0 = 0
for(i = 0; i < n; i + +)
{

P ′

i = Pi + T (yi ⊕ ((2i)%n))
yi+1 = yi + P ′

i

}
for(i = 0; i < bn/2c; i + +)

P ′
′

i = P ′

i ⊕ (P ′

n−i−1

∨
1)

z0 = 0
for(i = 0; i < n; i + +)
{

zi+1 = zi + P ′
′

i

Ci = P ′
′

i − T (zi ⊕ ((2i)%n))
}

• Modification 2: The CAVE Table is replaced with
the AES S-box which can be efficiently implemented
[9]. Thus the distribution is no more skewed and all
the possible 256 values appear as a possibility.

• Modification 3: The T-box previously had 4
rounds. The number of rounds of the T-box has been
increased to 8 rounds to prevent meet-in-the-middle
attack. The output of the 4 round T-box is recycled
again through the T-box.

5 Security Analysis of CMEA-I

In the present section the security of CMEA-I has been
analyzed. The analysis shows that the scheme does not
break under a chosen plaintext and known plaintext at-
tack. Avalanche analysis has been performed on CMEA-
I. The results show that the scheme provides the neces-
sary diffusion and confusion necessary for a strong cryp-
tographic scheme. The security of the T-box plays a vital
role in the security of the cipher. So, the T-box has been
also analysed using linear and differential cryptanalysis.

5.1 How CMEA-I Prevents Chosen-

Plaintext and Known-Plaintext At-

tacks?

Due to the modifications incorporated in the cipher
the original attack does not work for CMEA-I. For
50,000 variations of the key, plaintexts of the form (1 −
T (0), 1− T (0), · · · , 1− T (0)) gives ciphertext of the form
(−T (0), · · · ) only 0.766% of the time. However we present
a modified attack in lines with the original attack and
show that the cipher prevents the attack successfully.

Let the P0 block of the plaintext be (1 − x0). Thus
P ′

0 = P0 + T (y0 ⊕ 0) = 1− x0 + T (0⊕ 0) = 1− x0 + T (0).
Let x0 = T (0). So P ′

0 = 1 and y1 = y0+P ′

0 = 1. Similarly,
P ′

1 = P1+T (1⊕2) = P1+T (3). Hence if we have P1=1−x1

and let x1 = T (3). So, P ′

1 = 1 and y2 = y1 +P ′

1 = 1+1 =
2. Likewise,

P ′

2 = P2 + T (y2 ⊕ 4)

= P2 + T (2 ⊕ 4)

= 1 − x2 + T (6), if P2 = 1 − x2

= 1, using the guess x2 = T (6).

y3 = y2 + P ′

2 = 2 + 1 = 3.

For the fourth block,

P ′

3 = P3 + T (y3 ⊕ 6)

= P3 + T (3 ⊕ 6)

= 1 − x3 + T (5), if P3 = 1 − x3

= 1, if x3 = T (5).

Thus if we have four blocks in the plaintext (without
loss of generality) then P ′

′

0 = P ′

0 ⊕ (P ′

3

∨
1) = 0. and

hence, C0 = 0 − T (0) = −T (0).
Thus for 4 input blocks if one obtains chosen plaintexts

of the form P = (1−T (0), 1−T (3), 1−T (6), 1−T (5)) then
the ciphertext is of the form C = (−T (0), · · · ). Then the
number of trials on the average is (2564)/2 which is equiv-
alent to a brute force search on the entire plaintext space
and is much larger than that required for original CMEA.
(Note that as the CAVE Table has been replaced by the
S-box of Rijndael-AES the number of possible values of
each T-box access is 256).

The following proof shows that the attack is inefficient
against CMEA-I.

Proof. During the attack we find that at each stage yi =
i and f(i, n) = (2i)%n, where % refers to the modulo
operation. Let CMEA-I break in the face of the attack.
For the attack to work the T-box must be accessed at the
same point for at least a single case. In other words there
should be repetition in the point at which the T-box is
accessed.

Let us have two instances of i, namely i1 and i2 (i1 6=
i2), for which the T-box is accessed at the same point.
Thus, i1 ⊕ ((2i1)%n) = i2 ⊕ ((2i2)%n) or (i1 ⊕ i2) =
2(i1 ⊕ i2)%n. If, 2(i1 ⊕ i2) < n, then the equation is
possible if i1 = i2, contradicting our initial assumption.



International Journal of Network Security, Vol.7, No.2, PP.193–201, Sept. 2008 197

Also, if 2(i1⊕i2) = kn+r > n (where k ≥ 1 and r < n),
we have (kn+ r)/2 = (kn+ r)%n = r or kn = r, which is
not possible as r < n. Thus we arrive at a contradiction,
and hence the T-box is not accessed at the same point.
Thus the attack does not work against CMEA-I.

Also the number of chosen plaintexts grows exponen-
tially with the number of blocks. For an n byte block the
number of chosen plaintexts is of the order of 256n. Thus
the number of plaintexts to be investigated is equal to
that in a brute force search on the entire plaintext space.
Such a large number of plaintext requirement makes the
attack ineffective against CMEA-I.

As the CAVE Table has been replaced by the AES
S-box the skewness of the CAVE Table does not exist.
Also all the 256 values may appear. The T-box has been
extended to eight rounds and thus a meet-in-the-middle
attack does not work. The known plaintext attack against
the original CMEA was found to be ineffective against the
customized CMEA (CMEA-I).

5.2 Diffusion and Confusion in the

CMEA-I Algorithm

Diffusion and confusion are two important properties nec-
essary for the security of block ciphers [10]. The current
section of the paper deals with diffusion and confusion
in the CMEA-I algorithm. The CMEA-I algorithm has
been subjected to Avalanche Attack to test the confusion
and diffusion which the cipher provides. A function has
a good avalanche effect when a change in one bit of the
input results in a change of half of the outputs bits.

Diffusion criteria requires that a change in a single bit
of the plain text should cause a change in several bits
in the cipher text (the key is kept constant). In order
to test the diffusion property the CMEA-I algorithm has
been subjected on pairs of plaintext which differ by one
bit. The number of output bits affected should have a
mean of n/2 where n is the number of bits of the cipher.
In other words it is expected that for a good cipher ap-
proximately half of the output bits should be affected.
The experiments have been performed on a block size of
three-bytes (24 bits). In Figure 1 the frequency of the
number of bits affected has been plotted versus the num-
ber of bits affected. The plot shows that around 12 bits
are affected for a maximum number of cases. Also the
computed average is around 11.98. The plot shows that
the algorithm provides sufficient diffusion property.

Confusion criteria requires that a change in a single
bit in the key should cause a change in several bits in the
cipher text (the plaintext is kept constant). In order to
test the confusion property the CMEA-I algorithm has
been used to encrypt plaintexts with pairs of keys which
differ by one bit. The number of output bits affected
according to the Avalanche criterion should be around
n/2 where n is the number of bits of the cipher. The
experiments have been performed again on a block size
of three-bytes (24 bits). In Figure 2 the frequency of

the number of bits affected has been plotted versus the
number of bits affected. The plot shows that around 12
bits are affected for a maximum number of cases. Also
the computed average is around 11.91. The plots show
that the confusion property is satisfied by CMEA-I.

Figure 1: Avalanche effect to show diffusion

Figure 2: Avalanche effect to show confusion

5.3 Finer Issues of Security

The T-box plays a central role in the cipher structure
of CMEA. One can gather information about the T-box
entries from the known CMEA encryptions. Also if the
T-box is compromised and all the T-box outputs can be



International Journal of Network Security, Vol.7, No.2, PP.193–201, Sept. 2008 198

identified then the CMEA algorithm is also broken. So,
the problem reduces to the cryptanalysis of the T-box
algorithm, given information about the input and output
of some of the elements. More formally in this section we
shall inspect given the T-box input and outputs for some
values is it possible to obtain the other T-box elements
or to recover the key. We analyze the T-box algorithm
under linear and differential attacks [1, 4, 5, 11].

5.3.1 Differential Analysis of the T-box

Differential Analysis on a block cipher observes that given
a certain input difference if a particular output difference
occurs with a high probability. In an ideal cipher for an
n-bit block the probability should be of the order of 1/2n.
Differential cryptanalysis seeks to exploit a scenario where
a particular output difference δY occurs given a particular
input difference δX with a very high probability. The pair
(δX, δY ) is referred to as a differential.

We first observe the security which a single round of the
T-box provides against a differential attack. The Figure 3
shows the single round T-box.

+

+

S−Box

+

x2

x3

x1

x4

x5

K0

K1

Figure 3: One round T-box

Given x1 and x5 (the input and output pair at any
point) one can calculate x3. Thus the problem reduces
to the cryptanalysis of the portion in the T-box shown in
Figure 4.

In Figure 4, δx1 and δx2 are same and does not depend
upon the key. Once we know δx2 and δx3 and observe
the differential property of the addition block to obtain
information about K1 we can also infer information about
K0.

From the differentials of the addition block we observe
the following two facts:

+ +

++

K0

K1K1

K0

x1 x1’

x2 x2’

x3 x3’

Figure 4: Differential analysis of T-box

1) For a fixed (δx2, δx3) can certain keys be ruled out?

2) What is the worst case size of the reduced key space?

Analysis of one round of the T-box brings the follow-
ing observations to the surface. We have created tables
for the entire key space and noted how many keys are
possible for each pair of (δx2, δx3). The tables show that
the distribution is very sparse and there are large number
of cases where a (δx2, δx3) pair is not possible for any key.
There are instances for which certain keys can be immedi-
ately ruled out. The remaining set of possible keys varies
in size and ranges from as low as 2 to 254 (except the
(0, 0) pair where all the keys are possible). Thus in such
worst case scenario a random search over only 2 values
will reveal K1 and hence K0. Hence, one round of the
T-box shows weaknesses. So, we require to increase the
number of rounds of T-box.

Let us calculate the maximum probability of a differ-
ential to pass through one round of the T-box. It was
found that there exists weak keys for each possible δx1.
The weak key is defined to be a key for which there is a
δx3 which always occurs for the particular δx1 and the
key. Next the δx3 which serves as an input to the S-
box was considered. The corresponding output differen-
tial δx4 with the highest probability was observed. Next
for all these δx1’s and δx4’s the possible δx5’s were found
which had the highest probability.

The above steps were done for all the possible δx1’s
and their corresponding weak keys. The analysis results
in the worst case maximum probability of obtaining a δx5

for any given δx1.
The probability worked to around 0.0078, so for 8

rounds of the T-box the probability is around 1.37 ×
10−17, which is negligible. If we do not use the weak
keys then the worst case probability of the passing of dif-
ferential reduces to around 0.0039. But this reduces the
key space.

5.3.2 Linear Cryptanalysis of the T-box

The S-box of AES is known to be resistant against lin-
ear cryptanalysis. The current subsection works out the



International Journal of Network Security, Vol.7, No.2, PP.193–201, Sept. 2008 199

security margin which the T-box provides against Linear
Cryptanalysis (LC) and shows that the scheme is at least
as secured as the AES S-box.

Linear Cryptanalysis tries to take advantage of high
probability occurrence s of linear expressions involving
plaintext bits, the ciphertext bits and subkey bits. The
difference of the probability from the probability 1/2 is
known as the bias of the linear equation. Linear Crypt-
analysis exploits linear approximations with a large bias.
It is a known plaintext attack, that is the attacker does
not choose which plaintexts are available. The basic idea
is to approximate the operation of a portion of the cipher
with a linear expression where the linearity refers to a
mod-2 bitwise operation (⊕).

We obtain a linear expression relating the bits of x1

and the keys K0 and K1, refer Figure 3. The expressions
may be derived as follows:

x5[0] = x4[0] ⊕ x1[0] with probability 1

= f(x3[i1], x3[i2], · · · , x3[ik]) ⊕ x1[0],

where f is a linear approximation for the S-box with the
largest bias εRD.

It may be noted that such an expression will have the
largest linear probability bias, which is the amount by
which the linear probability differs from 1/2. All other
linear expressions will have a smaller bias and hence we
have considered this expression. The fact has been ver-
ified experimentally, however the fact can be established
with the following logic.

The bias of other linear expressions can be estimated
from the bias of the individual linear expressions by using
the Piling-Up lemma [11, 4]. Thus if we combine l linear
equations of the form x5[i] = x4[i]⊕x1[i] each with a bias
(1/2)i+1, (we prove this later in lemma1) the bias of the
combined equation is

2l−1
l∏

i=i1

(1/2)i+1

= 2l−1[(1/2)i1+1.(1/2)i2+1 · · · (1/2)il+1]

= 1/2(i1+i2+···+il+1) < 1/2.

Note that 1/2 is the bias of the equation with which
we have started with viz. x5[0] = x4[0] ⊕ x1[0]. So, all
other linear approximations have a lesser bias. Hence, all
the other linear equations which are developed from other
starting equations have a lesser bias. Thus we compute
the probability of the linear trail with the maximum bias,
to give us the upper bound of linear probability bias for
the T-box.

Now to obtain linear expressions where x3[i1] is ex-
pressed in terms of x1[i1] and K0[i1] we have

x3[i1] = x2[i1] ⊕ K1[i1], with bias εi1 ,

= x1[i1] ⊕ K0[i1] ⊕ K1[i1], with bias εi1 .

Similarly,

x3[i2] = x1[i2] ⊕ K0[i2] ⊕ K1[i2], with bias εi2

x3[i3] = x1[i3] ⊕ K0[i3] ⊕ K1[i3], with bias εi3 .

...

x3[ik] = x1[ik] ⊕ K0[ik] ⊕ K1[ik], with bias εik
.

The linear approximation for the S-box with maximum
bias is: x5[0] = f(x3[i1], x3[i2], · · · , x3[ik]) ⊕ x1[0], with
bias εRD. Thus, we combine the linear equations to obtain
the linear trail, x5[0] = f(x1[i1], x1[i2], · · · , x1[ik], K0[i1],
K0[i2], · · · , K0[ik], K1[i1], K1[i2], · · · , K1[ik]) ⊕ x1[0].
The bias of the linear trail, using the Piling-Up lemma, is
2k(εi1εi2 · · · εik

εRD). Using the following result we com-
pute the upper bound of the bias.

Lemma 1. For a given n-bit input x and k the output is
denoted by another n-bit number y=x+k. The probabil-
ity that each output bit y[i] can be denoted by the linear
function x[i] ⊕ k[i] is denoted by pi, 0 ≤ i < n. Then
pi = 1/2 + (1/2)i+1 and 1/2 < pi ≤ 1.

Proof. Let c[i] denote the carry out from the addition of x
and k after i bits, refer Figure 5. Clearly, y[0] = x[0]⊕k[0],
with probability 1. Thus p0 = 1.

(i+1) i (i−1)

c[i−1]

01

2. 0, 1, ... ,(i−1), i, (i+1), ... indicates the bit positions of y
1. The Output Register y which stores the sum of two registers x and k

3. c[i−1] indicates the carry out after the addition of (i−1) bits are complete

Figure 5: The output state of the sum

Now, y[1] = x[1] ⊕ k[1] when there is no carry in c[0]
which is the generated carry from the addition of the
lowest bits. c[0] = 0, with probability 3/4 and hence
p1 = 3/4.

Let, the event that the ith bit of y can be expressed
as a linear expression x[i] and k[i] has a probability pi.
Similarly the (i + 1)th can be linearly expressed with a
probability pi+1.

Now, we note the following fact. The (i + 1)th bit
cannot be linearly expressed if there is a carry from the
ith bit, that is if c[i]=1.

This can be divided into two mutually exclusive cases.
First the event say A, c[i − 1]=0 and the addition of x[i]
and y[i] generates a carry. Now, when c[i − 1] = 0, then
y[i] must have been linearly expressed (using the above
fact) and the probability by definition is pi. Thus the
probability that A is true is 1/4pi.

The other event B is the case where c[i − 1]=1 and
the addition of x[i] and y[i] propagates the carry. The
probability that B is true is 3/4(1− pi).



International Journal of Network Security, Vol.7, No.2, PP.193–201, Sept. 2008 200

Clearly if the event (A
⋃

B) occurs then the (i + 1)th

bit cannot be linearly expressed and the probability is by
definition (1 − pi+1).

Thus, (1−pi+1) = P (A
⋃

B) = P (A)+P (B) (because
A and B are mutually exclusive) = 1/4pi +3/4(1− pi) or
pi+1=1/4 + pi/2.

Using the recurrence relation we have pi+1=1/4+ pi/2
= 1/4 + 1/2(1/4 + pi−1/2) = 1/4[1 + 1/2] + (1/2)2pi−1.
Next, we have pi+1=1/4[1+(1/2)+(1/2)2+ · · ·+(1/2)i]+
(1/2)i+1p0 = 1/2[1 + (1/2)i+1], since p0 = 1. Thus, pi =
1/2[1 + (1/2)i] = 1/2 + (1/2)i+1.

Using the equation we have p0 = 1, p1 = 3/4, p2 =
5/8, p3 = 9/16 and so on. Clearly, 1/2 < pi ≤ 1.

The linear trail has a bias of: 2k((1/2)i1+1(1/2)i2+1

· · · (1/2)ik+1εRD) = 2k((1/2)i1+i2+···+ik+k εRD) =
εRD/(2i1+i2+···+ik) < εRD.

Thus the security margin provided by the modified T-
box of CMEA-I against Linear Cryptanalysis is at least
as much as the AES S-box.

6 Efficiency of CMEA-I

In this section we compare the efficiency of the design with
respect to the original CMEA algorithm, which is known
to be suited for the telecommunication industry. The
CMEA algorithm is optimized for 8 bit micro-processors
with severe resource limitations [13]. The CMEA algo-
rithm has been modified in the following three places in
order to prevent successful cryptanalysis of CMEA-I.

• The update equation of Pi has been changed to
P ′

i=Pi + T (yi ⊕ ((2i)%n)).

• The CAVE Table is replaced with the AES S-box.

• The number of rounds of T-box has been increased
to eight rounds.

The first change is a minor functional change and does
not require any extra computation with respect to the
CMEA algorithm. The multiplication by 2 is a simple
shift left operation and hence has no negative effect on
the efficiency of the original CMEA algorithm.

The second change advocates the replacement of the
CAVE Table with the AES S-box. The AES S-box, un-
like the DES S-box and the CAVE Tables can be imple-
mented through a compact algebraic equation [2]. The
structured algorithm of AES S-box makes it amenable to
efficient implementations both in hardware and software
[3, 6, 9, 8]. Still the S-box of Rijndael is secured as it has
withstood lot of cryptanalysis [2].

The third modification of CMEA-I is the increase of the
number of rounds in T-box from four to eight. But this
increase in number of rounds does not incur any penalty
on the computational cost as the replacement of CAVE
Table by AES S-box leads to extremely fast designs [7].

7 Conclusion

In the present paper the original CMEA algorithm has
been modified into CMEA-I. The paper shows how the
existing cryptanalysis of CMEA fails to break CMEA-I. It
has been shown that the T-box provides sufficient security
margin to the cipher CMEA-I in the face of linear and dif-
ferential cryptanalysis. In short, the paper demonstrates
that with suitable modifications the original CMEA algo-
rithm can be made strong and hence can be suitable for
wireless security.

References

[1] E. Biham and A. Shamir, “Differential cryptanalysis
of DES like cryptoSystems,” Journal of Cryptology,
vol. 4, pp. 3-72, 1991.

[2] J. Daemen and V. Rijmen, The Design of Rijndael,
Springer-Verlag, 2002.

[3] B. Gladman, “Implementations of AES (Ri-
jndael) in C/C++ and assembler,” 2007.
(http://fp.gladman.plus.com/
cryptography technology/rijndael)

[4] H. M. Heys, “A tutorial on linear
and differential cryptanalysis,” 2007.
(www.engr.mun.ca/ howard/PAPERS/ldc tutorial.ps).

[5] M. Matsui, “Linear cryptanalysis method for DES
cipher,” in Advances in Cryptology (Eurocrypt’93),
LNCS 765, pp. 386-397, Springer-Verlag, 1993.

[6] S. Morioka and A. Satoh, “An optimized S-box cir-
cuit architecture for low power AES design,” in Pro-
ceedings of Cryptographic Hardware and Embedded
Systems, pp. 271-295, Springer-Verlag, Aug. 2002.

[7] S. Morioka and A. Satoh, “A 10-Gbps full-AES
crypto design with a twisted BDD S-box architec-
ture,” IEEE Transactions on VLSI Systems, vol. 12,
no. 7, pp. 686-691, July 2004.

[8] D. Mukhopadhyay and D. RoyChowdhury, “An effi-
cient end to end design of Rijndael cryptosystem in
0.18 mu CMOS,” in 18th International Conference
on VLSI Design, pp. 405-410, Jan. 2005.

[9] V. Rijmen, “Efficient implementation of the
Rijndael-Sbox,” 2007. (http://www.esat.kul
euven.ac.be/ rijmen/rijndael)

[10] C. E. Shannon, “A mathematical theory of communi-
cation,” Bell System Technical Journal, pp. 379-423
and 623-656, 1948.

[11] D. Stinson, Cryptography, Theory and Practice,
Chapman & Hall/CRC, 2002.

[12] TIA Telecommunications Industry As-
sociation, Common Cryptographic Algo-
rithms, Revision D.1, Publication Version,
Sept. 13, 2003. (http://ftp.tiaonline.org/TR-
45/TR45AHAG/Public/ComCryptAlgD1.pdf)

[13] D. Wagner, B. Schneier, and J. Kelsey, “Cryptanaly-
sis of the cellular message encryption algorithm,” in
Crypto’97, pp. 526-537, 2002.



International Journal of Network Security, Vol.7, No.2, PP.193–201, Sept. 2008 201

Debdeep Mukhopadhyay is currently an Assistant
Professor in the Department of Computer Sc and Engg,
Indian Institute of Technology, Madras, India. During
the time of doing the presented research in the paper,
he was doing his PhD from the Department of Com-
puter Science and Engg, Indian Institute of Technology,
Kharagpur, India. He received his Master of Science from
the Department of Computer Science and Engineering,
Indian Institute of Technology, Kharagpur, India in
the year 2004 and his B.Tech from the Department of
Electrical Engineering, India Institute of Technology,
Kharagpur, India in the year 2001. His research interests
are in the fields of Cryptology, Celluar Automata, VLSI
Design and Testing.

Dipanwita Roy Chowdhury is a Professor in the De-
partment of Computer Science and Engineering, Indian
Institute of Technology, Indian Institute of Technology,
Kharagpur, India. She received her PhD from the De-
partment of Computer Science and Engineering, Indian
Institute of Technology, Kharagpur, India. She completed
her M.Tech and B.Tech from Calcutta University, India in
the year 1989 and 1987 respectively. Her research inter-
ests are in the fields of Cellular Automata, Cryptography,
Error correcting codes and VLSI Design and Test.


