
International Journal of Network Security, Vol.7, No.1, PP.81–87, July 2008 81

Formal Specification and Verification of a Secure
Micropayment Protocol

Mohamed G. Gouda1 and Alex X. Liu2

(Corresponding author: Alex X. Liu)

Department of Computer Sciences, The University of Texas at Austin1

Austin, Texas 78712-0233, USA (Email: gouda@cs.utexas.edu)
Department of Computer Science and Engineering, Michigan State University2

East Lansing, MI 48824-1266, USA (Email: alexliu@cse.msu.edu)

(Received Aug. 18, 2006; revised and accepted Nov. 8, 2006)

Abstract

As online businesses keep growing and Web services be-
come pervasive, there is an increasing demand for micro-
payment protocols that facilitate microcommerce, namely
selling content and services for small amounts of money
(possibly less than one cent per transaction), which can-
not be handled efficiently by credit cards due to sub-
stantial per transaction fee and delay. In this paper, we
investigate the security of micropayment protocols that
support low-value transactions. We focus on one type of
such protocols that are based on hash chains. We present
a formal specification of a typical hash chain based mi-
cropayment protocol using Abstract Protocol notation,
and discuss how an adversary can attack this protocol
using message loss, modification, and replay. We use
convergence theory to show that this protocol is secure
against these attacks. The specification and verification
techniques used in this paper can be applied to other mi-
cropayment protocols as well.
Keywords: Information security, micropayment protocols,
network security

1 Introduction

With the rapid growth of online businesses and Web ser-
vices, the business model of charging a fee per usage be-
comes more popular. The fee charged per usage is often
small, may even less than one cent per usage. For ex-
ample, a newspaper company may want to charge half
a cent per article. Such businesses are called microcom-
merce. Traditional payment systems, such as credit cards,
are not viable candidates for handling such small trans-
actions due to their huge transaction fees. The standard
transaction fee for using a credit card is 29 cents plus
2% of the transaction value. Therefore, microcommerce
demands a new type of payment protocols that can han-
dle small value transactions efficiently and economically.

Such protocols are called micropayment protocols.
Several micropayment protocols have been proposed

for microcommerce, such as [1, 3, 6, 7, 10, 11, 12]. These
protocols need to be regarded as “secure” before they can
win the adoption of customers and vendors alike. How-
ever, none of these protocols have been formally specified
and verified.

In this paper, we address this issue by formally spec-
ifying a micropayment protocol, which is based on Lam-
port’s idea of hash chains [9], using the Abstract Protocol
notation presented in [4], and formally verifying the secu-
rity of this protocol using the convergence theory in [5].
We choose such a hash chain based micropayment pro-
tocol because it is a typical micropayment protocol and
the techniques that we use in specifying and verifying this
protocol can be applied to other micropayment protocols
as well. There are many hash chain based micropayment
protocols, such as Anderson’s et al. NetCard [1], Hauser’s
et al. Micro-iKP [6], Jutla and Yung’s Paytree [7], Ped-
ersen’s Scheme [10], Rivest and Shamir’s PayWord [11],
and W3C’s MPTP [12].

The rest of this paper is organized as follows. In Sec-
tion 2, we present a brief introduction to Abstract Pro-
tocol notation, while in Section 3, we formally specify
the hash chain based micropayment protocol using this
notation. In Section 4, we give an introduction to the
convergence theory. In Section 5, we verify the security
of the protocol. We give conclusions in Section 6.

2 Abstract Protocol Notation

In this section, we give a brief introduction to the Ab-
stract Protocol notation [4]. In this notation, each pro-
cess in a protocol is defined by sets of constants, variables,
parameters, and actions. For instance, in a protocol con-
sisting of two processes p and q and two opposite-direction
channels, one from p to q and one from q to p, process p
can be defined as follows:

International Journal of Network Security, Vol.7, No.1, PP.81–87, July 2008 82

process p
const 〈name of constant〉 : 〈type of constant〉

· · ·
〈name of constant〉 : 〈type of constant〉

inp 〈name of input〉 : 〈type of input〉
· · ·
〈name of input〉 : 〈type of input〉

var 〈name of variable〉 : 〈type of variable〉
· · ·
〈name of variable〉 : 〈type of variable〉

par 〈name of parameter〉 : 〈type of parameter〉
· · ·
〈name of parameter〉 : 〈type of parameter〉

begin
〈action〉

¤ 〈action〉
¤ · · ·
¤ 〈action〉
end

The constants of process p have fixed values. Inputs
of process p can be read, but not updated, by the actions
of process p. Variables of process p can be both read and
updated by the actions of process p. Comments can be
added anywhere in process p; every comment is placed
between the two brackets { and }.

Each 〈action〉 of process p is of the form:

〈guard〉 → 〈statement〉.

The guard of an action of process p is of one of the fol-
lowing three forms: (1) a boolean expression over the
constants and variables of p, (2) a receive guard of the
form “rcv 〈message〉 from q”, (3) a timeout guard that
contains a boolean expression over the constants and vari-
ables of every process and the contents of all channels in
the protocol. A parameter declared in a process is used to
write a finite set of actions as one action, with one action
for each possible value of the parameter.

Executing an action consists of executing the statement
of the action. Executing the actions of different processes
in a protocol proceeds according to the following three
rules. First, an action is executed only when its guard is
true. Second, the actions in a protocol are executed one
at a time. Third, an action whose guard is continuously
true is eventually executed.

The 〈statement〉 of an action of process p is a sequence
of 〈skip〉, 〈send〉, 〈assignment〉, 〈selection〉, or 〈iteration〉
statements of the following forms:

〈skip〉 : skip
〈send〉 : send 〈message〉 to q
〈assignment〉 : 〈variable in p〉 := 〈expression〉
〈selection〉 : if 〈boolean expression〉 → 〈statement〉

· · ·
¤ 〈boolean expression〉 → 〈statement〉
fi

〈iteration〉 : do 〈boolean expression〉 → 〈statement〉
od

There are two channels between the two processes: one
is from p to q, and the other is from q to p. Each message
sent from p to q remains in the channel from p to q until
it is eventually received by process q. Messages that re-
side simultaneously in a channel form a sequence and are
received, one at a time, in the same order in which they
were sent.

3 Formal Specification

There are many hash chain based micropayment protocols
such as Rivest and Shamir’s PayWord [11], W3C’s MPTP
[12], Hauser’s et al. Micro-iKP [6], and Anderson’s et al.
NetCard [1]. The basic ideas of these protocols are quite
similar. Here we take PayWord as an example to explain
this type of protocols.

There are three types of parties in PayWord protocol:
users, vendors, and banks. Each user has a private key,
a public key, and a certificate. The certificate contains
the bank’s name, the user’s name, the user’s public key
and the expiration date. Each vendor knows each bank’s
public key and therefore can verify each user’s certificate.
All parties, including users, vendors, and banks, know a
one-way hash function h.

Each day, when a user u needs to pay a vendor v for the
first time, u at first conjectures the most likely maximum
number of “coins” that she might need to pay the vendor
that day, which is denoted n. Second, u picks a random
number, which is denoted c[n]. Third, u computes a hash
chain c[0], c[1], · · · , c[n], where c[i − 1] = h(c[i]) for each
i (1 ≤ i ≤ n). The integer c[0] is called the root of the
hash chain and the rest n integers from c[1] to c[n] then
serve as n coins. Before making payments using these
coins, u needs to send c[0], u’s signature of c[0], and u’s
certificate to the vendor v in order for v to know c[0],
which enables v to verify the payment from u. After the
above preparation steps, u starts to make payments to v.
There are two types of payments: fixed-size payments and
variable-size payments. In fixed-size payments, the i-th
payment from u to v contains the integer c[i]. The vendor
v verifies this payment by applying the hash function h
to c[i] and compare it with the coin c[i − 1] that v has
received in the previous payment from u. In variable-
size payments, the value of each payment varies from 1
to n. A payment from u to v contains a tuple (c[i], m),
where m is the value of this payment and the coins from
c[1] to c[i − m] have been spent. This single payment
is equivalent to m fixed-size payments from c[i −m + 1]
to c[i]. The vendor v verifies this payment by applying
the hash function h to c[i] for m times and compares the
resulting number with the coin c[i−m] that v received in
the previous payment from u.

The above PayWord protocol has two security holes.
First, it is vulnerable to message loss attack. An attacker
can discard a payment message from u and v. When this
happens, u should retransmit the lost payment. However,
due to the lack of an acknowledgement mechanism in the

International Journal of Network Security, Vol.7, No.1, PP.81–87, July 2008 83

PayWord protocol, u does not know whether a payment
was actually received by v or not. Second, the PayWord
protocol is vulnerable to message modification attack. An
attacker can modify a valid variable-size payment mes-
sage (c[i],m) (m ≥ 2) to a different yet valid payment
(h(c[i]),m− 1). When this happens, v should discard the
modified payment. However, in PayWord protocol, such
a modified payment is deemed as a valid one by v. Sim-
ilar to the PayWord protocol, W3C’s MPTP, Micro-iKP
and NetCard also suffer from the above two vulnerabili-
ties (Note that in Micro-iKP and NetCard, the effect of
a message modification attack is the same as a message
loss attack because these two micropayment protocols do
not support variable-size payments.)

The above two security holes of the PayWord protocol
were previously discovered in [8]. However, the solutions
proposed in [8] are inefficient. In [8], to counter message
loss attacks, a vendor is also required to compute and
store a different hash chain c′ of length n and each element
c′[i] is used to acknowledge the coin c[i] received from a
user u. This solution is inefficient because it is possible
that u only spends a few coins with v although u computes
a hash chain of length n. Therefore, v wastes both time
and space in computing and storing a hash chain of length
n because she only needs to send a few acknowledgements.
The solution to counter message modification attacks in
[8] fails to enable a vendor to detect whether a variable-
size payment has been modified or not when she receives
it.

Our solution to these two security holes are much more
efficient than the solutions proposed in [8]. First, we use
a securely salted one-way hash function h(ss, ·), where ss
is not known to attackers, instead of a normal one-way
hash function h(·). Due to use of this securely salted
hash function h(ss, ·), an attacker cannot modify a valid
variable-size payment message to a different yet valid pay-
ment message. Using this hash function h(ss, ·), a user
computes a hash chain of length n by c[i− 1] = h(ss, c[i])
for each i (1 ≤ i ≤ n). Second, for each payment (c[i],m)
received by a vendor, the vendor sends back an acknowl-
edgement h(c[i], ss) to the sender. Note that an attacker
might know h(ss, c[i]) since h(ss, c[i]) = c[i − 1], but she
cannot forge h(c[i], ss).

Next, we present a hash chain based micropayment
protocol that uses our above solutions to fix these two
security holes. For simplicity and elaboration of the above
two security fixes, we only present the protocol between a
user u and a vendor v. We also assume there is a shared
key sk between u and v, which can be achieved by public
key cryptography. Each hash chain created by u has a
sequence number that starts at 0. There are two phases
in this hash chain based micropayment protocol: request-
reply phase and pay-ack phase.

In request-reply phase, u first picks two ran-
dom numbers for c[n] and ss, then computes a
hash chain c[0], c[1], · · · , c[n], where c[i − 1] =
h(ss, c[i]) for each i (1 ≤ i ≤ n), and sends
a request message rqst(NCR(sk , (c[0]|seq |ss)) to v.

Here NCR(sk , (c[0]|seq |ss) is the encrypted message
(c[0]|seq|ss) by the shared key sk , where “|” denotes con-
catenation. The variable “seq” is the sequence number
of the current hash chain. When v receives the request
message rqst(NCR(sk , (c[0]|seq |ss)) from u, she decrypts
it using the shared key sk and checks whether “seq” is
the one that she expects. If so, v sends reply message
rply(c[0]) to u; otherwise v discards the request message.
When u receives this reply message, u knows that v re-
ceived the request message correctly and u starts sending
payments.

In the pay-ack phase, u sends a payment message
pay(c[i], m) to v. The value of this payment pay(c[i], m)
is m coins. When v receives this payment message, she
applies the hash function h to c[i] for m times and then
checks whether the result is the coin that v received pre-
viously from u. If so, then v sends acknowledgement mes-
sage ack(h(c[i], ss)) back to u; otherwise v discards the
payment message. When u receives the acknowledgement
message, she knows that v received the payment message
correctly and she continues to send other payments.

The time chart that shows the message flow of this hash
chain based micropayment protocol is shown in Figure 1.
The two processes u and v are specified in Figure 2 using
the Abstract Protocol notation. Note that “any” repre-
sents an arbitrary number chosen by a human being, and
“random” represents a random number generated by a
computer. Here, #ch.u.v denotes the number of messages
in the channel from u to v. We use NCR and DCR to
denote encryption and decryption functions respectively.

rqst(NCR(sk, (c[0]|seq|ss)))

pay(c[i], m)

pay(c[i’], m’)

rply(c[0])

ack(h(c[i], ss))

ack(h(c[i’], ss))

…

Figure 1: Time chart

4 Convergence Theory

In this section, we outline a verification method, which
is based on the three concepts from convergence theory
[2, 5], namely closure, convergence, and protection, for
verifying the security of protocols that are specified using
the Abstract Protocol notation. Later in Section 5, we
use this method to verify the security of the PayWord
micropayment protocol. This verification method is based
on the following definitions.

A state of a protocol is an assignment of a value to each
variable of each process in the protocol and an assignment

International Journal of Network Security, Vol.7, No.1, PP.81–87, July 2008 84

process u
const sk : integer {shared key between processes u and v}
var c : array integer of integer, {current hash chain}

n : integer, {length of current hash chain}
t : integer, {c[t+1] is the next unspent coin}
seq : integer, {sequence number of current hash chain}
ss : integer, {session secret}
st : 0..3, {state indicator whose initial value is 0}
m, x : integer

begin
st = 0 → st := 1; n := any; t := n;

c[n] := random; ss := random;
do (t > 0) → c[t− 1] := h(ss, c[t]); t := t− 1 od;
send rqst(NCR(sk , (c[0]|seq|ss))) to v

¤ rcv rply(x) from v →
if st = 1 ∧ x = c[0]→ st:=2; seq:=seq+1
¤ st 6= 1 ∨ x 6= c[0]→ skip
fi

¤ st = 2 → st := 3; m := any; t := t + m
if t ≤ n→ send pay(c[t], m) to v
¤ true → st:=0
fi

¤ rcv ack(x) from v →
if st = 3 ∧ x = h(c[t], ss)→ st:=2;
¤ st 6= 3 ∨ x 6= h(c[t], ss)→ skip
fi

¤ timeout (#ch.u.v + #ch.v.u = 0) ∧ (st = 1 ∨ st = 3)
if st = 1→ send rqst(NCR(sk , (c[0]|seq|ss))) to v
¤ st = 3→ send pay(c[t], m) to v
¤ st 6= 1 ∧ st 6= 3 →skip
fi

end

process v
const sk : integer {shared key between processes u and v}
var lastc : integer, {last coin received}

seq : integer, {index of sticks}
ss : integer, {session secret}
lastc′, seq ′, ss′, x, c, m, j: integer,

begin
rcv rqst(x) from u →

lastc′, seq ′, ss′ := DCR(sk , x);
if seq ′ = seq → lastc = lastc′; ss = ss′; seq = seq + 1;

send rply(lastc) to u;
¤ seq ′ = seq − 1 → send rply(lastc) to u;
¤ seq ′ 6= seq ∧ seq ′ 6= seq − 1 →skip
fi

¤ rcv pay(c, m) from u →
if c 6= lastc → j := m; x := c;

do (j > 0) → x := h(ss, x); j := j − 1 od;
if x = lastc → send ack(h(c, ss)) to u;

lastc := c;
¤ x 6= lastc → skip
fi

¤ c = lastc → send ack(h(c, ss)) to u;
fi

end

Figure 2: Formal specification

of a sequence of messages to each channel in the protocol.
The value assigned to each variable is from the domain of
that variable. If the guard of an action of a process in a
protocol has the value true at some state of the protocol,
then the action is said to be enabled at that state. For
simplicity, we assume that at each state of a system, at
least one action of that system is enabled.

Some states of a protocol are called the initial states
of that protocol.

A transition of a protocol is a pair (p, q) of states of
the protocol such that some process in the protocol has
an action whose guard is true at state p and execution
of that action when the protocol is at state p yields the
protocol at state q.

A computation of a protocol is an infinite sequence
(p.0, p.1, p.2, · · ·) of protocol states such that each pair
(p.i, p.(i + 1)) of successive states in the sequence is a
protocol transition.

A state of a protocol is called a safe state if it occurs
in any protocol computation (p.0, p.1, p.2, · · ·) where p.0
is an initial state of the protocol.

A state of a protocol is called an error state if the
protocol can reach this state by an adversary executing
one of its actions starting from a safe state of the protocol.

A state of a protocol that is not safe is called an unsafe
state if it is an error state of the protocol or if it occurs
in any protocol computation (p.0, p.1, p.2, · · ·) where p.0
is an error state of the protocol.

A protocol is called secure if it satisfies the following
three conditions:

1) Closure: In each protocol computation whose first
state is safe, every state is safe.

2) Convergence: In each protocol computation whose
first state is unsafe, there is a safe state.

3) Protection: In each protocol transition, whose first
state is unsafe, the critical variables of the protocol
do not change their values.

According to the above definitions, every protocol sat-
isfies the closure condition. Thus, to prove that a protocol
is secure, it is sufficient to show that the protocol satisfies
both the convergence and protection conditions.

5 Formal Verification

In this section, we formally verify that the hash chain
based micropayment protocol specified in Section 3 is
secure against message loss, modification and replay at-
tacks.

First, we examine the state transition diagram of this
protocol without adversary actions, which is shown in Fig-
ure 3. The six safe states, S.1 through S.6, are defined in
Figure 4. Here sequ denotes the variable seq in process
u, similarly for seqv, ssu, etc. Note that the action u.i
denotes the i-th action in process u and the action v.i
denotes the i-th action in process v.

International Journal of Network Security, Vol.7, No.1, PP.81–87, July 2008 85

S.1

S.2

S.3

S.4

S.5

S.6

u.1

v.1

u.2

u.3

u.3

u.4

v.2

Figure 3: State transition diagram without adversary ac-
tions

S.1 : st = 0 ∧ sequ = seqv ∧#ch.u.v = 0 ∧#ch.v.u = 0
S.2 : st = 1 ∧ sequ = seqv

∧ch.u.v = {rqst(NCR(sk , (c[0]|sequ|ssu)))} ∧#ch.v.u = 0
∧(∀i : 0 ≤ i < n : c[i] = h(ssu, c[i + 1]))

S.3 : st = 1 ∧ sequ = seqv − 1 ∧ ssu = ssv ∧ lastc = c[0]
∧#ch.u.v = 0 ∧ ch.v.u = {rply(c[0])}
∧(∀i : 0 ≤ i < n : c[i] = h(ssu, c[i + 1]))

S.4 : st = 2 ∧ sequ = seqv ∧ ssu = ssv ∧#ch.u.v = 0
∧#ch.v.u = 0 ∧ (∀i : 0 ≤ i < n : c[i] = h(ssu, c[i + 1]))

S.5 : st = 3 ∧ sequ = seqv ∧ ssu = ssv ∧ ch.u.v = {pay(c[t], m)}
∧#ch.v.u = 0 ∧ lastc = hm(ssv , c[t])
∧(∀i : 0 ≤ i < n : c[i] = h(ssu, c[i + 1]))

S.6 : st = 3 ∧ sequ = seqv ∧ ssu = ssv ∧ lastc = c[t]
∧#ch.u.v = 0 ∧ ch.v.u = {ack(h(c[t], ssv))}
∧(∀i : 0 ≤ i < n : c[i] = h(ssu, c[i + 1]))

Figure 4: States S.1 through S.6

Second, we examine the state transition diagram of
this protocol with adversary actions. Figures 5 and 6
show the state transition diagrams of the request-reply
phase and pay-ack phase of the protocol respectively with
adversary actions. The adversary actions are labelled L
(for message loss), M (for message modification), and R
(for message replay). The additional states that result
from the adversary actions, labelled L.1 through L.6, M.1
through M.4, and R.1 through R.6, are all unsafe states.
Note that action T denotes the timeout action in process
u.

As an example, we examine the four unsafe states
(namely L.1, M.1, R.1, and R.2) that result from ad-
versary actions when the protocol is in state S.2. In state
S.2, there is one request message in the channel from u
to v. If an adversary launches a message loss attack, i.e.,
discards the request message from u to v, then the pro-
tocol moves to an unsafe state L.1. In state L.1, only
the timeout action T of process u is enabled and even-
tually executed, and henceforth brings the protocol back
to the safe state S.2. If an adversary launches a message
modification attack, i.e., modifies the request message in
the channel from u to v, the protocol moves to unsafe
state M.1. In state M.1, only action v.1 is enabled and
eventually executed. In action v.1, v decrypts the mes-

S.1

S.2

S.3

R.1

R.2

R

M

L

R

M

L

M.1

L.1

R.3

M.2

L.2 L.3

v.1v.1

u.2

T

T v.1

S.4

u.1

v.1

u.2

u.2

v.1

u.3

u.2

Figure 5: State transition diagram of request-reply phase
with adversary actions

sage using the shared key sk. By checking the sequence
number in the request message, v detects that the mod-
ified message is not a valid one, and therefore discards
the modified message, which brings the protocol back to
the unsafe state L.1. If an adversary launches a message
replay attack, i.e., replaces the original request message
with one of previous request messages, the protocol moves
to an unsafe state R.1. There are two possible cases for
the replayed message. If it is the most recent request mes-
sage from u to v, then v sends back to u the most recent
reply message. In this case, the protocol moves to another
unsafe state R.2. But when u receives this reply message,
u discards it because st 6= 1, which moves the protocol to
state L.1. If the replayed message is not the most recent
request message from u to v, v discards the message and
henceforth moves the protocol to state L.1.

Figure 6 shows the state transition diagram of the pay-
ack phase of the protocol with adversary actions. From
Figures 5 and 6, we conclude that the protocol does sat-
isfy the convergence condition because any computation
whose first state is an unsafe state has a safe state.

Next we prove that the protocol satisfies the protec-
tion condition by showing that no critical variables are
updated when the protocol is in an unsafe state. The
protocol has nine critical variables, namely c, n, t, seq , ss
and st of process u, and lastc, seq and ss of process v.
By examining the unsafe states in Figures 5 and 6, we see
that any of the above nine critical variables is updated
only in safe states. For example, the variable lastc in
process v is updated only when v receives a valid request
message or a valid payment message.

In conclusion, the hash chain based micropayment pro-
tocol is secure against message loss, modification and re-
play attacks.

International Journal of Network Security, Vol.7, No.1, PP.81–87, July 2008 86

S.4

S.5

S.6

u.3

v.2

R.4

M.3 R.5

L.4

R.6

M.4

L.5
L.6

v.2v.2

v.2

T

R

M

L

R

M

L u.4

v.2 T

u.4

u.4

u.4

Figure 6: State transition diagram of pay-ack phase with
adversary actions

6 Conclusions

Our contributions in this paper are three-fold. First, we
present two security fixes to the previous hash chain based
micropayment protocols. Second, we formally specify a
hash-chain based micropayment protocol using Abstract
Protocol notation. Third, we formally verify that this
protocol is secure against message loss, modification, and
replay attacks using convergence theory. The specifica-
tion and verification techniques used in this paper can be
applied to other micropayment protocols as well.

References

[1] R. Anderson, H. Manifavas, and C. Sutherland,
“Netcard: A practical electronic cash system,” in
Proceedings of the 4th International Workshop on Se-
curity Protocols, LNCS 1189, pp. 49-57, 1996.

[2] A. Arora and M. G. Gouda, “Closure and conver-
gence: A foundation for fault-tolerant computing,”
IEEE Transactions on Software Engineering, Special
Issue on Software Reliability, vol. 19, no. 3, pp. 1015-
1027, 1993.

[3] S. Glassman, M. Manasse, M. Abadi, P. Gauthier,
and P. Sobalvarro, “The millicent protocol for inex-
pensive electronic commerce,” in Proceedings of the
4th International World Wide Web Conference Pro-
ceedings, pp. 603-618, 1995.

[4] M. G. Gouda, Elements of Network Protocol Design,
John Wiley & Sons, New York, New York, 1th edi-
tion, 1998.

[5] M. G. Gouda, “Elements of security: Closure, con-
vergence, and protection,” Information Processing
Letters, vol. 77, pp. 109-114, 2001.

[6] R. Hauser, M. Steiner, and M. Waidner, “Micro-
payments based on ikp,” in Worldwide Congress on

Computer and Communications Security Protocol,
pp. 67-82, 1996.

[7] C. Jutla and M. Yung, “Paytree: “amortised-
signature” for flexible micropayments,” in Proceed-
ings of the 2nd USENIX Association Workshop on
Electronic Commerce, pp. 213-221, 1996.

[8] A. Lakhia, Specification and verification of payword
protocols, Bachelor’s thesis, The University of Texas
at Austin, 1998.

[9] L. Lamport, “Password authentication with insecure
communication,” Communications of the ACM, vol.
24, no. 11, pp. 770-771, 1981.

[10] T. P. Pedersen, “Electronic payments of small
amounts,” in Proceedings of the 5th International
Workshop on Security Protocols, LNCS 1361, pp. 59-
68, 1997.

[11] R. L. Rivest and A. Shamir, “Payword and mi-
cromint: Two simple micropayment schemes,” in
Proceedings of the Fourth International Workshop on
Security Protocols, LNCS 1189, pp. 69-87, 1996.

[12] W3C, Micro Payment Transfer Protocol (mptp) ver-
sion 0.1. http://www.w3.org/tr/wd-mptp-951122.

Mohamed G. Gouda was born in Egypt. His first B.
Sc. was in Engineering and his second was in Mathemat-
ics; both are from Cairo University. Later, he obtained M.
A. in Mathematics from York University and Masters and
Ph. D. in Computer Science from the University of Water-
loo. He worked for the Honeywell Corporate Technology
Center in Minneapolis 1977-1980. In 1980, he joined the
University of Texas at Austin where he currently holds
the Mike A. Myers Centennial Professorship in Computer
Sciences. He spent one summer at Bell labs in Murray
Hill, one summer at MCC in Austin, and one winter at
the Eindhoven Technical University in the Netherlands.

His research areas are distributed and concurrent com-
puting and network protocols. In these areas, he has been
working on abstraction, formality, correctness, nondeter-
minism, atomicity, reliability, security, convergence, and
stabilization. He has published over sixty journal papers,
and over eighty conference and workshop papers. He has
supervised nineteen Ph. D. Dissertations.

Prof. Gouda was the founding Editor-in-Chief of
the Springer-Verlag journal Distributed Computing 1985-
1989. He served on the editorial board of Information
Sciences 1996-1999, and he is currently on the editorial
boards of Distributed Computing and the Journal of High
Speed Networks.

He was the program committee chairman of ACM SIG-
COMM Symposium in 1989. He was the first program
committee chairman of IEEE International Conference on
Network Protocols in 1993. He was the first program
committee chairman of IEEE Symposium on Advances
in Computers and Communications, which was held in
Egypt in 1995. He was the program committee chairman
of IEEE International Conference on Distributed Com-
puting Systems in 1999. He is on the steering committee

International Journal of Network Security, Vol.7, No.1, PP.81–87, July 2008 87

of the IEEE International Conference on Network Proto-
cols and on the steering committee of the Symposium on
Self- Stabilizing Systems, and was a member of the Austin
Tuesday Afternoon Club from 1984 till 2001.

Prof. Gouda is the author of the textbook “Elements
of Network Protocol Design”, published by John-Wiley &
Sons in 1998. This is the first ever textbook where net-
work protocols are presented in an abstract and formal
setting. He also coauthored, with Tommy M. McGuire,
the monograph “The Austin Protocol Compiler”, pub-
lished by Springer in 2005.

Prof. Gouda is the 1993 winner of the Kuwait Award
in Basic Sciences. He was the recipient of an IBM Faculty
Partnership Award for the academic year 2000 - 2001
and again for the academic year 2001 - 2002 and became
a Fellow of the IBM Center for Advanced Studies in
Austin in 2002. He won the 2001 IEEE Communica-
tion Society William R. Bennet Best Paper Award for
his paper “Secure Group Communications Using Key
Graphs”, coauthored with C. K. Wong and S. S. Lam and
published in the February 2000 issue of the IEEE/ACM
Transactions on Networking (Volume 8, Number 1, Pages
16-30). In 2004, his paper “Diverse Firewall Design”,
coauthored with Alex X. Liu and published in the pro-
ceedings of the International Conference on Dependable
Systems and Networks, won the William C. Carter award.

Alex X. Liu received his Ph.D. degree in computer sci-
ence from the University of Texas at Austin in 2006.
He is currently an assistant professor in the Department
of Computer Science and Engineering of Michigan State
University. He won the 2004 IEEE&IFIP William C.
Carter Award, the 2004 National Outstanding Overseas
Students Award sponsored by the Ministry of Education
of China, the 2005 George H. Mitchell Award for Excel-
lence in Graduate Research in the University of Texas
at Austin, and the 2005 James C. Browne Outstanding
Graduate Student Fellowship in the University of Texas
at Austin. His research interests include computer and
network security, dependable and high-assurance comput-
ing, applied cryptography, computer networks, operating
systems, and distributed computing.

