
International Journal of Network Security, Vol.7, No.1, PP.49–60, July 2008 49

An Update on the Analysis and Design of

NMAC and HMAC Functions

Praveen Gauravaram1, Shoichi Hirose2, and Suganya Annadurai3

(Corresponding author: Praveen Gauravaram)

Information Security Institute (ISI), Queensland University of Technology (QUT)1

7/126 Margaret Street, Brisbane, QLD-4000, Australia (Email: p.gauravaram@isi.qut.edu.au)

The University of Fukui, 3-9-1, Bunkyo, Fukui-shi 910-8507, Japan2

Society for Electronic Transactions and Security (SETS)3

No. 21 (Old No. 11), Mangadu Swamy Street, Nungambakkam, Chennai, 600034, Tamil Nadu, India

(Received Jan. 8, 2006; revised and accepted Apr. 26 & May 7, 2006)

Abstract

In this paper, we investigate the issues in the analysis and
design of provably secure message authentication codes
(MACs) Nested MAC (NMAC) and Hash based MAC
(HMAC) proposed by Bellare, Canetti and Krawczyk.
First, we provide security analysis of NMAC using weaker
assumptions than stated in its proof of security. This
analysis shows that, theoretically, one cannot further
weaken the assumptions in the proof of security of NMAC
to obtain a secure MAC function NMAC and for a secure
MAC function NMAC, both keys must be secret. This
analysis also provides a solution to an open question in
Preneel’s thesis on the security of MAC functions when
the attacker has knowledge of the key(s) in relation to
NMAC and HMAC. Next, we propose a new variant to the
NMAC function by altering the standard padding used
for the hash function in NMAC. This variant is slightly
more efficient than NMAC especially for short messages.
The analysis and performance aspects of this variant are
compared with other efficient MAC functions based on
hash functions. Next, we provide another new variant to
NMAC by altering the position of the trail key used in
NMAC. This variant has some advantages over NMAC
from the perspective of key-recovery attacks. Finally, we
formally show how to convert NMAC and HMAC func-
tions into pseudorandom functions.

Keywords: Message authentication codes, NMAC and
HMAC, provable security

1 Introduction

One of the important applications of cryptographic hash
functions is their use in the construction of efficient mes-
sage authentication codes (MACs) [2, 25, 26, 27, 30]. Hash
functions based on Merkle-Damg̊ard construction [7, 22]
such as SHA-1 are used with minor or no modifications

in constructing MAC schemes due to their efficiency and
free availability.

The first formal security analysis for MACs based
on hash functions was given by Bellare, Canetti and
Krawczyk for the nested MAC (NMAC) and hash based
MAC (HMAC) functions [2]. HMAC is a practical vari-
ant of the formally analyzed NMAC function. NMAC was
proved to be secure if the compression function with fixed
length input is a secure MAC and iterated hash function
with variable length inputs is a weakly collision resistant
hash function. Anyhow, not much analysis was provided
for these functions based on weaker assumptions on the
hash function and compression function than stated in
the proof of security of NMAC [2]. In this paper, we ad-
dress this issue and our result shows that by reducing the
assumptions on the hash functions, NMAC becomes in-
secure against straight forward length extension attacks.
Specifically, we show that in order to prevent extension
attacks on NMAC, both keys must be secret.

While it is known that a MAC function must be both
one-way and collision resistant when the attacker has no
knowledge of the key(s), whether it has to be collision
resistant or one-way when someone has knowledge of the
key(s) depends on the application in which the function
is used [26, p.19]. While the prime motivation behind the
design of NMAC and HMAC functions is to authenticate
information over an insecure medium, there are some ap-
plications that may use these proposals, especially HMAC
(see [15]) requiring extra protection against the insider at-
tacks from someone who has knowledge of the secret keys.
The analysis of NMAC based on weaker assumptions on
the hash functions explains the properties that one would
naturally require from the NMAC function when the at-
tacker has knowledge of the key(s).

Next, we revisit the proof of security of NMAC and
observe that the security proof and the definitions used
in the proof are independent of the padding of the hash

International Journal of Network Security, Vol.7, No.1, PP.49–60, July 2008 50

function and the compression function used in NMAC.
We actually show why and how the proof of security of
NMAC is independent of the padding of the hash func-
tion by proposing a variant to the NMAC function called
NMAC-1. The padding for the inner and outer functions
of NMAC-1 is dependent on the size of the message to be
authenticated. NMAC-1 still observes the design princi-
ple of NMAC which is to call the compression function
of the hash function as a black-box. A formal security
analysis for NMAC-1 is provided.

The performance of MAC functions on short messages
is important. For example, the MAC function used in
IPSec operates on 43-1500 bytes [19], message authenti-
cation of signaling operate on messages that fit in one or
two blocks [25] and the MAC function used in TLS oper-
ates on 0-17 kilobyte. There are also applications such as
entity authentication in a mobile environment where sav-
ing of one block is important. We note that NMAC-1 is
slightly more efficient than NMAC when it is used to au-
thenticate short messages. In addition, we compare the
analysis and performance aspects of the NMAC-1 func-
tion with other efficient MACs based on hash functions
proposed in the literature.

The analysis of MAC schemes based on dedicated hash
functions [2, 27, 28, 29, 30] shows that one has to pay
attention in using the key and the hash function while
designing a MAC based on the hash function. The ap-
plicability of forgery and key-recovery attacks on MACs
based on hash functions depend on how and where one
uses the key and the hash function in the MAC scheme.
Following this observation, we propose a new variant to
NMAC called modified NMAC (M-NMAC) by using the
trail key in NMAC as a block instead of as an initial
state for the outer compression function. The advantage
of this variant over NMAC is that it has flexibility of us-
ing larger keys up to the block size of the compression
function for the trial key which makes it much harder to
perform the complete key-recovery attack on M-NMAC
than on NMAC.

Finally, we note that applications such as IPSec’s Key
Exchange (IKE) protocol use HMAC as a pseudorandom
function (PRF) to derive secret keys. Yet no explicit anal-
ysis of NMAC and HMAC functions as PRFs appeared in
the literature though it appears to be that the proof tech-
niques of [2] can be used to prove the pseudorandomness
of these functions. In this work, we fill this gap by giving
a formal analysis of NMAC as a pseudorandom function
which applies to HMAC as well1.

Several MAC functions based on dedicated hash func-
tions [2, 27, 28, 29, 30] were analyzed. See Appendix C for
a survey on the analysis of MACs based on hash functions.
Hirose [13] has shown that weakly collision resistance of
the iterated hash function in NMAC is not implied by the
pseudorandomness of the compression function. He has
also shown that weakly collision resistance of the iterated

1Very recently, Bellare [1] has shown the pseudorandomness of
NMAC and HMAC functions based on the pseudorandomness of
the compression function.

hash function in NMAC implies collision resistance of its
compression function if the compression function is pseu-
dorandom. Patel [25] has proposed a variant to NMAC
called Enhanced NMAC (ENMAC) by altering the stan-
dard padding scheme used in the underlying hash function
to improve the efficiency of NMAC for short messages.
The ISO/IEC 9797-2 [16] standard specfies a mechanism
which is a variant of MDx-MAC [27] that offers high per-
formance for applications that process short messages of
upto 256 bits. Bellare et.al [3] have shown that the pseu-
dorandomness of the compression function transfers to the
pseudorandomness of the Merkle-Damg̊ard iterated con-
struction using the notion of prefix-free distinguishers.

In Section 2, we describe NMAC and HMAC functions.
In Section 3, analysis of NMAC based on weaker assump-
tions than stated in its proof of security is provided. In
Section 4, the proof of security of NMAC-1 is provided
and in Section 5, a new variant of NMAC called M-NMAC
is proposed. In Section 6, we show how to convert NMAC
and HMAC to pseudorandom functions and conclude the
paper in Section 7.

2 NMAC and HMAC Functions

The first formal security analysis for MACs based on hash
functions was given by Bellare, Canetti and Krawczyk [2]
in the form of NMAC and HMAC. The NMAC and
HMAC functions are discussed below.

2.1 The NMAC Function

NMAC algorithm including its security proof was pre-
sented in [2]. An essential design goal of NMAC is to use
the compression function of the hash function “as is”(as
a black box).

The NMAC algorithm is defined as follows:
If k1 and k2 are two independent and random keys to the
hash function F iterated over the compression function
f , then the MAC function NMAC on an arbitrary size
message x split into blocks x1, x2, . . . , xn is given by

NMACk(x) = Fk1
(Fk2

(x)).

If the concrete realisation of NMAC uses the iterated
hash function F for the inner and outer functions, then k2

would be the IV for the inner keyed iterated hash function
and k1 would be the initial state (IV) for the outer keyed
iterated hash function, which is expected to perform only
one round of operation. The sizes of both keys is the same
which is equal to the length of IV of the hash function F 2.
Since the two keys k1 and k2 act as IVs for the inner and
outer functions respectively, it is clear that NMAC calls
the compression function f of the hash function F as a
black-box as shown in Figure 1.

2For example, if F is a SHA-1 hash function then |k1| = |k2| =
160

International Journal of Network Security, Vol.7, No.1, PP.49–60, July 2008 51

P
A
D

x1 x2 xn

k1 k2
f fff NMACk(x)

Figure 1: The NMAC construction

Since only one round of the outer function iteration is
required, the compression function of the outer hash func-
tion is invoked only once. Therefore, the outer function
can be renamed f and the above NMAC equation can be
written as

NMACk(x) = fk1
(Fk2

(x)),

where fk1
is the keyed compression function. In the above

NMAC equation, a standard padding technique [14] is
defined for the hash function F such that the last block xn

contains the binary encoded representation of the length
of the message. The output of the function Fk2

(x) is
also padded using the same standard padding operation
as for the inner function, which is denoted by the PAD
function in Figure 1. The PAD function is defined as
PAD(Fk2

(x)) = Fk2
(x), 1, 00 . . . 00, |Fk2

(x)| where comma
indicates the concatenation operation.

HMAC is a “fixed IV” variant of NMAC and uses the
hash function F as a black box. The HMAC function that
works on an arbitrary length message x is defined as:

HMACk(x) = FIV (k ⊕ opad, FIV (k ⊕ ipad, x)).

P
A
D

k ⊕ ipad x1 xn k ⊕ opad

fffffIV HMACk(x)

Figure 2: The HMAC construction

HMAC is a particular case of NMAC and both can be
related as HMACk(x) = Fk1

(Fk2
(x)) where k1 = fIV (k⊕

opad), k2 = fIV (k ⊕ ipad), f is the compression function
of the hash function, opad and ipad are the repetitions of
the bytes 0x36 and 0x5c as many times as needed to get
a b-bit block, k indicates the completion of the key k to a
b-bit block by padding k with 0’s and comma is the con-
catenation operation. Since the outer function in this ex-
pression processes only one message block, it can be writ-
ten as HMACk(x) = fk1

(Fk2
(x)) = NMACk1,k2

(x). The
security analysis provided for NMAC applies to HMAC
under the assumption that the compression function used
to derive the keys k1 and k2 for HMAC works as a pseu-
dorandom function [2]. The HMAC function is shown in
Figure 2.

NMAC and HMAC algorithms were proved to be se-
cure [2] given some reasonable assumptions on the under-
lying hash functions. The following definitions are consid-
ered in giving the security analysis of the NMAC function.

Definition 1. A MAC based on the keyed compression
function f is an (εf , q, t, b)-secure MAC if any attacker,

without knowledge of the key k1 requesting q chosen mes-
sages xi (where i = 1 . . . q and max(|xi|) = b) to the keyed
compression function f , cannot break the scheme in a to-
tal time t except with probability less than εf . In other
words, εf is the maximum probability of forging fk1

.

Definition 2. A keyed iterated hash function F is an
(εF , q, t, L)- weakly collision resistant hash function if any
attacker, without knowledge of the key k2 requesting q cho-
sen messages xi (where i = 1 . . . q and max(|xi|) = L) to
the keyed iterated hash function F , cannot find two mes-
sages x and x′ in a total time t such that Fk2

(x) = Fk2
(x′)

with probability better than εF . In other words, εF is the
maximum probability of finding collisions for Fk2

.

3 Analysis of NMAC using

Weaker Assumptions on the

Hash Functions

An ideal MAC function must be both one-way and colli-
sion resistant for someone who does not know the secret
key. Whether the MAC function must be one-way or col-
lision resistant for someone who knows the secret key de-
pends on the application [26, p.19], [21, p.327]. Though
NMAC and HMAC functions were shown to be secure un-
der the assumption that the adversary who tries to forge
them has no knowledge of the key, there may be some
applications where one expects these functions to satisfy
some additional properties for the protection against in-
siders who know the secret key. An example application
based on HMAC-SHA-1 requiring extra protection from
the insider attacks is given in Appendix A.

In the following, we show security analysis of NMAC
and HMAC using weaker assumptions on the hash func-
tions. We also provide the properties that are essential
for the protection of these MAC functions from the insider
attacks. Our analysis shows that theoretically NMAC as
a MAC function is not always secure if the assumptions
on the hash functions are weaker than the assumptions in
its original formal analysis [2].

3.1 Security Analysis

The Remark 4.9 of [2] has motivated us to split the
analysis on NMAC into three cases. In particular, by
splitting the analysis into three cases, we are able to show
the main result of this analysis (case:2) that it is the
keyed application of the external function in the MAC
function NMAC which prevents extension attack but
not just the plain application. Our analysis shows that,
theoretically, one cannot further weaken the assumptions
in the proof of security of NMAC to obtain a secure MAC
function NMAC and to obtain a secure MAC function
NMAC, both keys must be secret. A similar analysis
can be applied to HMAC. This analysis also partially
solves the open question in Preneel’s thesis [26] on the
properties required from the MAC function when the

International Journal of Network Security, Vol.7, No.1, PP.49–60, July 2008 52

adversary has knowledge of the key(s).

Case 1: Only k1 is secret

In this case, we assume that the adversary knows the
key k2 of NMAC. Hence, she can find offline collisions
on Fk2

which is easier to perform than finding collisions
when the key k2 is random and secret as the attacker
needs to contact the legitimate owners of the key k2 to
get collisions for Fk2

.

Once the attacker finds x and x′ such that
Fk2

(x) = Fk2
(x′), this MAC function is attackable

using the chosen message attack. The attacker sends
x to the NMAC oracle and gets the MAC value as
response and uses this MAC value as a forgeable value
for the message x′. Once the attacker gets a collision
on the internal function, the attacker can extend the
collisions on the collided pair of messages x and x′ to
the format Fk2

(x||s) = Fk2
(x′||s) where s is an arbitrary

text appended to the collided messages. This attack
was observed in [2]. Hence, to attain a secure MAC
function NMAC, the internal function Fk2

must be
collision resistant which implies the complexity of finding
collisions on Fk2

must be at least 2|k2|/2 according to
birthday attack.

Case 2: Only k2 is secret

This case assumes that the attacker knows the key k1 used
in NMAC and provides the security analysis of the scheme
against straight forward extension attacks. The analysis
also assumes that the attacker can only access the NMAC
oracle as a whole though it has knowledge of the key k1.
This analysis was not provided in [2].

Hence, to forge the MAC scheme presented in this case,
it seems that the attacker either has to invert the function
fk1

for the known output of the NMAC function or has to
find collisions for NMAC as the attacker cannot get the
actual result of Fk2

(x) but only its value after applying
fk1

. The value Fk2
(x) can be viewed as a message depen-

dent secret input to the function fk1
. Hence the function

fk1
must be one-way as it should be hard for the attacker

to find Fk2
(x) using x and the NMAC output.

Hirose [13] has shown that the weakly collision resis-
tance of Fk2

implies collision resistance of f used in Fk2

under the assumption that f is a PRF. Assume that the
the outer compression function f is different from the
compression function in the inner iterated hash function
F . From this discussion, it seems that naturally the func-
tion fk1

must be both one-way and collision resistant for
some one who knows the key k1. In the following analy-
sis, we show that one cannot always attain a secure MAC
function NMAC with a security requirement weaker than
than weakly collision resistance for the function Fk2

even
if fk1

is both one-way and collision resistant.

Theorem 1. A one-way and collision resistant external
function fk1

(k1 is known) and a weakly-collision resistant
Fk2

inner function do not always imply a secure MAC
function NMAC.

Proof. Let Fk2
: {0, 1}∗ → {0, 1}l and fk1

: {0, 1}l →
{0, 1}n.

Let Gk2
: {0, 1}∗ → {0, 1}l

′

where l > l′.
Let gk1

: {0, 1}l → {0, 1}n be one-way and collision
resistant.

The function Fk2
is defined as Fk2

(x) = Gk2
(x)||0l−l′ .

The function fk1
is defined as fk1

(z′||z′′) = z′||gk1
(z′′)

where z′ ∈ {0, 1}l
′

. Then fk1
is also collision resistant

and one-way.
On the other hand, fk1

(Fk2
(x)) = Gk2

(x)||gk1
(0l−l′)

and Gk2
(x) is obtained from the NMAC oracle. Hence,

even if the function fk1
is one-way and collision resistant,

it cannot always prevent the straight-forward extension
attack as the output of fk1

gives Gk2
(x).

Remarks:

1) The above analysis shows that the function Gk2

should be a secure MAC to make NMAC a se-
cure MAC function. The function Fk2

is also a se-
cure MAC if Gk2

is a secure MAC. The function
Gk2

will work as a secure MAC function only when
the input messages are prefix-free as extension at-
tacks do not work on the hash functions based on
Merkle-Damg̊ard construction for prefix-free input
messages [6].

2) From the theoretical point of view, the above analy-
sis shows that the outer function with no secrecy is
not always good enough to prevent straight forward
extension attacks. Nevertheless, one can use more
“natural” fk1

and Fk2
to attain a secure MAC func-

tion to protect against the insiders who know the key
k1.

3) The above analysis also conveys that there may be
still some NMAC functions that are secure even if
the underlying functions have the above stated prop-
erties.

This MAC scheme is weaker than NMAC from the
perspective of complete key-recovery as it uses just one
key. Note that the NMAC function does not achieve
security against the key-recovery over the combined
lengths of the keys due to the divide and conquer key
recovery attack and the complexity of this attack on w is
about 2|k1|+2|k2| [2]. Note that this attack is impractical
for reasonable key sizes of k1 and k2. Anyhow, once
the attacker gets the key k2 employing this attack, the
security of the NMAC function against forgery reduces
to the secret prefix scheme and there is no need for the
attacker to find the key k1 to perform a forgery.

Case 3: Both k1 and k2 are not secret

When the attacker knows both the keys k1 and k2 of
NMAC, it is obvious that both functions Fk2

and fk1
must

be collision resistant for a protection against insider at-
tacks. In such a case, this scheme will provide n/2-bit
security level against extension attacks where n is the

International Journal of Network Security, Vol.7, No.1, PP.49–60, July 2008 53

size of output in bits. This scheme is basically the dou-
ble hashing scheme proposed in [10] to obtain a higher
security level against extension attacks.

4 On the Proof of Security of

NMAC

In this section, we show that the proof of security of
NMAC does not depend on padding technique used for
the hash function by specifying a new and simple padding
technique for the inner and outer functions in NMAC.
That is, by proving the security of the NMAC function
with the new padding technique, we demonstrate that the
security definitions and proof used in [2] for establishing
the security of NMAC are independent of the specifica-
tion of padding. The NMAC function with the new spec-
ification for padding shall be called NMAC-1, which shall
mean NMAC variant 1. Since padding of the message
is not part of the compression function, NMAC-1, like
NMAC uses the compression function f of the iterated
hash function F “as is”.

4.1 Specification of NMAC-1

An arbitrary finite length message is defined as x. The
message is considered as short if it fits in one block or
less than one block. The maximum size of the block is
b which is equal to 512 bits for hash functions such as
SHA-1, SHA-256 and equals 1024 bits for functions such
as SHA-384 and SHA-512 [9]. In general, |b| ≥ 2n where
n is the size of chaining variable and also the size of the
MAC.

The NMAC-1 function on an arbitrary length message
x is defined as follows:

NMAC-1(x) = fk1
(Fk2

(x)),

where Fk2
(x) is defined as follows based on the size |x| in

bits of the input message x. Fk2
(x) =







fk2
(x) if |x| = b

fk2
(x) with the input x = x||10 . . . 0 if |x| < b

iteration offk2
with the input x||10 . . . 0 if |x| > b.

For the case, |x| 6= b, the message x is padded with a
bit 1 followed by 0’s (possibly none) to make x a multiple
of the block length b of the compression function. That
is, when |x| = b − 1, only bit 1 is padded to x and when
|x| = b− 2, x is padded with bits 1 and 0.

The padding for the outer function fk1
is based on the

size of the input message x. If |x| = b, then fk1
is padded

with 0’s else it is padded with a bit 1 followed by 0’s.

The improvement in the efficiency of NMAC-1 over
NMAC is considerably high for short messages. Note that
the total number of calls to the function f of NMAC-1 are
two compared to three in NMAC when |x| = b. See Ap-
pendix B for the performance comparison.

4.2 Security Analysis of NMAC-1

The terminology used in the proof of security of NMAC-1
shall be the same as those used in [2] for the sake of clarity.
The analytical results in this paper are given referring to
chosen or adaptive chosen message attacks. The main an-
alytical result of NMAC-1 uses the definitions of a secure
MAC and weakly collision resistant hash function given in
Section 2. The analysis also uses the following definition
on weakly collision resistant compression function.

Definition 3. A keyed compression function fk2
is an

(ε′f , q, t, b)- weakly collision resistant compression func-
tion if any attacker, without knowledge of the key k2,
requesting q chosen messages xi (where i = 1 . . . q and
max(|xi|) = b) to the the function fk2

cannot find two
messages x and x′ in a total time t such that fk2

(x) =
fk2

(x′) with a probability better than ε′f . In other words,
ε′f is the maximum probability of finding collisions for fk2

.

Theorem 2. The keyed compression function f is an
(εf , q, t, b)-secure MAC implies that the NMAC-1 func-
tion is an (εf + εF + ε′f , q, t, L) secure MAC under the
assumption that the keyed iterated hash function F is
an (εF , q, t, L)-weakly collision resistant hash function
and the fixed input keyed compression function f is an
(ε′f , q, t, b)-weakly collision resistant compression function
where L ≥ b.

Proof. The parameters q,t and L for the number of queries
to the NMAC-1 oracle, the total attack time t and the
maximum length L of each finite length message xi (where
i = 1, 2, . . . , q) to be queried are fixed.

The attacker AN that tries to break NMAC-1 sends
each message xi to the NMAC-1 oracle which gives re-
sponse NMAC-1k(xi) for every queried message xi. Fi-
nally, the attacker AN outputs the message x and its
forged tag y. The forgery is successful if x 6= xi and
NMAC-1k(x) = y. Let εN be the maximum probability
that AN succeeds in forging NMAC-1.

Using AN , we build an attacker Af that aims to forge
the MAC function fk1

, on inputs of messages of length b
by sending q queries to the oracle fk1

in time t, with a
maximum probability of εf . The proof model of NMAC
applies to NMAC-1 because the adversary Af in NMAC
processes each message xi block after block padding the
last block and computing Fk2

(xi) for every unpadded in-
put message xi sent by AN to the NMAC oracle. So, Af

can be simulated to perform Fk2
(xi) for every message xi

using the proposed padding given for the internal func-
tion in NMAC-1. Moreover, the proof of NMAC allows
the adversary Af to choose its own messages to query
the MAC function fk1

. Therefore, Af can be simulated
to query fk1

using the proposed padding scheme given for
the outer function in NMAC-1. Hence, the security of the
NMAC function [2] under the given proof model is inde-
pendent of the padding technique employed for the inner
keyed iterated hash function and the outer keyed compres-
sion function.

The algorithm of Af is given below:

International Journal of Network Security, Vol.7, No.1, PP.49–60, July 2008 54

Choose random k2

For i = 1, . . . , q perform the following steps:

1) AN → xi

2) Af computes Fk2
(xi) according to the specified

padding technique

3) Af queries fk1
with Fk2

(xi) and gets fk1
(Fk2

(xi))

where Fk2
(xi) represents the padding of Fk2

(xi).
Fk2

(xi) = Fk2
(xi)||00 . . . 0 if |x| = b and

Fk2
(xi) = Fk2

(xi)||10 . . . 0 if |x| 6= b.

4) AN ← fk1
(Fk2

(xi))

AN outputs (x, y) where x 6= xi

Af outputs (Fk2
(x), y)

Let εF and ε′f be the maximum probabilities of any ad-
versary for which Fk2

(x) = Fk2
(xi) and fk2

(x) = fk2
(xi)

respectively. The probability with which the adversary
Af fails to forge fk1

is given as:

Pr[Affails] ≤ Pr[AN fails] + Pr[AN succeeds ∧ |x| ≤
b ∃i(|xi| ≤ b ∧ fk2

(x) = fk2
(xi))]+Pr[AN succeeds ∧|x| ≥

b ∃i(|xi| ≥ b ∧ Fk2
(x) = Fk2

(xi))].

That is, 1− εf ≤ 1− εN + ε′f + εF

⇒ εf ≥ εN − ε′f − εF .
⇒ εN ≤ εf + ε′f + εF .
Hence, the probability of forging NMAC-1 is at most sum
of the maximum probabilities of finding collisions for the
inner keyed compression function and the keyed iterated
hash function and forging the outer keyed compression
function.

4.3 Comparison of NMAC-1 with other

Efficient MACs Based on Hash Func-

tions

Patel [25] has proposed Enhanced NMAC (ENMAC) to
improve the efficiency of NMAC for short messages. A
short message was defined as a message with size |x| in
bits less than or equal to |b − 2|. ENMAC function is
defined as below:

ENMACk(x) =






fk1
(x) with the input x = x||11 if |x| = b− 2

fk1
(x) with the input x = x||10 . . . 01 if |x| < b− 2

fk1
(xpref , Fk2

(xsuff), 0) if |x| > b− 2,

where xpref contains the bits from 1 to b − n− 1 and
xsuff contains bits from b−n to |x|. They are represented
as xpref = x1, . . . , xb−n−1 and xsuff = xb−n, . . . , x|x|.

When |x| ≤ b − 2, a unique padding technique is em-
ployed by appending x with a compulsory bit 1 followed
by necessary 0 bits to make the size of x equal to the size
of b. In this case, the last bit is always set to 1 and the
concatenation of 0 bits depends on whether |x| < b − 2.

The last bit indicates whether ENMAC is used to pro-
cess single message block. For example, to authenticate
a short message say 500 bits, ENMAC based on SHA-1
requires just one call to the compression function f of
SHA-1 whereas NMAC requires three calls and NMAC-1
requires two calls to the function f .

When |x| > b−2, the message x is split into two parts,
prefix (xpref) and suffix (xsuff). ENMAC first processes
the xsuff using the internal function Fk2

and then the
prefix part xpref using the output of Fk2

(xsuff). For
example, see SHA-1-ENMAC discussed in [25]. In this
case, if xsuff begins at a non-word border, all words in
xsuff need to be re-aligned. To overcome such problems,
a practical variant for ENMAC was proposed in [25] and
is defined as follows:

ENMACk(x) =






fk1
(x) with the input x = x||11 if |x| = b− 2

fk1
(x) with the input x = x||10 . . . 01 if |x| < b− 2

fk1
(Fk2

(xpref), xsuff , 0) if |x| > b− 2,

where xpref = x1, . . . , x|x|−(b−n−1) and xsuff =
x|x|−(b−n), . . . , x|x|.

Assume3 a standard padding technique employed for
both xpref and xsuff to obtain a secure MAC function
ENMAC. Now this variant of ENMAC requires knowledge
of length of x to calculate xpref and xsuff as length of the
message x determines the content in the last two blocks
of xpref where the last block of xpref is the padded block.
The knowledge of the length of the message x is required
even if the message x is padded with a bit 1 followed by
0’s as the specification for xpref has |x| as an argument.
In general, the length of data to be hashed is known ahead
of time in many applications and in rare situations it is
not [8].

In general, any MAC function based on a hash function
used to protect the authenticity and integrity of the com-
municated data does not know the length of the message
in advance. However, a machine evaluating the ENMAC
function to generate authentication codes for the commu-
nicated data, must know the length of x in advance to
find the content of xpref . The machine may also perform
the ENMAC computation as follows: when it receives the
authentication tag attached to the message (specifically,
to the last block), it has to look at the intermediate MAC
value obtained at the previous one or two blocks before
the final block of x and has to re-compute xpref accord-
ingly taking into account the padding for xpref . Then it
has to evaluate the outer function of ENMAC. In this case,
when ENMAC is used to process large data, there would
be a slight performance inefficiency due to the above pro-
cess. This problem can be solved using a special code [8]
to tell the ENMAC routine that the total length of xpref

is not known when the processing of data is begun and
that it will be input with the final chunk of data for xpref

and the xsuff follows xpref . The special code used for

3The padding employed on xpref and xsuff is not specified in
the specification of ENMAC or its variant in [25]

International Journal of Network Security, Vol.7, No.1, PP.49–60, July 2008 55

this purpose needs to be clearly different from the valid
total length code which appears in the last block so that
correct processing of ENMAC function can be done.

We note that prior knowledge of the message or any
special code is not essential to evaluate tags on messages
of more than a block using NMAC, HMAC and NMAC-1
functions. They only require to know the length encoding
of the message in the last block (if length encoding is used
as part of the padding) or the authentication tag attached
to the last block to indicate the end of data stream for
that particular session in the communication channel.

The security treatment of NMAC and NMAC-1 take
into account the maximum length L of the message to
be processed as a security parameter. During the chosen
messgae or adaptive chosen message attack on any of these
functions, their respective oracles return response to a
query of arbitrary length in one step. However, this is
not realistic measure. Hence, it is reasonable to assume
that the processing time of a MAC is proportional to the
length of the message and the length of the message to be
processed must be a security parameter. We observe that
the analysis of ENMAC and its variants do not consider
length of the message as a security parameter.

As observed in [2], one can convert NMAC into a hy-
brid MAC function using two different functions as long as
the assumptions stated in the proof of security of NMAC
hold. This holds for NMAC-1 too. For example, one can
use SHA-256 for the internal function of NMAC-1 and a
block cipher in the CBC mode for the external function
of NMAC-1. In this sense, the result of NMAC-1 is more
general than stated in the proof. In addition, one can
use the wide-pipe hash [20] (e.g, SHA-512 and truncating
half of the output bits) for the inner function and the com-
pression function of SHA-256 for the external function in
NMAC and NMAC-1. We note that design of such hybrid
schemes using ENMAC poses penalty on the performance
as the second function used in ENMAC not only uses the
output of the first function but also part of the message
to be authenticated.

Finally, the ISO/IEC 9797-2 [16] standard specfies a
mechanism which is a variant of MDx-MAC [27] that of-
fers high performance for applications that process short
messages of upto 256 bits. MDx-MAC unlike NMAC
and its variants, calls complete hash function once but it
makes a small modification to the compression function
by adding a key to the additive constants in the compres-
sion function. In addition, MDx-MAC and its variant
were not formally analysed as the analysis of NMAC and
its variants.

5 A New Variant of NMAC

As pointed out in [2], keying the IVs of the hash functions
as was done in NMAC and HMAC functions allows for a
better modeling of the keyed hash functions with some
significant analytical advantages. However, the question
is how it differs from using the keys as data blocks which is

the other common way of designing keyed hash functions.
In this section, we shall explore this concept further and
see what advantages we can get by doing so.

Instead of using the second key k1 as an IV to the
external function f in NMAC, we use it as a block and
use the output of Fk2

as the IV to the external function
f . We call this variant as M-NMAC which shall mean
modified-NMAC as shown in Figure 3 and is defined as
below:

M-NMACk(x) = fFk2
(x)(k1).

x1 x2 xn k1

k2
f fff M-NMACk(x)

Figure 3: The M-NMAC construction

M-NMAC can also be seen as a kind of envelope MAC
scheme [27, 28, 29] except that it uses the key k2 as an
IV instead of as a block. k1 denotes the key k1 made to
a block size b of the compression function f . That is, if
the function f is the compression function of SHA-1 then
the length |k1| of the key k1 is at most 512 bits. It is
recommended that |k1| ≥ |k2| and k1 is completed to size
b by appending 0’s if |k1| < b. The length of message x
after padding must be a multiple of block length b of the
compression function f as in NMAC. The proof of security
of M-NMAC follows from NMAC under the assumption
that the keyed function Fk2

is a weakly collision resistant
hash function and the external function fy(k1) is a secure
MAC where y = Fk2

(x).

We note that birthday attack is the best known forgery
attack on M-NMAC. The advantage of M-NMAC over
NMAC is the flexibility in using variable key lengths as
large as size b of the block for the trail key k1. Note that
HMAC has also the provision of using larger keys upto
size of the block b. While the maximum lengths of both
the keys k1 and k2 in NMAC depends on the sizes of the
initial states of the functions F and f used in NMAC,
only size of the key k2 is dependent on the initial state
of the function F . The total complexity of divide and
conquer complete key recovery attack [27, 28, 29] on M-
NMAC (which applies to NMAC [2]) is about 2|k1|+2|k2|.
If |k1| > |k2|, then this total cost approximates to 2|k1|.
Since the key k1 is used in a separate block independent
of the message, the slice by slice trail key recovery at-
tack [28, 29] does not work against M-NMAC as this at-
tack requires the trial key to be split across the blocks.
Anyhow, due to the divide and conquer key recovery at-
tack on M-NMAC, once the attacker finds the key k2, the
security of M-NMAC against forgery, like NMAC, reduces
to the secret prefix MAC scheme [27].

International Journal of Network Security, Vol.7, No.1, PP.49–60, July 2008 56

6 On the Pseudorandomness of

NMAC and HMAC

It is well known that any pseudorandom function would
work as a MAC and the security reduction is stan-
dard [4, 5, 11, 12]. However, it is not the other way round.
A MAC function may not work as a PRF. Neverthe-
less, HMAC with SHA-1 is used as pseudorandom func-
tion to derive keys in applications such as PKCS #5 [18]
and IPSec’s Key Exchange (IKE) protocol. Though it
has been pointed out that [18] security analysis given for
HMAC as a MAC function [2] can be modified to accom-
modate the requirements of a PRF using strong security
assumptions, no explicit security analysis of NMAC and
HMAC as PRFs has appeared in the literature. In this
section, we provide the security analysis of NMAC as a
PRF, and it applies to HMAC as well.

6.1 Security Analysis

The terminology used in this section shall be the same as
those used in [2, 3] for the sake of clarity. The analytical
result of NMAC as a PRF is given referring to chosen
or adaptive chosen message attacks. The result uses the
definition of weakly collision resistant hash function given
in Section 2. In addition, the analysis uses the definition
on fixed-length input-pseudorandom function (FI-PRF)
families following [3].

Informally, a pseudorandom function is a family of
functions with the property that the input-output behav-
ior of a random member of the family is computationally
indistinguishable from that of a random function. Let
F ′ : {0, 1}b × {0, 1}l → {0, 1}l be a family of keyed com-
pression functions or FI-PRF family where l is the length
of the key k. That is, there is a set of keys and each key
k of length l names a function from the family F ′. This
is denoted by F ′k or f . Let R : {0, 1}b → {0, 1}l be a fam-
ily of all functions with the distribution being uniform;
that is picking a function at random from this family just
means drawing a random function of {0, 1}b to {0, 1}l. If
S is a probability space then picking a string x from S is

denoted by x
$
← S.

Now F ′ is said to be a pseudorandom function if the
input-output behavior of a random member of this family
is computationally indistinguishable from the behavior of
a function picked at random from the family R. This
is formalized using the notion of distinguishers [3]. A
distinguisher is given an oracle for the function f chosen
at random from one of the two families and is allowed to
decide the family from which f is chosen. Formally, to
any such distinguisher a number between 0 and 1 called
prf-advantage is associated and is defined as,

Advprf
F ′ (D) = Pr

f
$
←F ′

[Df = 1]− Pr
f

$
←R

[Df = 1]

with the probabilities taken over the choices of f and the
coin tosses of D.

The security of the family F ′ as a pseudorandom func-
tion depends on the resources that D uses that include
running-time and number and length of oracle queries.
The running-time t includes the time taken to execute

f
$
← F ′, time taken to compute responses to oracle queries

made by D and the memory which includes the size of
the description of D. The distinguisher D(t, q, b, ε∗) dis-
tinguishes F ′ from R if it runs for time t, makes q oracle
queries each of block of length b bits and Advprf

F (D) ≤ ε∗

where ε∗ is called the distinguishing probability. This is
defined below:

Definition 4. A family of fixed-length input keyed com-
pression functions {F ′t} is (ε∗, q, t, b)-FI-PRFs if any dis-
tinguisher that is not given the key k, is limited to spend
total time t and sees the outputs of the given function f
computed on q distinct inputs each of size b bits, cannot
distinguish the function f from a random function of the
family R except with a probability less than ε∗.

Now we state the main analytical result on NMAC as a
PRF. The analysis uses Definitions 2 and 4.

Theorem 3. Suppose F ′ : {0, 1}b × {0, 1}l → {0, 1}l be
a fixed-length input function family where l is the length
of the key. Suppose F ′ is an (ε∗, q, t, b)-pseudorandom on
inputs of length b bits. Let {Fk} be a family of (εF , q, t, L)-
weakly collision resistant keyed hash functions where L ≥
b. Let NMAC : {0, 1}L × {0, 1}l → {0, 1}l be a function
family where l is the length of each key k1 and k2 and
L ≥ b. Then the NMAC function is (ε∗ + εF , q, t, L)-
pseudorandom.

Proof. The parameters q,t and L for the number of queries
to the NMAC oracle, the total attack time t and the max-
imum length L of each finite length message xi (where
i = 1, 2, . . . , q) to be queried are fixed.
Let R : {0, 1}b × {0, 1}l → {0, 1}l be a family
of all functions with a uniform distribution. Let
G : {0, 1}L → {0, 1}l be a family of all functions with a
uniform distribution.

Let AN be the distinguisher that tries to break NMAC
as a PRF. Namely, AN is given an oracle of the function
g chosen at random from one of the two families; NMAC
or G. AN ’s task is to distinguish the function g from a
random function. AN queries the oracle g with xi and gets
the response g(xi) for every queried message xi where i
ranges from 1 to q. Finally, AN succeeds if it distinguishes
NMAC from G after looking at q input-output examples
of g in time t. Let εN be the probability of success of
AN . After querying the oracle of the function g with q
queries, AN outputs a bit 0 or 1. The output is 1 if AN

succeeds in correctly distinguishing NMAC from G and
the output is 0 if AN fails in distinguishing NMAC from
G.
Using AN , we build an attacker Af that aims to tell
whether the function f belongs to F ′ or R on inputs of
messages of length b by sending q queries to the oracle of

International Journal of Network Security, Vol.7, No.1, PP.49–60, July 2008 57

the function f in time t with a maximum probability of
ε∗. That is, the goal of Af is to distinguish the family F ′

from the random function family R.
The algorithm of Af is given below:

Choose random k2

For i = 1, . . . , q perform the following steps:

1) AN → xi

2) Af computes Fk2
(xi)

3) Af queries f with Fk2
(xi) and gets f(Fk2

(xi))

where Fk2
(xi) denotes the padding of Fk2

(xi).

4) AN ← f(Fk2
(xi))

AN outputs its decision, a bit 0 or 1.
Af outputs its decision, a bit 0 or 1.

Analysis of success probabilities

Now we analyze the success probability ε∗ of the distin-
guisher Af in distinguishing fk1

from a truly random func-
tion. Let εF be the maximum probability that there exists
at least one collision in Fk2

when AN queries the NMAC
function. The distinguisher Af fails:

1) whenever AN fails to distinguish NMAC from G and
outputs a bit 0.

2) whenever AN outputs a bit 1 and the inner function
Fk2

is not weakly collision resistant i.e Fk2
(xp) =

Fk2
(xq) for distinct p and q. In this case, the answer

of AN is not useful to tell whether the outer function
fk1

belongs to F ′ or R because g(xp) = g(xq) for
both fk1

and a truly random function.

If Fk2
is weakly collision resistant then the probability

that there exists p and q such that Fk2
(xp) = Fk2

(xq)
is negligible. Then, the answer of AN is useful to tell
whether the outer function is fk1

or a truly random
function because the inputs to the outer function are
almost always distinct.

Hence, Pr[Af fails] ≤ Pr[AN fails] + Pr[AN succeeds ∧
∃p, q (p 6= q ∧ Fk2

(xp) = Fk2
(xq))]

⇒ 1− ε∗ ≤ 1− εN + εF

⇒ εN ≤ ε∗ + εF

Hence, the probability of breaking NMAC as a PRF is at
most sum of the maximum probabilities of finding colli-
sions for the inner keyed compression function and distin-
guishing the outer function from that of a random func-
tion.

Remarks:

1) Let εmax = max(ε∗, εF)

⇒ εN ≤ εmax + εmax

⇒ εN ≤ 2.εmax

⇒ εmax ≥ (1/2).εN .

That is, given an adversary that distinguishes the
NMAC function from a random function, one can
explicitly show an algorithm that using the same re-
sources breaks the underlying hash function with at
least half of that probability.

7 Conclusion

In this paper, we have considered some issues in the
design and analysis of NMAC and HMAC functions
that were not covered in [2]. The first result of this
paper is analysis of these MAC functions using weaker
assumptions than stated in their proofs of security. Next,
we have proposed an efficient variant to NMAC called
NMAC-1 which has some advantages over other efficient
MACs based on hash functions. We have also proposed a
variant to the NMAC function which has some additional
advantages over NMAC from the perspective of complete
key-recovery attack. Finally, we have formally analysed
the pseudorandomness of NMAC and HMAC functions.

Acknowledgments

The authors thank Kapali Viswanathan (Technology De-
velopment Department, ABB Corporate Research Centre,
Bangalore, India) for all his encouragement and useful
discussions on the subject in the paper. Many thanks to
William Millan and Juanma González Nieto of ISI, QUT
for their comments on the earlier drafts of the paper. We
also thank anonymous reviewers for useful comments that
improved the quality of the paper.

References

[1] M. Bellare, “New proofs for NMAC and HMAC: Se-
curity without collision-resistance,” in Advances in
Cryptology (Crypto’06), colorred pp. ???, 2006.

[2] M. Bellare, R. Canetti, and H. Krawczyk, “Keying
hash functions for message authentication,” in Ad-
vances in Cryptology (Crypto’96), LNCS 1109, pp.
1-15, 1996.

[3] M. Bellare, R. Canetti, and H. Krawczyk, “Pseudo-
random functions revisited: The cascade construc-
tion and its concrete security,” in Proceedings of the
37th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’96), pp. 514–523, 1996.

[4] M. Bellare, J. Kilian, and P. Rogaway, “The security
of cipher block chaining,” in Advances in Cryptology
(Crypto’94), LNCS 839, pp. 341-358, Springer Ver-
lag, 1994.

[5] M. Bellare, J. Kilian, and P. Rogaway, “The security
of the cipher block chaining message authentication
code,” Journal of Computer and System Sciences,
vol. 61. no.3, pp. 362-399, 2000.

International Journal of Network Security, Vol.7, No.1, PP.49–60, July 2008 58

[6] J. Coron, Y. Dodis, C. Malinaud, and P. Puniya,
“Merkle-damgard revisited: How to construct a hash
function,” in Advances in Cryptology (Crypto’05),
LNCS 3621, pp. 430-448, 2005.

[7] I. Damgard, “A design principle for hash functions,”
in Advances in Cryptology (Crypto’89), LNCS 435,
pp. 416-427, 1989.

[8] D. Johnson, Improving Hash Function Padding,
Technical report, National Institute of Stan-
dards and Technology NIST, Oct. 2005.
(http://www.csrc.nist.gov/pki/HashWorkshop/2005/
program.htm).

[9] “Federal Information Processing Standard
(FIPS),” Secure Hash Standard, National Insti-
tute for Standards and Technology, Aug. 2002.
(http://csrc.nist.gov/publications/fips/fips180-
2/fips180-2.pdf)

[10] N. Ferguson and B. Schneier, Practical Cryptography,
Chapter Hash Functions, pp. 83-96, John Wiley &
Sons, 2003.

[11] O. Goldreich, S. Goldwasser, and S. Micali, “On
the cryptographic applications of random functions
(extended abstract),” in Advances in Cryptology
(Crypto’84), LNCS 196, pp. 276-288, Springer-
Verlag, 1984.

[12] O. Goldreich, S. Goldwasser, and S. Micali, “How to
construct random functions,” Journal of the ACM,
vol. 33, no. 4, pp. 792–807, Oct. 1986.

[13] S. Hirose, “A note on the strength of weak collision
resistance,” IEICE Transactions on Fundamentals,
vol. E87-A, no. 5, pp. 1092-1097, 2004.

[14] ISO/IEC FDIS 10118-3, Information Technology -
Security Techniques - Hash Functions - Part 3: Ded-
icated hash functions, 2003.

[15] ISO 15764, “Road Vehicles Extended Data Link Se-
curity,” International Organization for Standardiza-
tion, 2004. Published Standard.

[16] ISO/IEC 9797-2, “Information Technology - Security
Techniques - Message Authentication Codes (MACs)
- Part 2: Mechanisms Using A Dedicated Hash-
Function,” International Organization for Standard-
ization, Aug. 2002.

[17] B. Kaliski and M. Robshaw, “Message authentica-
tion with MD5,” CryptoBytes, vol. 1, no. 1, pp. 5-8,
Spring 1995.

[18] B. Kaliski, PKCS #5: Password-based cryp-
tography specification version 2.0. Inter-
net Informational RFC 2898, Sept. 2000.
(http://www.ietf.org/rfc/rfc2898.txt)

[19] T. Krovetz, Software-Optimized Universal Hashing
and Message Authentication, PhD thesis, University
of California, Davis, Sep. 2000.

[20] S. Lucks, “A failure-friendly design principle for
hash functions,” in Advances in Cryptology (Asi-
aCrypt’05), LNCS 3788, pp. 474-494, Springer-
Verlag, 2005.

[21] A. Menezes, P. Oorschot, and S. Vanstone, Hand-
book of Applied Cryptography, Chapter Hash Func-
tions and Data Integrity, The CRC Press series on

discrete mathematics and its applications, pp. 321-
383, CRC Press, 1997.

[22] R. Merkle, “One way hash functions and DES,” in
Advances in Cryptology (Crypto’89), LNCS 435, pp.
428-446, Springer-Verlag, 1989.

[23] P. Metzger and W. Simpson, RFC 1828: IP Authen-
tication Using Keyed MD5, Aug. 1995. Status: PRO-
POSED STANDARD.

[24] C. Mitchell, Personal Communication, Aug. 2005.
[25] S. Patel, “An efficient MAC for short messages,” in

Annual International Workshop on Selected Areas in
Cryptography, LNCS 2595, pp. 353-368, Springer-
Verlag, 2002.

[26] B. Preneel, Analysis and design of Cryptographic
Hash Functions. PhD thesis, Katholieke Universiteit
Leuven, 1993.

[27] B. Preneel and P. Oorschot, “MDx-MAC and build-
ing fast MACs from hash functions,” in Advances
in Cryptology (Crypto’95), LNCS 963, pp. 1-14,
Springer-Verlag, 1995.

[28] B. Preneel and P. Oorschot, “On the security of two
MAC algorithms,” in Advances in Cryptology (Eu-
roCrypt’96), LNCS 1070, pp. 19-32, Springer-Verlag,
1996.

[29] B. Preneel and P. Oorschot, “On the security of it-
erated message authentication codes,” IEEE Trans-
actions on Information Theory, vol. 45, no. 1, pp.
188-199, 1999.

[30] G. Tsudik, “Message authentication with one-way
hash functions,” in IEEE Infocom 1992, pp. 2055-
2059, 1992.

[31] X. Wang, Y. Yin, and H. Yu, “Finding colli-
sions in the full SHA-1,” in Advances in Cryptology
(Crypto’05), LNCS 3621, pp. 17-36, Springer-Verlag,
2005.

[32] X. Wang and A. Yao and F. Yao, Crypt-
analysis of SHA-1 Hash Function, Technical
report, National Institute of Standards and
Technology NIST, Oct. 2005. (http://www.
csrc.nist.gov/pki/HashWorkshop/program.htm)

Appendix A: Application based on

HMAC-SHA-1

Consider the vehicle to remote database application of
ISO 15764 (Road Vehicles: Extended Data Link Secu-
rity) [15]. This application uses HMAC-SHA-1 for entity
authentication and data integrity security services to pre-
vent replay attacks. The link between the vehicle and
the external test equipment is local to the terminal. It is
therefore under the control of the user who will be identi-
fied to the server before secure information is processed.
The communication chain requires the following security
services: entity authentication and data integrity to pre-
vent replay attack, confidentiality to prevent eavesdrop-
ping and non-repudiation to prevent the user later deny-
ing establishing the link, thereby linking the user to the

International Journal of Network Security, Vol.7, No.1, PP.49–60, July 2008 59

audit trail. If the HMAC-SHA-1 for authentication and
integrity services is not one-way and collision resistant for
the user knowing the key, then signing the final message
with the RSA private key will not provide non-repudiation
for the entire message stream [24]. Considering the recent
attacks on SHA-1 [31, 32], one would require the colli-
sion resistance property of the underlying hash function
in the MAC schemes like HMAC and NMAC to provide
additional protection to the application against insiders.
Note that this is not the motivation behind the proposals
NMAC and HMAC. Nevertheless, as pointed out by Pre-
neel [26, p.20], if some additional protection against in-
sider attacks is obtained from the protection of the MAC,
the MAC function must be naturally collision resistant.

Appendix B: Performance aspects

In this section, we give performance comparison of
NMAC-1 against NMAC in terms of number of calls to
the compression function for various message sizes when
hash functions from the MDx family are chosen as the un-
derlying algorithms for NMAC and NMAC-1. A similar
performance comparison between NMAC and ENMAC is
given in [25].

The efficiency improvement of NMAC-1 over NMAC is
calculated using the formula.

%Efficiency improvement =
[(#(f) in NMAC−#(f) in NMAC-1)/#(f) in NMAC]100

From Table 1, we can clearly see that for messages of ex-
actly one block length (b = 512 bits) and those that fall in
the closed set [n∗447, n∗b] and with n = 1 (n ∈ {1, 2, . . .}),
the efficiency of NMAC-1 is 33% over NMAC. The effi-
ciency improvement decreases for the messages falling in
the set [n ∗ 447, n ∗ b] and with n ≥ 2.

Appendix C: Survey of attacks on

MACs based on hash functions

The following are some known generic attacks on MAC
schemes [27, 21]. Here, the secret key k is used in comput-
ing an n-bit MAC value h for a message x. It is assumed
that the adversary that attacks the MAC function does
not possess the secret key k.

• MAC forgery: An adversary generates a new
message-MAC pair (x,h) such that MACk(x) = h.
If the message x is an arbitrary message then this is
an existential forgery. If the message x is a partic-
ularly chosen message then this a selective forgery.
For an ideal MAC, the complexity of these attacks
is O(2min(|k|,n)). Either guessing h for a given x or
guessing x for a given h, has a success probability
of 2−n. It should be noted that the adversary may
somehow, possibly by interacting with the sender or
the receiver, determines the validity of the forged

(x, h) pairs. Of course, the adversary cannot ver-
ify the forged pairs even with known text-MAC pairs
without interacting with the sender or receiver. A
formal definition on MAC security is given in sec-
tion 4.

• Key recovery: Using a single known text-MAC
pair, an attacker finds the correct key k used in com-
puting the MAC value. For an ideal MAC, the com-
plexity of the key recovery attack should be same as
the exhaustive key search attack over the entire key
space which is O(2|k|). It requires |k|/n text-MAC
pairs to verify this attack. Key recovery attack allows
selective forgery of the MAC function.

Attacks on different MAC schemes based on crypto-
graphic hash functions are presented below. It should
be noted that the hash function F used in constructing
MACs follows the Merkle-Damg̊ard construction [7, 22].
The function F processes a message of arbitrary finite
length in successive blocks of fixed equal length using the
compression function f . It is assumed that the length of
the chaining value, hash value and the MAC value (au-
thentication tag) is n bits. For the working procedure on
Merkle-Damg̊ard hash functions see [2, 21].

• Attack against the secret prefix method: In the
secret prefix method, the secret key k is prepended
to the message for which MAC has to be com-
puted [27, 30]. MAC computed on a message x using
this method is given as MACk(x) = F (k||x). This
scheme is weak against extension attacks as one can
use this MAC value to compute the MAC of a new
message x||x′ by appending x′ to x. The iterative
structure of F allows extension attacks to happen.
Moreover, any type of padding scheme employed for
x initially do not prevent extension attacks as an at-
tacker can cleverly choose x′ related to the length of
x and its padding.

• Attack against the secret suffix method:

MACk(x) = F (x||k) is the secret suffix method [30,
27] where key k is appended to the message x. An
off-line collision attack against the function F can
result in two messages x and x′ such that F (x) =
F (x′). For an ideal hash function F with an n-bit
hash value, this requires at least 2n/2 off-line oper-
ations according to the Birthday attack. Once this
is found, the attacker can append text y to x and
get the chosen text x||y and request the MACk func-
tion to get MACk(x||y||k). Using the MAC value
MACk(x||y||k), the attacker can perform selective
forgery (forgery for the message of its choice) on the
message x′||y||k to get MACk(x′||y||k). Again the
attacker does not have to know the secret key k to
perform this attack as it is appending of the key k to
the message that results in the attack.

• Attacks against the Envelope method: Enve-
lope method is a combination of prefix and suffix

International Journal of Network Security, Vol.7, No.1, PP.49–60, July 2008 60

Table 1: Efficiency improvement of NMAC-1 with respect to NMAC
x in 32 byte increments #(f) in NMAC #(f) in NMAC-1 %Efficiency improvement
32 2 2 0
64 3 2 33
96 3 3 0
128 4 3 25
160 4 4 0
192 5 4 20
224 5 5 0
256 6 5 17

methods. In this method, one key k1 is prepended to
the message x and the other key k2 is appended to
the message x as given by MACk(x) = F (k1||x||k2).

Preneel and van Oorschot [2, 27, 28, 29] observed di-
vide and conquer exhaustive search key recovery at-
tack on such a scheme where both keys k1 and k2 can
be recovered in a time around (2|k1| + 2|k2|)(where
|k1| = |k2| =n) by first recovering key k1 and then
k2. This attack needs about 2(n+1)/2 known message-
MAC pairs of equal length to find an internal col-
lision(collision before last block gets hashed)on the
chaining variables. The attacker then performs an
exhaustive key search for k1 with the effort about
2|k1| which results in a small set of possible keys for k1

and determines the correct key k1 with a few chosen
messages thus reducing the security of the envelope
method to the secret suffix method. The attacker
then finds key k2 with the effort 2|k2|.

Preneel and van Oorschot [28] described a new di-
vide and conquer key recovery attack to recover the
trailing key k2 in the envelope method. This is also
called as slice by slice key recovery of trail key in
envelope method [29]. This attack includes the case
k1 = k2 of the envelope method which was proposed
in RFC 1828 [23] and in [17]. This attack exploits
the padding procedure of the hash functions such as
MD5 used in the envelope scheme. This attack re-
lies on the trial key k2 being split across the blocks.
For example, to find 64 bits of a 128-bit key k2 in 4-
bit slices (24 steps), the attack requires 264.5 known
texts at each step to get an internal collision (in total
268.5 known texts) and 26 chosen texts at each step
to identify the correct key bits (in total 210 chosen
texts). The attack works when the last before block
contains 1 to 64 bits of the key k2 and known mes-
sages have the same number of blocks. Exhaustive
key search is then performed to recover the remaining
64 key bits of k2. Hence the overall time complexity
of the attack to recover 128-bit key k2 in 4-bit slices is
on the order of 268.5 known text-MAC pairs instead
of 2128. Finding key k1 then takes 2|k1| effort. But
if one knows k2, the security of the envelope scheme
reduces to secret prefix method.

Praveen Gauravaram holds a Bachelor of Technology
(Electrical and Electronics Engineering) degree from
Sri Venkateswara University College of Engineering
(SVUCE), Tirupati, India, and a Master of Information
Technology (MIT) degree from Queensland University of
Technology (QUT), Australia. He is currently working
as a research associate at Information Security Institute
(ISI), QUT. He has recently completed his doctoral
dissertation (PhD) in the area of cryptanalysis, design
and applications of cryptographic hash functions. His
current research interests include analysis and design of
cryptographic primitives, applications of cryptography
and information security. His home page is available at
http://www.isi.qut.edu.au/people/subramap.

Shoichi Hirose received the B.E., M.E. and D.E.
degrees in information science from Kyoto University,
Kyoto, Japan, in 1988, 1990 and 1995, respectively. From
1990 to 1998, he was a research associate at Faculty
of Engineering, Kyoto University. From 1998 to 2005,
he was a lecturer at Graduate School of Informatics,
Kyoto University. From 2005, he is an associate professor
at Faculty of Engineering, The University of Fukui.
His current interests include cryptography, information
security and computational complexity.

Suganya Annadurai holds Masters degree in VLSI De-
sign from SASTRA University and Bachelors in Com-
puter Science and Engineering degree from Annamalai
University, Tamil Nadu, India. She has joined Society
for Electronic Transactions and Security (SETS) in June
2004, where she is currently working as Research Asso-
ciate. Her research interests include analysis and design
aspects of cryptographic hash functions and efficient hard-
ware realisation of secure communication systems.

