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Abstract

Teleconferencing is an essential feature in any business
telephone system. A teleconference allows associates to
engage in a group discussion by conducting a virtual
meeting while remaining at geographically dispersed lo-
cations. Teleconferencing increases productivity while re-
ducing travel costs and saving travel time. In a VoIP tele-
phone system, we face the significant challenge of provid-
ing a teleconference feature that can support a large-scale
teleconference without using excessive bandwidth. This
paper presents a new, bandwidth-efficient way of imple-
menting a real-time VoIP teleconference system. This new
method provides all of the features that existing telecon-
ference systems provide, but this new approach consumes
considerably less data bandwidth than existing systems
require. The new system allows a network with a given
capacity to accommodate almost double the number of
conference participants that an existing system would al-
low.
Keywords: Audio mixing, bandwidth conservation, busi-
ness telephone system, IP Multicast, teleconference sys-
tem, VoIP

1 Teleconference Background

An audio teleconference feature with current technology
sums or mixes the audio inputs from all of the conference
participants to produce a mixed audio stream that con-
tains the audio from everyone in the conference. Hearing
a delayed echo of your own speech, though, is unsettling,
so the system removes the audio input of an individual
participant from the mixed audio to produce the audio
that this particular person will hear. The teleconference
system transmits that audio to that particular partici-
pant. For example, suppose we have a conference with
four participants, A, B, C, and D. Let’s refer to the au-
dio input stream from A as a, B as b, C as c, and D as
d. The conference system generates four different audio
streams, one for each participant. Participant A receives

audio stream (b+ c+d), B receives (a+ c+d), C receives
(a + b + d), and D receives (a + b + c). The conference
system transmits these four different audio streams sepa-
rately to four different participants.

In a teleconference server application, the server com-
monly supports a large number of participants in a single
conference, and having a large number of participants in
a conference introduces an additional challenge. The tele-
conference server can no longer simply sum the audio of
all the participants. Summing the audio of a large number
of participants could cause overflow in the audio, thus dis-
torting the audio and degrading the audio quality. Even
if most of the participants are silent, summing the back-
ground noise of a large number of participants produces
a loud background noise in the mixed audio.

To solve this problem, a teleconference server that sup-
ports large-scale conferences typically incorporates some
mechanism to select the audio from only a few active (i.e.,
talking) participants for the mixing process. For exam-
ple, suppose we have 26 participants, A, B, C, · · · , and Z.
Let’s use the same naming scheme that we used earlier to
name the audio of each participant. If the teleconference
server selects participants A, B, and C as active partici-
pants for audio mixing, the teleconference system gener-
ates four different audio streams, (b+ c) for A, (a+ c) for
B, (a+b) for C, and (a+b+c) for all of the idle (i.e., listen-
ing but nontalking) participants. The conference system
transmits these audio streams separately (i.e., 26 trans-
missions) to the 26 participants.

This paper presents a new, bandwidth-efficient way
of implementing a real-time VoIP teleconference system1.
This new method provides all of the features that exist-
ing teleconference systems provide, but this new approach
consumes considerably less data bandwidth than existing
systems require. The new system allows a network with a
given capacity to accommodate almost double the number
of conference participants that an existing system would
allow.

We start by describing several existing techniques for

1Patent pending
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implementing teleconferences, and then we explain our
new method. We discuss the functions that the confer-
ence server performs with our new approach, and we also
describe the tasks that the endpoints perform. We explain
details such as our method for handling mixed audio when
the server modifies the source audio. Finally, we summa-
rize the advantages that our new method provides.

2 Existing Techniques

Teleconferencing is a common and very useful feature,
so various designers have implemented this feature using
different approaches [1, 2, 3, 8, 9, 10, 11, 12, 13, 14]. How-
ever, none of the existing methods can support a large-
scale VoIP teleconference in a bandwidth-efficient manner.
In this section we explain existing techniques.

2.1 Peer-to-Peer Unicast

In an ad-hoc peer-to-peer teleconference implementation,
each participant uses unicast to transmit his or her own
audio to all other members of the conference. In an n-
party conference, every member generates (n−1) unicast
transmissions to send audio to (n−1) other members. Each
participant receives (n−1) unicast audio streams from the
other (n−1) members, and each participant uses some
well-known method to mix the received audio streams be-
fore playing back the mixed audio. Since people do not
send their own audio streams to themselves, there is no
feedback or echo problem with this implementation.

Unfortunately, this approach is very expensive in terms
of bandwidth. Each participant establishes a bidirectional
unicast link with each other participant, so an n-party
conference requires [(n2 − n)/2] bidirectional links for a
total of (n2−n) data streams. In a ten-party conference,
for example, there are 90 unidirectional data streams. If
another person joins the ten-party conference, the new
participant has to establish ten new bidirectional unicast
links, making 20 new data streams, to communicate with
all of the existing members.

Besides consuming a high degree of bandwidth, this
method requires a significant amount of CPU processing
capability to process and decode the audio streams from
a large number of participants in a large-scale confer-
ence. Generally, telecommunication endpoints in busi-
ness telecommunication systems are embedded systems
with limited resources and are not capable of intense pro-
cessing tasks. An endpoint would require processing ca-
pability equivalent to the power of a server in order to
handle a large number of audio streams simultaneously,
and this requirement would make the implementation too
expensive to be a practical business solution.

Peer-to-peer unicast is certainly feasible for small tele-
conferences involving only three or four participants, but
the technique does not scale well and quickly becomes
impractical as the number of participants grows.

2.2 Peer-to-Peer Multicast

RFC-3550 recommends an ad-hoc peer-to-peer teleconfer-
ence implementation that exploits IP multicast [4]. In-
stead of establishing a unicast link with each of the other
members of the conference, the participant uses only one
multicast transmission to deliver his or her audio to all
other members of the conference. Every member of the
conference listens to the multicast transmissions of all
other participants. An n-party conference requires only n
multicast transmissions, so this approach significantly re-
duces bandwidth consumption in comparison to the peer-
to-peer unicast method.

Since each incoming audio stream arrives as an indi-
vidual audio stream, a participant can eliminate the prob-
lem of audio feedback or echo by simply not processing
the participant’s own audio stream. However, the partic-
ipant must process and decode all other incoming audio
streams. In a large-scale conference, each participating
endpoint would require a substantial amount of processing
power to process and handle a large number of incoming
audio streams. Since an endpoint in a business telecom-
munication system is normally an inexpensive embedded
system with limited resources, peer-to-peer multicast is
impractical for large conferences.

2.3 Server-based Unicast

A designer can use a server-based teleconference system
to overcome the limitation on the size of a conference. A
server-based system has the processing capacity to han-
dle and process a large number of audio streams simul-
taneously. The teleconference server receives a unicast
audio stream from each participant and mixes the au-
dio streams. The server removes the audio of an active
talker from the mixed audio before sending the mixed
audio to that particular talker, so there are several dif-
ferent versions of mixed audio. The server uses unicast
to transmit these mixed audio streams to the appropriate
participants.

This approach requires only 2n unidirectional unicast
links for an n-party conference, so it uses considerably less
network bandwidth than the peer-to-peer unicast tech-
nique, especially for a large conference. However, this
method still consumes a significant amount of bandwidth
when the conference size gets large. The server cannot
multicast a single mixed audio stream that contains the
audio from all of the active participants to everyone in the
conference because the talking participants would hear
their own audio. This audio reflection would create an
annoying echo effect that would be highly disruptive to
the talking participants. Furthermore, the server cannot
send a multicast audio stream even to all of the idle (i.e.,
listening but nontalking) participants because the talk-
ers in the conference change dynamically from moment
to moment.
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3 Our Method

Our new method is an improvement of the server-based
unicast technique. The teleconference server in our sys-
tem still receives one input audio stream from each par-
ticipant just as the server does with the server-based uni-
cast method. As with a server-based unicast, the tele-
conference server in our system can use any known selec-
tion mechanism to pick active participants when mixing
a large number of participants in a conference. However,
the teleconference server with our new method generates
only one mixed audio output, and the server transmits
that single audio stream in one multicast transmission to
distribute the same mixed output audio to all of the par-
ticipants. We therefore use a single multicast transmission
to replace the n unicast transmissions of the server-based
unicast.

Our new method requires the cooperation of the end-
points in the conference. Along with the mixed audio
output in the multicast transmission, the teleconference
server includes auxiliary information. This added infor-
mation allows each participating endpoint to process the
mixed audio output, if necessary, to make the mixed au-
dio suitable for playback at that particular endpoint. The
endpoint stores critical data, including a history of the
audio that the endpoint has recently transmitted to the
server, and the endpoint later uses this data to adjust the
mixed audio from the server for playback. In simplified
terms, each active endpoint removes its own audio from
the mixed audio to eliminate echo.

Figure 1 illustrates our multicast teleconference system
with three active participants, A, B, and C, and one pas-
sive participant, D. The server mixes the audio streams
from the active participants and sends the resulting mixed
audio to everyone with a single multicast output, M.
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Figure 1: IP multicast teleconference system

4 Teleconference Server

Figure 2 illustrates the implementation and various com-
ponents of the teleconference server for our approach with

three participants in the conference.
With our new technique, the teleconference server

transfers some responsibilities to the participating end-
points but also assumes some new responsibilities of its
own. Generally, a traditional teleconference server per-
forms the individual participant’s audio removal from the
mixed audio and generates multiple mixed audio streams
that are ready for playback at each of the participating
endpoints. With our approach, the server simply mixes
the audio sources from all of the endpoints that the server
selects as active contributors, and the server generates
just one mixed audio stream for all participants. This
approach obviously reduces the workload on the server in
addition to reducing the consumption of network band-
width.

The server assumes some new responsibilities that are
necessary to let each of the active participating endpoints
remove its own audio from the mixed audio. The following
sections detail these new server responsibilities.

4.1 Disclosing Media Information

Since each active endpoint must remove its own audio
from the mixed audio with our system, the server must
disclose information that was not available with previous
protocols and techniques. If the server uses a selection
mechanism to choose a few active participants as con-
tributors to the mixed audio, the server must reveal the
identities of the participants who are involved in the mix-
ing process. Since different participants might be active
in different segments of the mixed audio, the mixer has
to disclose information regarding the active participants
in every segment of the mixed audio. This information
tells each participating endpoint whether its own audio is
part of the mix, thus allowing the endpoint to remove its
own audio from the mixed audio — only if appropriate —
before playback.

Note that the server may make modifications (e.g.,
scaling to avoid overflow) while mixing inputs. If the
server modifies or replaces the source audio used in the
mixing process or modifies the mixed audio output, the
server must convey this information to the endpoints. An
active endpoint needs this information so the endpoint
can modify or replace its own stored audio history and
thereby use the correct audio data for properly remov-
ing its own audio stream from the mixed audio. Without
this modification information, an active endpoint could
not accurately remove its own audio data from the mixed
audio.

4.2 Relaying Media Information

In addition to disclosing new information regarding the
mixed audio, the server must also relay back to the end-
points certain media information that the server receives
from the endpoints. This information is readily available
at the endpoints when they transmit data to the server,
and each active endpoint must have this information later
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Figure 2: Server components

when the endpoint removes its own audio from the mixed
audio. Upon receiving this information from the end-
points, the server simply sends the information back to
the endpoints along with the mixed audio and the other
information required for the own-audio removal process.
One example of such information is the ID tag that iden-
tifies each individual segment of audio history. This tag
tells an active endpoint which segment of the endpoint’s
own audio history to remove from the incoming mixed
audio.

5 Teleconference Endpoint

In a traditional system, the server removes each active
endpoint’s audio from the mixed audio to create multiple
mixed-audio output streams. With our new technique,
however, each participating endpoint is responsible for
the removal of its own audio from the single mixed-audio
output that the server broadcasts to everyone. This new
responsibility for own-audio removal leads to new tasks
for the endpoint. For example, the endpoint must buffer
its own audio history and media information. Each par-
ticipating endpoint must implement a mechanism to tag
its history records so the endpoint can retrieve the appro-
priate record when the endpoint needs the record in the
removal process. Figure 3 illustrates the various compo-
nents of the endpoint implementation. Typical endpoints
with inexpensive DSP chips normally have plenty of pro-
cessing power and memory to accommodate this imple-
mentation.

5.1 Buffering and Tagging the History

Existing VoIP endpoints do not store histories of transmit-
ted audio and media information, so current endpoints
cannot support own-audio removal. We must upgrade
endpoints to provide this important feature. In partic-
ular, an endpoint must maintain a history buffer of its
transmitted audio along with the media information cor-
responding to that audio. This history gives the endpoint

part of the information the endpoint must have for re-
moving its own audio from the mixed audio.

Since an endpoint does not know exactly when its
transmitted audio will return to the endpoint as part of
the mixed audio, we need to label each segment in the his-
tory buffer. The endpoint attaches a tag to each segment
of audio that it sends to the server. If the server uses a
segment of audio in the mixing process, the server returns
that segment’s tag to the endpoint along with the mixed
audio and other media information. Using the returned
tag, the endpoint can identify and retrieve the appropri-
ate segment of audio and media information.

A segment in the stored history of an endpoint is no
longer useful after the playback time of the mixed au-
dio that could contain that segment of audio history, of
course. The endpoint can release or re-use the memory
that contains a history record that is no longer useful, so
a circular buffer works nicely for the history records.

In general, an endpoint stores only enough history to
overcome the round-trip delay and delay jitter in the net-
work, so the memory requirements for the buffering are
extremely modest. If, for example, we used the high bit
rate of the G.711 Pulse Code Modulation (PCM) codec
[6] and allowed for an intolerable maximum delay of 500
milliseconds, we would need only 4,000 bytes of stor-
age, a reasonable amount even for a small, embedded
processor. With the low bit rate of a highly compress-
ing codec such as the ITU-T (International Telecommu-
nication Union Standardization Sector) standard G.729A

codec [7], we would need as little as only 500 bytes of
buffer space.

5.2 Removal of Own Audio

When an endpoint receives the mixed audio from the
server, the endpoint checks to see if its own audio is in
the mixed audio. If its own audio is not in the mixed
audio, the endpoint can simply use the mixed audio for
playback without change. However, if the mixed audio
contains the audio from the endpoint, the endpoint must
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Figure 3: Endpoint components

remove its own audio from the mixed audio before play-
back.

The endpoint uses the tag that it sent to the server and
received back from the server so the endpoint can retrieve
the appropriate segment of audio history and media infor-
mation from the endpoint’s history buffer. The endpoint
employs its own codec to encode and decode the audio
data from the history buffer so the endpoint can obtain
the same slightly distorted audio that the server used. In
practice, the endpoint typically saves the encoded version
of its transmitted audio in its history buffer to conserve
memory, so the encode step that we describe here actually
occurred at the original transmission time.

The endpoint next uses the media information dis-
closed by the server to see if the endpoint must modify
its own segment of audio history. If appropriate, the end-
point modifies (e.g., scales) its own encoded-and-decoded
audio to match the modification, if any, that the server
made.

Then the endpoint encodes and decodes its own (pos-
sibly modified) audio data again to produce audio data
that is suitable for removal from the mixed audio that the
teleconference server transmitted. The endpoint encodes
and decodes its audio data with the same audio codec
that the server used to encode the multicast mixed au-
dio. This second encode-decode step is necessary to make
the audio data suitable for removal from the mixed audio
because the mixed audio goes through that same encode-
decode step with encoding by the server and decoding by
the endpoint. The output audio from the compression
and decompression of the coder and decoder is seldom an
exact match for the input audio, but applying the same
encode-decode step to the endpoint’s audio produces a
result that closely matches the corresponding portion of

the mixed audio from the server. Note that the endpoint
encodes and decodes its own audio twice to match the
transformations that occurred for the endpoint’s contri-
bution to the mixed audio. Finally, the endpoint simply
subtracts its own audio from the mixed audio to produce
modified mixed audio that is suitable for playback.

6 Modified Source Audio

In order to provide a high-quality teleconference that
sounds “natural,” a teleconference server may modify the
source audio in the mixing process. Sometimes the server
must generate audio samples that are totally different
from the original source audio for the mixing process.
Therefore, the audio histories that the endpoints have
stored may not match the actual audio that the server
mixes into the mixed audio. The teleconference server
must disclose this modification information to the end-
points so they can apply the same modification to their
history audio or generate new audio samples to remove
their own audio from the mixed audio. In this section,
we explain two common scenarios that cause a server to
modify the source audio.

6.1 Overflow

Whenever we sum two or more audio samples, there is a
possibility of overflow. Overflow is an error that occurs
when the sum exceeds either the most-positive or most-
negative value that the system can represent correctly. In
audio processing, we generally correct the overflow error
by saturating the result. Saturation converts the result
of an arithmetic operation to the most-positive or most-
negative value as appropriate. Because of saturation, the
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final result does not represent the sum of all of the original
data values. In the case of saturation, therefore, a partic-
ipating endpoint cannot remove its own audio by simply
subtracting the original data that the endpoint stored.

Saturation is just one of many ways of handling or
preventing overflow in the mixing process. Another ap-
proach is to prevent overflow by scaling the audio sam-
ples. The teleconference server can apply attenuation to
the source audio so the sum of the audio samples does not
produce overflow. If the teleconference server attenuates
the source audio to a weaker signal for mixing, the original
audio history that the participating endpoint saved does
not match the weaker signal in the mixed audio. Con-
sequently, the participating endpoint cannot simply use
the original audio history data in the own-audio removal
process but must instead apply the same attenuation to
its history data.

6.2 Lost Packet

In VoIP, some audio packets inevitably arrive late due to
large network delays or disappear altogether in the data
network. In both situations, we consider the packet to be
a lost packet, and the receiving device must use a packet-
loss concealment (PLC) technique to synthesize the lost
audio. Often, the synthesized audio is completely differ-
ent from the original audio history data that the partic-
ipating endpoint stored. Therefore, the endpoint cannot
use the stored audio history data to remove its own audio
from the mixed audio. The participating endpoint must
know when packet loss has occurred and what PLC tech-
nique the server has used so the endpoint can synthesize
the same audio data that the server used in the mixing
process. Then the endpoint can use that synthesized au-
dio packet to remove its own audio from the mixed audio.

7 Analysis of Bandwidth Savings

To quantify the bandwidth improvement that our system
achieves, consider implementations with various codecs.
We have computed results for server implementations
with the ITU-T (International Telecommunication Union
Standardization Sector) standard G.729A codec [7], the In-
ternet Low Bitrate Codec (iLBC) [5], and the G.711 Pulse
Code Modulation (PCM) codec [6].

Table 1 shows the bandwidth required for the telecon-
ference server to deliver the mixed audio signals to the
endpoints in an Ethernet environment using G.729A (8
kbps) unicast, G.729A (8 kbps) multicast, iLBC (15.2 kbps)
multicast, and G.711 (64 kbps) multicast. In this analysis,
the server transmits a 20-millisecond segment of mixed
audio in every packet, and each packet carries 78 bytes of
Ethernet, IPv4, UDP, and RTP headers — including the
inter-packet idle time, preamble, and CRC of the Ether-
net link-layer header. The analysis shows that our new
teleconference technique using G.729A multicast and iLBC

multicast (and even G.711 multicast) produces remarkable

savings in bandwidth consumption for a conference with
as few as only three participants. The savings become
much more dramatic, of course, as the number of partic-
ipants increases.

8 Conclusion

This new teleconference technique reduces the number
of server transmissions from multiple unicast transmis-
sions down to a single multicast transmission. The advan-
tage of this new technique in terms of reduced bandwidth
consumption increases tremendously when the number of
participants in a conference grows. For a 100-participant
conference, for example, this new approach requires 100
incoming audio streams and only one outgoing mixed au-
dio stream. An existing teleconference system, on the
other hand, would require 100 incoming audio streams
and 100 outgoing mixed audio streams. Although the im-
provement is not as dramatic for a conference with a small
number of participants, this new method is still effective
in saving data bandwidth even for small conferences. In
general, this new approach reduces the network bandwidth
consumption of a conference by a factor of two. In ad-
dition, this technique also reduces the CPU bandwidth
utilization at the teleconference server.
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