
International Journal of Network Security, Vol.7, No.1, PP.31–37, July 2008 31

Parallel Hardware Architectures for the
Cryptographic Tate Pairing

Guido M. Bertoni1, Luca Breveglieri2, Pasqualina Fragneto1, and Gerardo Pelosi2

(Corresponding author: Gerardo Pelosi)

ST Microelectronics1

Via Olivetti, 20041 Agrate B.za, Milano, Italy
Politecnico di Milano2

Piazza L. Da Vinci 32, 20133 Milano, Italy (Email: pelosi@elet.polimi.it)

(Received June 27, 2006; revised and accepted Sept. 5, 2006)

Abstract

Identity-based cryptography uses pairing functions,which
are sophisticated bilinear maps defined on elliptic
curves.Computing pairings efficiently in software is
presently a relevant research topic. Since such functions
are very complex and slow in software, dedicated hard-
ware (HW) implementations are worthy of being stud-
ied, but presently only very preliminary research is avail-
able. This work affords the problem of designing paral-
lel dedicated HW architectures, i.e.,co-processors, for the
Tate pairing, in the case of the Duursma-Lee algorithm
in characteristic 3. Formal scheduling methodologies are
applied to carry out an extensive exploration of the archi-
tectural solution space, evaluating the obtained structures
by means of different figures of merit such as computation
time, circuit area and combinations thereof.Comparisons
with the (few) existing proposals are carried out, show-
ing that a large space exists for the efficient parallelHW
computation of pairings.
Keywords: Area-time tradeoff, parallelism, scheduling,
Tate pairing

1 Introduction

Pairings playan important role in identity-based encryp-
tion (IBE). Such form of cryptography was introduced by
Shamir in 1984 in [20], where a public key is derived from
public identifiable information such as an e-mail address,
and the corresponding private key is created by binding
the user identity with a trusted authority’s secret key.
This idea avoids the reliance on certificates to validate
the authenticity of a public key and, in some situations,
simplifies the infrastructure of a public key system. In the
same paper, Shamir left the task of building an effective
IBE algorithm as an open problem. Solutions for imple-
menting this idea were presented by Boneh and Franklin
[5], Cocks [6] and Sakai etal. [19]. Apart from the Cocks

scheme, both the Boneh-Franklin scheme and the Sakai et
al. scheme make use of bilinear maps, or pairings, defined
over elliptic curves. Nowadays there are many other cryp-
tographic protocols benefiting from using pairings, includ-
ing a variety of signature and key-establishment schemes.
A survey of pairing-based cryptographic protocols can be
found in [7].

Today the Tate pairing [9] is considered as the most
convenient function in terms of computational cost. Start-
ing from2002 many progresses have taken place for the
computation of the Tate pairing in the case of super sin-
gular elliptic curves. The original algorithm was designed
by Miller [17] and was modified by Barreto at al. [1], who
obtained the so-called BKLS algorithm, while a closed
formula in characteristic3 was presented for the first time
by Duursma and Lee [8]. More recently the Duursma-Lee
algorithm has been improved by Kwon [16], Barreto et
al. [3] and Granger et al. [12]. Related works about the
implementation of such algorithms by means of dedicated
hardware (HW) architectures have been done by Grabher
et al. [11] and Kerins et al. [14]. In [11] an evaluation
of FPGA architectures for polynomial and normal bases
in characteristic 3 is shown, in the case of the Duursma-
Lee and Kwon algorithms; there the emphasis is on the
efficiency of arithmetic in the field F3m . In [14] the focus
is instead on high-level parallelism, in the Duursma-Lee
algorithm, for the operations in the extension field Fqk (in
particular with q = 3m): these authors reduce computa-
tion time,but at the expense of a high number of function
units and hence of the silicon area of the device.

In this paper we describe a method for designing par-
allel HW architectures for the Duursma-Lee algorithm in
characteristic 3.Here emphasis is on executing in paral-
lel the operations in the base field F3m (not inF(3m)k as
in [14]), and we show that a large space for such solu-
tions exists. We balance the trade-off between the speed
and the size of the dedicated HW device.Such considera-
tions are applicable to the design of HW accelerators for



International Journal of Network Security, Vol.7, No.1, PP.31–37, July 2008 32

pairing-based primitives in embedded systems as well as
in internet servers.

We point out that the software (SW) computation of
the Tate pairing is relatively slow [3, 12],and therefore HW
solutions are desirable. The existing studies in [11, 14] are
preliminary and do not consider parallelism or do so only
at high level [11], thus exploring the solution space at a
limited extent. Moreover the Duursma-Lee algorithm (as
well as the others) is decidedly complex and hence is over
the threshold of manual parallelization. In fact we adopt
the methods and the techniques of the theory of auto-
mated algorithm scheduling [10], for an exhaustive auto-
mated exploration of the parallelism issue for the selected
algorithm. We develop all the necessary SW tools and
we generate several parallel architectures. Then we eval-
uate them with respect to typical figures of merit such as
computation time (T), circuit area (A) and combinations
thereof (AT, etc.), and we compare them with respect to
literature solutions.

The paper is organized as follows: Section 2summarizes
the basic notions about the Tate pairing; Section3 outlines
the architecture and sketches the parallelization method-
ology; Section 4 sketches arithmetic details and function
units; Section 5presents several parallel architectures for
the Tate pairing;Section 6 evaluates and compares such
architectures to literature solutions; and Section 7 con-
tains the conclusions and some suggestions for future re-
search directions.

2 Recall of the Tate Pairing

We give here the minimum indispensable mathematical
details for introducing the Duursma-Lee algorithm in
characteristic 3. Let E (Fq) be an elliptic curve defined
over a fieldFq. Let l be a positive integer, co-prime to
q, such that E (Fq) contains a point of order l. In cryp-
tography l is usually a large prime such that l | #E (Fq)
and l2 - #E (Fq). Let k be the smallest integer satisfy-
ing l | qk − 1. This value k is the embedding degree of
the curve with respect to l. The Tate pairing is defined
in terms of rational functions over points of an elliptic
curve evaluated in a divisor. Let P ∈ E (Fq) [l], then
l (P )− l (O) is a principal divisor. Hence there exists a ra-
tional function fP ∈ Fqk (E) withdiv (fP ) = l (P )− l (O).
Let Q ∈ E(Fqk) [l] be a point with coordinates in Fqk ;
then we construct a divisor D ∈ Div0 (E) such that
DQ ∼ (Q) − (O). Such divisor should be chosen so that
its support is disjoint from that of the divisor of fP , and
fP (DQ) =

∏
j fP (Qj)

βj withDQ =
∑

j βj (Qj).
Over a super singular elliptic curve there always exists

a specific endomorphism φ (distortion map) [21], map-
ping an l-torsion point to another linearly independent
l-torsion point, i.e., φ : E (Fq) [l] → E(Fqk) [l]. In particu-
lar, there exists a distortion map linking l-torsion points
in the base field to those in the extension field. Papers
[1, 13] list several cryptographically interesting curves and
distortion maps. Using such maps, Barretoet al. [1] have

improved the calculation of the Tate pairing by rearrang-
ing the Miller algorithm [17]into the Modified Tate pair-
ing:

êl (. . . , . . . ) : E (Fq) [l]× E(Fqk) [l] → µl (1)

êl (P, Q) = fP (φ (Q))
qk−1

l ,

where µl is the subgroup of the l-th roots of unity in F∗qk .
The quotient group F∗qk/(F∗qk)l is isomorphic to elements

of order l in F∗qk through the final exponentiation by qk−1
l .

Now consider the following super singular elliptic
curve, for afield of characteristic 3, i.e., for Fq with
q = 3m:

E (Fq) : y2 = x3 − x + b with b = ±1. (2)

The embedding degree is k = 6 and, given the l-torsion
point P (x, y) ∈ E (F3m) [l], the distortion map of Equa-
tion (2) is φ (x, y) = (ρ− x, σy) ∈ E (F36m) [l], where
σ, ρ ∈ F36m are such that ρ3 − ρ − b = 0 andσ2 + 1 = 0
[21].

Duursma and Lee introduced in [8] a faster Tate pairing
algorithm using a group order l = q3+1 = 33m+1, instead
of l dividing q3 + 1, and in this way they found a closed
formula for fP (φ (Q)). The pseudo-code of the Duursma-
Lee algorithm is shown in Algorithm (2.1) and is taken
from [8].

Algorithm 2.1: Duursma-Lee as in [8].
Input: P, Q ∈ E (Fq) [l] P = (xP , yP ) Q =

(xQ, yQ)
Output: f = fP (φ (Q)) ∈ F∗q6/F∗q3

begin
f ← 1 //# of operations in the base field

F3m //

for i = 1 to m do
xP ← x3

P // 1 cube power //

yP ← y3
P // 1 cube power //

µ ← xP + xQ + b // 2 additions //

λ ← −yP · yQ σ − µ2 // 2 multiplications //

g ← λ− µ ρ− ρ2 // no operation //

f ← f · g // 13 mul.s plus 50 add.s or sub.s //

xQ ← 3
√

xQ // 1 cube root //

yQ ← 3
√

yQ // 1 cube root //

// tot: 52 add.s/sub.s, 15 mul.s, 2 + 2 cube

pow.s/roots //

endfor
return f

end

To obtain results compatible with Equation (1) and the
BKLS algorithm [1], the output of Algorithm (2.1) must
be powered to ε = 33m − 1.Further refinements for super
singular elliptic curves in characteristic 3 are outlined in
[3, 12, 16], as well as for other characteristics. There the
main difference from Algorithm (2.1) is the removal of the
cube root operations,replaced with two extra cube powers
in the base field and one cube power in the extension field.



International Journal of Network Security, Vol.7, No.1, PP.31–37, July 2008 33

To compute the Modified Tate pairing effi-
ciently, a careful implementation of F3m arith-
metic is needed.Following the approach used in
[1, 11, 12, 14], were present the extension field
F36m as a tower:F33m ∼= F3m [ρ] /

(
ρ3 − ρ− b

)
and

F36m ∼= F33m [σ] /
(
σ2 + 1

)
. Then we expand all the

operations in Algorithm (2.1) into their equivalent forms
but only with operations in the base field F3m . The
comments in Algorithm (2.1) list their numbers; square
is counted as one multiplication.

We developed our work only for the Duursma-Lee al-
gorithm in characteristic 3 because, selecting the base
fieldF3m accurately, cube root and power can be computed
efficiently also in the polynomial basis representation. In
the rest of the paper we model the algorithm entirely as
a sequence of operations in the base field F3m , in order to
be able to expose the maximum possible degree of paral-
lelism.

3 Scheduling Methodology

In the automated design of application specific circuits,
the algorithmic description is commonly partitioned into
a data path,i.e., a set of interconnected function units,
and a control path,usually a finite state machine or a pro-
cessor. The former processes data and the latter sends
commands to drive the units.Data flow through the data
path by steps, called control steps.Each unit is limitedly
programmable and can execute one out of a set of similar
operation types, and several replicated units may work in
parallel. Scheduling the operations of the algorithm so
that each control step achieves the best usage of units is
therefore a task of great importance to optimize perfor-
mances.

The algorithm is scheduled to minimize a target set
of figures of merit. Here we want to put in parallel as
many operations as possible, and we consider the follow-
ing figures of merit:computation time, circuit area and
combinations thereof. Therefore we apply the instruction
scheduling methodology with are source-constrained ap-
proach [10].

This methodology is quite general, flexible and explores
extensively the architectural solution space. It works
as follows: the algorithm is modelled as a data depen-
dence graph (DDG), the nodes and arcs of which rep-
resent operations and data dependencies among opera-
tions,respectively; where necessary, temporary variables
store the intermediate results; each node is labelled by
a time latency and circuit area cost; scheduling the al-
gorithm means sorting the nodes of the DDG in topo-
logical order compatibly with the resource and latency
constraints. The following analyses are performed:

1) Assume the number of units of each type is unlimited
and the latencies of the units are all identical, then:

• Compute the As-Soon-As-Possible (ASAP)
schedule of the DDG;

• Compute the As-Late-As-Possible (ALAP)
schedule of the DDG.

From such schedules, determine the maximum num-
ber of each unit type,called “variability range”, such
that by allowing more units of that type further
speed-up of the algorithm would not take place any
longer.

2) Chosen a parameter to optimize (total computation
time, total circuit area or a function thereof), and
given a fixed set off unction units (possibly repli-
cated), each labelled with its effective latency, do
what follows:

• Using the List-based Scheduling (LBS) disci-
pline, find the schedule of the algorithm compat-
ible with the resource and latency constraints;

• For such schedule compute the figure of merit
under observation (cost/performance estimate);

• And additionally compute the minimum num-
ber of temporary variables (register allocation).

3) Repeat Step (2) by changing the number of each func-
tion unit type, but remaining within the bounds de-
termined in Step (1), valid for the unlimited case.

The entire procedure yields all the LB schedules pos-
sible by varying the resources. The LBS discipline uses
the latency and number of every function unit type, to
construct the schedule by assigning all the operations to
each control step at a time. It maintains a ready-set of
operations, i.e., those the predecessors of which are al-
ready scheduled, assigned to the current control step until
the available resources are run out. To determine which
of the ready-set operations of the same type to schedule
first,that having minimum mobility is selected. Mobility
is the control step interval delimited by the ASAP and
ALAP schedules constrained by the actual resources and
latencies; both schedules are recomputed whenever the re-
source availability changes. The LBS heuristic discipline
is well established and is known for its efficiency in the
general case [10].

We have developed (in C language) all the SW tools
needed for the above described scheduling methodology.
The Duursma-Lee Algorithm (2.1) contains a few initial-
ization operations and a loop repeated for a constant (and
relatively high) number of times;most operations are in
the loop body, the rest is almost costless.Therefore we
schedule only the loop body, and the resulting architec-
ture iterates the computation as many times as the loop
does. The loop body is expressed as a list of operations in
the base field F3m , with temporary variables, latency and
area specifications; the list is given to the tools, which
extract the labelled DDG of the algorithm and process it
as explained above.



International Journal of Network Security, Vol.7, No.1, PP.31–37, July 2008 34

4 Datapath and Function Units

The HW coprocessor we considered for the Duursma-Lee
algorithm is a dedicated parallel architecture, as outlined
in Section 3. The data path contains function units for
each operation type, and the units may be replicated. The
units work at the level of the base field F3m ; hence all data
are elements of F3m . Each function unit has one or two
inputs (for unary or binary operations) and one output,
and contains buffer registers to store operand(s) and re-
sult (hence2 or 3 registers); such buffers decouple the units
of one another. A generic unit consumes one clock cycle
for loading the operand(s) into the input buffers, one or
more cycles for computing (depending on the unit type)
and one final cycle for storing the result into the output
buffer. A set of registers is also included to store tempo-
rary variables. All the registers (buffer and temporary)
have the same size as an element ofF3m (i.e., m digits as
in [11, 14], see below).

Function units and temporary registers are connected
through dedicated busses and switches, each of size F3m .
The control path drives all the units and registers, and
dispatches data via the busses. Such an architecture is
consistent with those adopted in [11, 14]. In all the cases
we considered, almost all the units and registers happen
to have fan-in and fan-out of one or two, and the rest is
only slightly over. This limits the number of busses and
switches; hence we assume that their time and area costs
are negligible.

The Tate pairing function defines a highly arithmetic-
intensive primitive. There are several works dedicated
to the hardware implementation of efficient arithmetic in
Characteristic 3, see [4, 11, 15, 18].In these papers the
implementation is done on a FPGA device and the size is
evaluated by counting the number of the needed FPGA
elements or equivalent gates. To estimate the area and
latency costs of each function unit, here we follow a similar
approach.

We use the base field F3m , as in [11, 18], and we rep-
resent its elements in polynomial basis, the usual choice.
An element of F3 isa digit of {−1, 0, 1}, encoded with two
bits in such a way that by swapping the bits the sign
is inverted. The elementary operations in F3 (addition,
subtraction and multiplication) can be performed in one
clock cycle by using two FPGA look-up tables of Type
4: 1 (LUT).

The base field F3m is isomorphic to F3 [x] /f (x), where
f (x) is am-degree irreducible reduction polynomial with
coefficients inF3. We use the trinomial type f (x) = xm +
xh − 1 ∈ F3 [x]. A generic element ofF3m is a sequence of
m digits in F3. We need binary and unary function units
with inputs A,B ∈ F3, limitedly programmable to invert
the signs of A orB. To do so, we use for each input an
array of 2m two-way one-bit multiplexers (MX), to swap
when requested the operand bit sand thus to invert its
sign.

The adder unit must perform the four algebraic addi-
tions ±A ± B. Such operations can be performed digit-

Table 1: Costs of arithmetic units in F3m

Function Area Latency

Unit

Adder [4] m F3A + 4m MX 1

(m + 1) D F3A +

Multiplier [4] ((m + 2)D − 2) F3M + dm/De
8m MX + FF

(6m + 2D − 2)

Cube Power [4] 2m F3A + 2m MX 1

Cube Root [2] (m− 1) F3A + 2m MX 1

wise in one clock cycle,using an array of m adders in F3

(F3A) [4, 14] plus an array of 4m MXs for the signs of
the two summands. The multiplier unit must perform the
four operations (±A)× (±B). The multiplication of two
elements in F3m is performed in digit-serial way: the for-
mer factor is processed in parallel, the latter by groups
of D digits in parallel in one clock cycle; hence the total
number of cycles is dm/De. Assuming D ≤ m− h holds,
to simplify reduction, the area cost of the multiplier is
the sum of the following contributions: (m + 1) D F3As;
(m + 2) D−2 multipliers inF3 (F3M); some control logic,
namely 4m MX; some inner registers for partial products,
equivalent to (6m + 2D − 2) flip-flops (FF) [4]; and finally
an array of 4m MXs for the signs of the two factors, as
done in the adder.

The cube power unit must perform the two operations
(±A)3. In fields of characteristic 3 represented in poly-
nomial basis, this is a linear operation implementable by
thinning the coefficients of the base A [18]. The unit
takes one clock cycle [4] with an area cost of2m F3As
plus 2m MXs for the base sign. The cube root unit
must perform the two operations 3

√±A. In the same field
type as before, cube root can be computed as in [2], pro-
vided the reduction trinomial f (x) satisfies m,h ≡ 1, 1 or
m,h ≡ 2, 2(mod 3). A unit specific for f (x) has a latency
of one clock cycle and an area equal to (m− 1) F3As
plus2m MXs for the radicand sign. Finally, all the reg-
isters (temporary and buffer) store m digits of F3, hence
they consist of arrays of 2m flip-flops;read/write takes one
clock cycle. The area and latency formulas of the function
units are summarized in Table 1.

Table 2: Costs of arithmetic units inF3m including I/O
buffers (m = 97, h = 16 and D = 4)

Func. Area Latency Var.

Unit (LUT) (clk) Range

Adder 1358 3 18

Multiplier 3908 27 11

Cube Power 1100 3 2

Cube Root 904 3 2

As we want to compare our results with those in the
literature, e.g. in [11, 14], we have chosen m = 97,
h = 16and D = 4; such values are mathematically and



International Journal of Network Security, Vol.7, No.1, PP.31–37, July 2008 35

technologically sound, and fit all the previous constraints.
Moreover, since every function unit contains input/output
buffers, we have added two more clock cycles to the unit
latency, to account for the delay of the read/write opera-
tions, and we have increased the unit area to account for
the I/O buffers. Since we measure all the areas in terms
of FPGA LUTs, we assume the equivalences 1 MX = 1
LUTand 1 FF = 4

3 LUT, which are somewhat conserva-
tive for the FPGAs used for comparison [4, 22]. Westress
that our results are rather stable with respect to these hy-
potheses. In Table 2 the resulting area and latency costs
of the various units are shown.

5 Synthesis of Architectures

Here we list the results obtained by scheduling, as de-
scribed in Section 3, the loop body of the Duursma-Lee
Algorithm (2.1). First we consider the ideal case,with
unboundedly many function units having identical la-
tency,i.e., one clock cycle; the total numbers of operations
are listed in Algorithm (2.1). In such conditions execu-
tion takes 18control steps, which is the absolute minimum.
Table 2 lists the variability range of each unit type (see
Section 3, point Step 1). The adder and multiplier units
exhibit a somewhat high variability of 18 and 11, respec-
tively, meaning there is space for parallelization.

Table 3: Optimal T for the loop body
Combinations of Function Units T T incr.

Mul Power Add Root [clk] [%]

1 2 1 1 423 386.2

2 2 4 1 234 169.0

3 2 4 1 159 82.7

4 2 4 1 132 51.7

5 1 4 1 108 24.1

6 1 3 1 105 20.7

7, 8 2 3 1 99 13.8

≥ 9 1 4 1 87 min.

Second, we conduct a scheduling campaign with the
effective latency and area costs for each unit as in Table 2,
optimizing the loop time T, measured in clock cycles, and
the loop area-time product AT, measured in equivalent
LUTs × clock cycles (see Section 4), by allowing different
combinations of function units. In particular, since the
multiplier has the highest time and area costs (Table 2),
it is advisable to find the optimal schedules with respect
to the selected figure of merit, by allowing from 1up to
11 multipliers (i.e., the variability range, Table 2). This
is carried out as follows:

1) Keeping fixed the number of multipliers, compute all
the schedules changing the numbers of adders, cube
power and root units, with in their variability ranges.

2) For all such schedules, compute the figure of merit
under observation (either T or AT) and select the

Table 4: Optimal AT for the loop body
Combinations of Function Units AT T

incr.
Mul Power Add Root [%] [clk]

1 1 1 1 74 426
2 1 1 1 26 246
3 1 2 1 9 168
4 1 2 1 6 141
5 1 4 1 min. 108
6 1 3 1 4 105
7 1 2 1 11 105
8 2 3 1 21 99
9 1 4 1 16 87

schedule with the minimum value of the figure of in-
terest.

3) Restart from point Item (1), increasing the number
of multipliers; terminate when the variability range
of the multiplier has been completely explored.

In principle there may exist multiple optimal schedules
with the same number of multipliers; in practice such an
event is unlikely and never occurs in our scheduling cam-
paign.

Table 3 shows the optimal schedules with respect to the
computation time T. Each row lists: the numbers of func-
tion unit types, the absolute value of T and the increment
percentage with respect to the minimum time of 87 clock
cycles, reached with 9multipliers; no further speed-up is
achieved with more such units. It is evident that with 7
multipliers, the residual time performance gain, achiev-
able with more units, is about 10%.Therefore, in general
the time optimal architecture ought not to contain over 7
multipliers.

The register allocation procedure shows that all the
schedules in Table 3 require from 28 up to 32 temporary
registers. Since register allocation does not depend on the
area costs of the function units, we assume to have exactly
32registers, which will suffice for any possible schedule,
and weal ways add their area cost to the total area A of
the device.

Table 4 shows the optimal schedules with respect to
the area-time product AT (where area is estimated as in
Table 2 plus the 32 temporary registers). Each row lists:
the numbers of function unit types and the percentage
increment of AT with respect to the minimum, reached
with 5multipliers, and the absolute time T. This is the
trade-off for balancing area and time costs, and is in good
agreement with the behavior of the AT2 figure of merit
as well (computed but not shown here) [10]. Solutions
common to both Tables 3 and 4 are due to chance. Clearly
with over 5 multipliers AT must grow again, while T tends
to stabilize asymptotically.



International Journal of Network Security, Vol.7, No.1, PP.31–37, July 2008 36

6 Evaluation and Comparison

Works dealing with HW architectures for the Tate pairing
are [11, 14]. Such authors analyze the modified Duursma-
Lee algorithm (D-L) and use function units similar to
those explained in Section4, with identical values of m,
h and D; hence the loop body iterates exactly m = 97
times. In [14] Kerins et al. give a parallel FPGA ar-
chitecture, with units working in the extension fieldF36m

(and presumably with temporary registers,though noth-
ing is said). To synthesize such high-level units, they use
18 multipliers and 6 cube power units inF3m , plus over
100 adders; their architecture computes the entire D-L
algorithm in 8, 924 clock cycles.Instead, in [11] Grabher
et al. present a FPGA co-processor for arithmetic in F3m ,
which contains one unit per type, has 32 temporary reg-
isters (as we do) but works serially. Higher-level opera-
tions are compiled on a general purpose processor. The
reported running time of the entire D-L algorithm is of
59, 946 clock cycles.

For the complete D-L algorithm, we obtain a minimum
computation time of 87m = 87× 97 = 8, 439 clock cycles
with 9 multiplier sand 4 adders (see Table 3); such a time
is comparable with that of [14], but our architecture is by
far smaller. In the case of minimum area-time product
AT, a number of5 multipliers and 4 adders yields a total
D-L time of 108m = 108 × 97 = 10, 476 clock cycles (see
Table 4),still comparable to the minimum time of [14] but
with an even smaller area. In both cases, our total D-L
time is about one order of magnitude shorter than that of
[11]. In summary, scheduling seems to be convenient and
the performance leap is stable against the assumptions we
made.

Moreover, we determined also the optimal time sched-
ule with a single function unit per type, which yields a
time cost of 426 clock cycles for the loop body (see Table
4). The total time to compute the whole D-L algorithm
is then of 426m = 426× 97 = 41, 322 clock cycles, which
represents a speed-up of 31% with respect to the time
of 59, 946 clock cycles reported in [11]. Such a speed-up
is due to the adoption of an automated and exhaustive
scheduling methodology.

7 Conclusions

An analysis of the computation of the Tate pairing with
the Duursma-Lee algorithm, by means of a parallel ded-
icated HW co-processor inF3m , has been presented. Re-
sults show that the algorithm is well suited for parallelism
and that the cost-performance tradeoff can be consider-
ably improved with respect to literature solutions. Fu-
ture research directions include the analysis of other Tate
pairing algorithms as well as of different architecture mod-
els, e.g. changing m and D, or for instance an architec-
ture with a limited number of busses (two or three) or a
pipelined structure.

References

[1] P. Barreto, H. Kim, B. Lynn, and M. Scott, “Ef-
ficient algorithms for pairing-based cryptosystems,”
in Advances in Cryptology (Crypto’02), LNCS 2442,
pp. 354-368, 2002.

[2] P. Barreto, “A note on efficient computation of cube
roots in characteristic 3,” Cryptology ePrint Archive,
2004. (http://eprint.iacr.org/2004/305.pdf)

[3] P. Barreto, S. Galbraith, C. Eigeartaigh, and M.
Scott, “Efficient pairing computation on supersin-
gular abelian varieties,” Cryptology ePrint Archive,
2004. (http://eprint.iacr.org/2004/375.pdf)

[4] G. Bertoni, J. Guajardo, S. Kumar, G. Orlando, C.
Paar, and T. Wollinger,“Efficient GF(pm) arithmetic
architectures for cryptographic applications,” in Top-
ics in Cryptology (CT RSA’03), LNCS 2612, pp. 158-
175, 2003.

[5] D. Boneh and M. Franklin, “Identity-based encryp-
tion from the weil pairing,” in Advances in Cryptol-
ogy (Crypto’01), LNCS 2139, pp. 213-229, 2001.

[6] C. Cocks, “An identity-based encryption scheme
based on quadratic residues,” Cryptography and Cod-
ing, LNCS 2260, pp. 360-363, 2001.

[7] R. Dutta, R. Barua, and P. Sarkar, “Pairing-based
cryptography: A survey,”Cryptology ePrint Archive,
2004. (http://eprint.iacr.org/2004/064.pdf)

[8] I. Duursma and H. Lee, “Tate pairing implementa-
tion for hyperelliptic curves y2 = xp − x + d,” in
Advances in Cryptology (Asiacrypt’03), LNCS 2894,
pp. 111-123, 2003.

[9] G. Frey, M. Muller, and H. Ruck, “The tate pairing
and the discrete logarithm applied to elliptic curve
cryptosystems,” IEEE Transactions on Information
Theory, vol. 45, no. 5, pp. 1717-718, 1999.

[10] D. Gajski, N. Dutt, and A. Wu, High-level Synthesis
- Introduction to Chip and System Design, 2nd Print,
Kluwer Academic Publisher, 1993.

[11] P. Grabher and D. Page, “Hardware acceleration of
the tate pairing in characteristic 3,” in Cryptographic
Hardware and Embedded Systems (CHES’05), LNCS
3659, pp. 398-411, 2005.

[12] R. Granger, D. Page, and M. Stam, “On
small characteristic algebraic tori in pairing-based
cryptography,” Cryptology ePrint Archive, 2004.
(http://eprint.iacr.org/2004/132)

[13] A. Joux, “The weil and tate Pairings as building
blocks for public key cryptosystems,” in Proceedings
of the 5th International Symposium on Algorithmic
Number Theory (ANTS-V), LNCS 2369, pp. 20-32,
2002.

[14] T. Kerins, W. Marnane, E. Popovici, and P. Barreto,
“Efficient hardware for the tate pairing calculation
in characteristic 3,” in Cryptographic Hardware and
Embedded Systems (CHES’05), LNCS 3659, pp. 412-
426, 2005.

[15] T. Kerins, E. Popovici, and W. Marnane, “Algo-
rithms and architectures for use in FPGA imple-
mentations of identity based encryption schemes,”



International Journal of Network Security, Vol.7, No.1, PP.31–37, July 2008 37

in Field Programmable Logic and Application
(FPL;04), LNCS 3203, pp. 74-83, 2004.

[16] S. Kwon, “Efficient tate pairing computation for
supersingular elliptic curves over binary fields,”
Cryptology ePrint Archive, 2004. (http://eprint.iacr.
org/2004/303)

[17] V. Miller, Short Programs for Functions on Curves,
unpublished manuscript, 1986.

[18] D. Page and N. Smart, “Hardware implementation
of finite fields of characteristic 4,” in Cryptographic
Hardware and Embedded Systems (CHES’02), LNCS
2523, pp. 529-539, 2002.

[19] R. Sakai, K. Ohgishi, and M. Kasahara, “Cryptosys-
tems based on pairing,” in Symposium on Cryptogra-
phy and Information Security (SCIS2000), pp. 26-28,
2000.

[20] A. Shamir, “Identity-based cryptosystems and signa-
ture schemes,” Advances in Cryptology (Crypto’85),
LNCS 196, pp. 47-53, 1985.

[21] E. Verheul, “Evidence that XTR is more secure than
supersingular elliptic curve cryptosystems,” in Ad-
vances in Cryptology (Eurocrypt’01), LNCS 2045, pp.
195-210, 2001.

[22] XILINX, Gate Count Capacity Metrics for FPGAs,
Application Note, XAPP 059 (Ver. 1.1), Feb. 1, 1997.
(http://www.origin.xilinx.com/bvdocs/appnotes/
xapp059.pdf)

Guido Bertoni received the Dr. Eng degree in com-
puter engineering and the Ph.D degree from Politecnico
di Milano in 1999 and 2004 respectively. He joins ST in
fall 2003 as researcher in the field of cryptography. His
research interests include the cryptographic algorithms,
hardware and software implementations, and problems re-
lated to side channels attack. He teaches cryptography at
Politecnico di Milano as contract professor.

Luca Breveglieri received both the M.Sc. degree in
electronic engineering and the D.Sc. degree in electronic
engineering of information technology and systems from
the Politecnico di Milano, Italy, in 1986 and 1992, respec-
tively. From 1991 to 1998, he was a computer technician
and a part-time researcher. Since 1998 he has been an
associate professor of computer science at the Politecnico
di Milano. He has over 60 publications in refereed
journals and conferences. His current research interests
include architectures of computing systems, application
specific VLSI synthesis, computer arithmetic and applied
cryptography, and automata and formal languages theory.

Pasqualina Fragneto received the Laurea in mathe-
matics from the University Federico II, Napoli, Italy in
1998. Since October 1999, she has been with the AST
group of the STMicroelectronics. Her research interests
includes algorithmic number theory and computer arith-
metic, efficient implementation of cryptographic systems.

Gerardo Pelosi received his M.S. degree in Telecommu-
nication engineering from the Politecnico di Milano, Italy
in February 2003. He is currently towards his PhD degree
in Information Technology at Politecnico di Milano. His
primary research areas include cryptographic algorithms
and efficient hardware and software implementations.


