
International Journal of Network Security, Vol.7, No.1, PP.38–41, July 2008 38

Fast Algorithms for Determining the Minimal
Polynomials of Sequences with Period kn over

GF (Pm)

Jianqin Zhou
Department of Computer Science, Anhui University of Technology

Ma’anshan, Anhui 243002, China (Email: zhou9@yahoo.com)

(Received July 15, 2006; revised and accepted Oct. 3, 2006 & Nov. 8, 2006)

Abstract

A fast algorithm is derived for determining the linear com-
plexity and the minimal polynomials of sequences over
GF (pm) with period kn, where p is a prime number,
gcd(n, pm − 1) = 1 and pm − 1 = ku, n, k and u are inte-
gers. The algorithm presented here covers the algorithm
proposed by Chen for determining the minimal polyno-
mials of sequences over GF (pm) with period 2tn, where p
is a prime, gcd(n, pm − 1) = 1 and pm − 1 = 2tu, n and u
are integers. Combining our result with some known al-
gorithms, it is possible to determine the linear complexity
of sequences over GF (pm) with period kn more efficiently.
Finally an example applying this algorithm is presented.
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1 Introduction

The concept of linear complexity is very useful in the
study of the security of stream ciphers for cryptographic
applications. A necessary condition for the security of a
key stream generator is that it produces a sequence with
large linear complexity. In [4], Games and Chan presented
a fast algorithm for determining the linear complexity of
a binary sequence with period 2n. Ding, Xiao and Shan
[3] and Blackburn [1] generalized the algorithm.

In [6], a fast algorithm for determining the linear com-
plexity of a sequence with period pn over GF (q) was
presented, where p is an odd prime, q is a prime and
a primitive root modulo p2. The algorithm makes up
for the shortcoming that the Games-Chan algorithm can-
not compute the linear complexity of sequences with pe-
riod N(6= qm) over GF (q) in part. The time complexity
and the space complexity of the algorithm are both O(t),
where t = pn.

In [2], a result was presented to reduce the computation
of the linear complexity of a sequence over GF (pm) (p is

an odd prime) with period 2n(n is a positive integer such
that there exists an element b ∈ GF (pm), bn = −1) to the
computation of the linear complexities of two sequences
with period n. By combining this result with some known
algorithms such as the Berlekamp-Massey algorithm and
the Games-Chan algorithm, one can determine the linear
complexity of a sequence with period 2tn over GF (pm),
where p is a prime, gcd(n, pm−1) = 1 and pm−1 = 2tu, n
and u are integers.

In this correspondence, a fast algorithm is derived for
determining the minimal polynomial and the linear com-
plexity of sequences over GF (pm) with period kn, where
p is a prime, gcd(n, pm−1) = 1 and pm−1 = 2tu, n, k and
u are integers. The algorithm presented here covers the
algorithm proposed by Hao Chen in [2]. Combining our
result with some known algorithms, it is possible to de-
termine the linear complexity of sequences over GF (pm)
with period kn more efficiently.

In this correspondence, we consider sequences over
GF (pm), where p is a prime. Let s = {s0, s1, s2, s3, · · · }
be a sequence over GF (pm). If there exists a positive
number N such that si = si+N for i = 0, 1, 2, · · · , then s
is called a periodic sequence, and N is called a period of
s.

The generated function of a sequence s = {s0, s1, s2,
s3, · · · , } is defined by s(x) = s0+s1x+s2x

2+s3x
3+· · · =

∞∑
i=0

six
i.

Let s be a periodic sequence with the first period sN =
{s0, s1, s2, · · · , sN−1}. The generated function of sN is
defined by sN (x) = s0 + s1x + s2x

2 + · · ·+ sN−1x
N−1. If
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s is a periodic sequence with the first period sN , then,

s(x) = sN (x)(1 + xN + x2N + · · · )

=
sN (x)
1− xN

=
sN (x)/ gcd(sN (x), 1− xN )

(1− xN )/ gcd(sN (x), 1− xN )

=
g(x)
fs(x)

,

where fs(x) = (1 − xN )/ gcd(sN (x), 1 − xN ), g(x) =
sN (x)/ gcd(sN (x), 1− xN ).

Obviously, gcd(g(x), fs(x)) = 1, deg(g(x) <
deg(fs(x))). The polynomial fs(x) is called the minimal
polynomial of s, and the degree of fs(x) is called the linear
complexity of s, that is deg(fs(x)) = c(s) [6].

2 Main result

Lemma 1. Let p be a prime, and pm − 1 = ku, k and u
are all positive integers. If α is a generator of GF (pm),
then

1) 1 − xk = 1
αuα2u···α(k−1)u (1 − x)(αu − x)(α2u −

x) · · · (α(k−1)u − x);

2) If gcd(n, pm − 1) = 1, then αn is a generator of
GF (pm);

3) gcd(t(x), g(x)) = gcd(t(x), g(x)), where t(x) is the
reduced polynomial of t(x) modulo g(x), i.e., t(x) ≡
t(x) (modg(x));

4) Let g(x) = g1(x)g2(x) · · · gj(x), where gi’s are poly-
nomials over GF (pm) which are pairwisely coprime
(not necessarily irreducible over GF (pm)). Then

gcd(t(x), g(x)) =
j∏

i=1

gcd(t(x), gi(x)).

Proof.

1) Since pm − 1 = ku, so αku = 1, hence 1− xk = 0 has
roots: 1, αu, α2u, · · · , α(k−1)u.

If k is odd, then 1 − xk = (1 − x)(αu − x)(α2u −
x) · · · (α(k−1)u − x), hence αuα2u · · ·α(k−1)u =
(−1)k−1.

If k is even, then 1−xk = (−1)(1−x)(αu−x)(α2u−
x) · · · (α(k−1)u − x), hence αuα2u · · ·α(k−1)u =
(−1)k−1.

Combining the above results, the identity is immedi-
ate.

2) Since gcd(n, pm− 1) = 1, if αni = 1, then (pm− 1)|i,
hence αn, α2n, · · · , α(pm−1)n are distinct. Thus αn is
a generator of GF (pm).

The remaining of Lemma is immediate [5].

The following statement is the main result of this note,
which reduces the computation of the linear complexity of
a sequence over GF (pm) with period kn to the computa-
tion of the linear complexities of k sequences with period
n.

Theorem 1. Let s = a0, a1, · · · , akn−1, a0, a1, · · · be a
sequence over GF (pm) with period kn, where n, k and u
are positive integers such that gcd(n, pm − 1) = 1 and
pm − 1 = ku. Let α be a generator of GF (pm), β = αu.

For 1 ≤ i ≤ k, let s(i) be a sequence over
GF (pm) with period n and its first period sn

(i) =
{s(i),0, s(i),1, s(i),2, · · · , s(i),n−1}, where s(i),v = {sv +
sn+v(βi−1)n+v+· · ·+s(k−1)n+v(βi−1)(k−1)n+v, 0 ≤ v < n.

Then gcd(skn(x), 1 − xkn) = gcd(sn
(1)(x), 1 −

xn) gcd[sn
2 ( x

β2−1 ), 1 − ( x
β2−1 )n] · · · gcd[sn

(k)(
x

βk−1 ), 1 −
( x

βk−1 )n].

Proof. From the above Lemma, we have, 1 − xk =
1

αuα2u···α(k−1)u (1− x)(αu − x)(α2u − x) · · · (α(k−1)u − x).
Since gcd(n, pm − 1) = 1, hence αn is also a generator

of GF (pm). So,

1− xkn = 1− (xn)k

=
1

αnuαn2u · · ·αn(k−1)u
(1− xn)(αnu − xn)

(αn2u − xn) · · · (αn(k−1)u − xn)

= (1− xn)(1− (
x

αu
)n)(1− (

x

α2u
)n) · · · (1− (

x

α(k−1)u
)n)

=
k−1∏

i=0

(1− (
x

βi
)n).

Thus,

gcd(skn(x), 1− xkn)

= gcd(skn(x), 1− xn) gcd(skn(x), 1− (
x

β
)n)

gcd(skn(x), 1− (
x

β2
)n) · · · gcd(skn(x), 1− (

x

βk−1
)n)

=
k−1∏

i=0

gcd(skn(x), 1− (
x

βi
)n).

On the other side,

skn(x) = s0 + s1x + s2x
2 + · · ·+ skn−1x

kn−1

= x0[s0 + snxn + s2nx2n + · · ·+ s(k−1)nx(k−1)n]

+x1[s1 + sn+1x
n + s2n+1x

2n + · · ·
+s(k−1)n+1x

(k−1)n] + · · ·+ xn−1[sn−1

+s2n−1x
n + s3n−1x

2n + · · ·+ skn−1x
(k−1)n].
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Now it is obvious that,

[s0 + snxn + s2nx2n + · · ·+ s(k−1)nx(k−1)n]
mod(1− xn)

= [s0 + sn + s2n + · · ·+ s(k−1)n];

[s1 + sn+1x
n + s2n+1x

2n +
· · ·+ s(k−1)n+1x

(k−1)n] mod (1− xn)
= [s1 + sn+1 + s2n+1 + · · ·+ s(k−1)n+1];

· · · · · ·
[sn−1 + s2n−1x

n + s3n−1x
2n +

· · ·+ skn−1x
(k−1)n] mod (1− xn)

= [sn−1 + s2n−1 + s3n−1 + · · ·+ skn−1].

Thus gcd(skn(x), 1− xn) = gcd(sn
(1)(x), 1− xn).

For i = 1, 2, · · · , k − 1, with a similar argument, the
computation of factor, gi(x) = gcd(skn(x), 1− ( x

βi )n))
is worked out with the change of variable y = x

βi . So we
have, skn(βiy) mod (1− yn) = sn

(i)(y).
Thus, gi(x) = gcd(skn(βiy), 1 − yn) = gcd(sn

(i)(y), 1 −
yn) = gcd(sn

(i)(
x
βi ), 1− ( x

βi )n).

As multiplication over GF (pm) takes much longer time
than addition, thus additions are ignored concerning the
complexity analysis. For i(1 < i ≤ k), the reduction
needs less than 2kn field multiplication operations to com-
pute sj(βi−1)j(0 < j < kn). Thus, the total number
of multiplication operations of the reduction is less than
2(k − 1)(kn), where kn is the period of the original se-
quence.

3 Fast Algorithm

Note that with the condition gcd(n, pm − 1) = 1 and
pm − 1 = ku, where n, k and u are positive integers, we
may combine the theorem above with some known algo-
rithms to give some fast algorithms to compute the min-
imal polynomial and the linear complexity of a sequence
over GF (pm) with period kn.

Combining the theorem above with the algorithm
proposed in [6], we now give a fast algorithm to compute
the linear complexity of sequences over GF (p) with
period kqm(p− 1 = ku) in the complexity O(kqm). Here
we need the storage of one generator of GF (p) in advance.

Algorithm: Let s = (s0, s1, s2 · · · ) be a sequence over
GF (p) with period N = kqm, where p − 1 = ku, p and
q are primes and p is a primitive root modulo q2, and
sN = (s0, s1, · · · , sN−1) be the first period of s.

1) Initial values: α is a generator of GF (p), β = αu, c =
0, f = 1.

2) Loop: for 1 ≤ i ≤ k, n = qm, to compute sn
(i) =

{s(i),0, s(i),1, s(i),2, · · · , s(i),n−1}, where s(i),v = {sv +

sn+v(βi−1)n+v + · · · + s(k−1)n+v(βi−1)(k−1)n+v, 0 ≤
v < n.

Call Function, c = c(sn
(i)) + c; f = f · fn

(i)(
x

βi−1 ).

3) End. The linear complexity of s is c; the minimal
polynomial of s is f .

Function:

1) Initial values: a = (a0, a1, · · · , an−1) is the first pe-
riod of s, n = qm, c = 0, f = 1.

2) If a = (0, · · · , 0), then end; If n = 1, then c = c +
1, f = (1− x)f , end.

3) n = n/q, let Ai = (a(i−1)n, a(i−1)n+1, · · · , ain−1), i =
1, 2, · · · , q.

4) If A1 = A2 = · · · = Aq, then a = A1; else, a =
A1 + A2 + · · ·+ Aq, c = c + (q − 1)n, f = fΦqn(x).

5) Goto 1).

6) End. The linear complexity of s is c; the minimal
polynomial of s is f .

Note that the function above is just the algorithm for
sequences over GF (p) (see [6]).

Example 1. Let the first period of s be S36 =124130140
040322412 034210224 030211402 over GF (5). This is
a sequence with period 4 × 32 over GF (5). Since 5 is a
primitive root modulo 32, 4|(5− 1) and gcd(32, 5− 1)=1,
we may apply the algorithm above for determining the
minimal polynomial and the linear complexity of s as
follows:

Since 2 is a generator of GF (5), thus

s9
(1) = 123323123;

s9
(2) = 120344121, β = 2;

s9
(3) = 123213000, β2 = 4;

s9
(4) = 110404101, β3 = 3.

For s9
(1) = 123323123, call function.

Step 1. A1=123, A2=323, A3=123; Since A1 6= A2, n =
3, thus c = 6, f = Φ9(x), a = 014;

Step 2. A1=0, A2=1, A3=4;

Since A1 6= A2, n = 1, thus c = 6 + 2 = 8, f =
Φ9(x)Φ3(x), a = 0; stop.

For s9
(2) = 120344121, call function.

Step 1. A1=120, A2=344, A3=121;

Since A1 6= A2, n=3, thus c = 6, f = φ9(x), a = 030;

Step 2. A1=0, A2=3, A3=0;

Since A1 6= A2, n=1, thus c = 6 + 2 = 8, f =
φ9(x)φ3(x), a=3;
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Step 3. c = 8 + 1 = 9, f = φ9(x)φ3(x)(1− x), stop.

For s9
(3) =123213000, call function.

Step 1. A1=123, A2=213, A3=000;

Since A1 6= A2, n=3, thus c = 6, f = φ9(x), a = 331;

Step 2. A1=3, A2=3, A3=1;

Since A1 6=A3, n=1, thus c = 6 + 2 = 8, f =
φ9(x)φ3(x), a =2;

Step 3. c = 8 + 1 = 9, f = φ9(x)φ3(x)(1− x), stop.

For s9
(4) = 110404101, call function.

Step 1. A1=110, A2=404, A3=101;

Since A1 6=A2, n=3, thus c = 6, f = φ9(x), a = 110;

Step 2. A1=1, A2=1, A3=0;

Since A1 6=A3, n=1, thus c = 6 + 2 = 8, f =
φ9(x)φ3(x), a = 2;

Step 3. c = 8 + 1 = 9, f = φ9(x)φ3(x)(1− x), stop.

Finally, the linear complexity of s is 35, the minimal poly-
nomial is

fs = φ9(x)φ3(x)φ9(x/2)φ3(x/2)(1− x/2)
φ9(x/4)φ3(x/4)(1− x/4)φ9(x/3)φ3(x/3)(1− x/3)

= φ9(x)φ3(x)φ9(3x)φ3(3x)(1− 3x)
φ9(4x)φ3(4x)(1− 4x)φ9(2x)φ3(2x)(1− 2x),

where the last equality follows by the fact that 2 × 3 =
1, 4× 4 = 1 over GF (5).

4 Conclusion

We have proved a result reducing the computation of the
linear complexity of sequences over GF (pm) with period
kn (where p is a prime and n is a positive integer such that
gcd(n, pm − 1)=1 and pm − 1 = ku) to the computation
of the linear complexities of k sequences with period n.
Combining this reduction with some known algorithms,
we can compute the linear complexity of sequences with
period kn (gcd(n, pm − 1)=1 and pm − 1 = ku) over
GF (pm) more efficiently.
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