
International Journal of Network Security, Vol.7, No.1, PP.141–150, July 2008 141

Software Implementations of Elliptic Curve

Cryptography

Zhijie Jerry Shi and Hai Yan

(Corresponding author: Zhijie Jerry Shi)

Computer Science and Engineering Department, University of Connecticut

371 Fairfield Way, Unit 2155, Storrs, CT 06269, USA (Email: zshi@engr.uconn.edu)

(Received Sep. 13, 2006; revised and accepted Nov. 24, 2006)

Abstract

Elliptic Curve Cryptography (ECC) is a promising alter-
native for public-key algorithms in resource-constrained
systems because it provides a similar level of security with
much shorter keys than conventional integer-based public-
key algorithms. ECC over binary field is of special interest
because the operations in binary field are thought more
space and time efficient. However, the software imple-
mentations of ECC over binary field are still slow, es-
pecially on low-end processors used in small computing
devices such as sensor nodes. In this paper, we studied
software implementations of ECC. We first investigated
whether some architectural parameters such as word size
may affect the choice of algorithms when implementing
ECC with software. We identified a set of algorithms
for ECC implementation for low-end processors. We also
examined several improvements to the instruction set ar-
chitecture of an 8-bit processor and studied their impact
on the performance of ECC.

Keywords: Binary field arithmetic, ECC, instruction set
architecture, sensor networks, software implementation

1 Introduction

Elliptic Curve Cryptography (ECC), proposed indepen-
dently in 1985 by Neal Koblitz [10] and Victor Miller [14],
has been used in cryptographic algorithms for a variety of
security purposes such as key exchange and digital signa-
ture. Compared to traditional integer-based public-key
algorithms, ECC algorithms can achieve the same level
of security with much shorter keys. For example, 160-
bit Elliptic Curve Digital Signature Algorithm (ECDSA)
has a security level equivalent to 1024-bit Digital Signa-
ture Algorithm (DSA) [15]. Because of the shorter key
length, ECC algorithms run faster, require less space, and
consume less energy. These advantages make ECC a bet-
ter choice of public-key algorithms, especially in resource-
constrained systems such as sensor nodes and mobile de-
vices.

Considerable work on ECC has been focused on math-
ematical methods and algorithms, hardware implemen-
tations, and extensions of instruction set architecture
[3, 7, 8, 11, 12, 13]. Hankerson et al. discussed the soft-
ware implementations of in ECC in [8], in which they
focused on 32-bit processors. Gura et al. compared the
performance of ECC and RSA on 8-bit processors [7]. But
the elliptic curves they studied are in GF (p). Malan re-
cently investigated the feasibility of implementing ECC
in sensor nodes [13]. Their implementation was not opti-
mized well. Given that the performance of ECC on low-
end processors is far from being satisfactory, many pro-
tocols designed for wireless sensor networks tend to use
symmetric-key algorithms only [9, 16, 20].

In this paper, we try to identify the problems in the
software implementations of ECC and explore techniques
that can accelerate the software implementations. We fo-
cus on ECC over GF (2m). Since each operation in ECC
has many different ways to implement, we first investi-
gated whether processor word size may affect our choice
of algorithms. We selected a set of efficient algorithms
and studied their performance on processors of different
word sizes.

We also studied how Instruction Set Architecture (ISA)
improvements affect the performance of ECC on low-end
8-bit processors. We examined three instructions, binary
field multiplications, shift operations, and most significant
1, which target the time consuming operations in ECC.
Although some instructions, such as binary field multipli-
cation instructions, can achieve a large speedup on 64-bit
processors [6], they are not as effective on low-end proces-
sors if affine coordinates are adopted. The architectural
supports also result in different selections of algorithms.
For example, when binary field multiplication instructions
are supported, it is preferable to adopt projective coor-
dinates to achieve better performances. On 8-bit micro-
controllers running at 16 MHz, we can perform a 163-bit
scalar point multiplication in 0.85 seconds.

The rest of the paper is organized as follows. In Sec-
tion 2, we briefly describe ECC and relevant algorithms.
In Section 3, we compare ECC algorithms on 32-bit pro-

International Journal of Network Security, Vol.7, No.1, PP.141–150, July 2008 142

cessors and examine the impact of word size on ECC al-
gorithms. In Section 4, we discuss the performance of
ECC on 8-bit processors. Section 5 discusses three ISA
improvements for accelerating ECC. Section 6 concludes
the paper.

2 Overview of ECC

Elliptic curves can be defined in many fields including
prime fields GF (p) and finite fields GF (2m) of charac-
teristic two, which are also called binary fields [2]. The
elliptic curves over binary field are of special interest be-
cause the operations in a binary field are faster and easier
to implement. In this paper, we focus on ECC defined in
binary field. More specifically, we focus on the five binary
field elliptic curves specified in the Elliptic Curve Digital
Signature Algorithm (ECDSA) [15], which are defined in
GF (2163), GF (2233), GF (2283), GF (2409), and GF (2571).

2.1 ECC Operations and Parameters

When defined in a binary field, an elliptic curve can be
represented by

y2 + x • y = x3 + a • x2 + b,

where a and b are constants in GF (2m) and b 6= 0. The
set E(GF (2m)) includes all the points on the curve and a
special point O, which is defined as the identity element.
For any point P = (x, y) in E, we have:

P + O = O + P = P,

P + (−P) = O, where − P = (x, x + y).

The addition of two points on the curve, P = (x1, y1) and
Q = (x2, y2), are defined as P + Q = (x3, y3), where

x3 = λ2 + λ + x1 + x2 + a,

y3 = λ(x1 + x3) + x3 + y1,

and

λ =

{ y2+y1

x2+x1

, ifP 6= Q
y1

x1

+ x1, ifP = Q.
(1)

The multiplication of a point P and an integer k is defined
as adding k copies of P together.

Q = kP = P + . . . + P
︸ ︷︷ ︸

.

k times

If k has l bits and kj represents bit j of k, the scalar point
multiplication kP can be computed as:

kP =

l−1∑

j=0

kj2
jP

The scalar point multiplication can be done with the basic
binary algorithm. For example, in the left-to-right binary

algorithm shown in Figure 1, the bits in k are scanned
from the left to the right. For each bit, the partial product
is doubled, and then P is added to it if the bit is 1. The
expected running time of this method is approximately
l/2 point additions and l point doublings. Typically, l =
m, which is also the key length of ECC algorithms.

Algorithm 1: Left-to-right binary algorithm for point multiplication

INPUT: P E, and a positive integer k = (kl–1 kl–2 …k1k0)2

OUTPUT: A = kP

1. A O

2. For i = l–1 down to 0 do

2.1 A 2A

2.2 If ki = 1 then A A + P

3. Return A

Figure 1: Basic left-to-right binary algorithm

The scalar point multiplication is the main workload
of ECC algorithms. The binary algorithm for scalar point
multiplications is similar to the algorithm for exponenti-
ations in GF (p). Therefore, the techniques, such as pre-
computations and sliding windows that accelerate integer
exponentiations, can also be applied in similar ways to
accelerating scalar point multiplications. Figure 2 shows
the m-ary method for the scalar point multiplication of
ECC, where m = 2r for some integer r ≥ 1, and d = dl/re,
where d·e denotes the ceiling function. The binary method
can be treated as a special case of m-ary method with
r = 1. The total number of doublings does not change
much because Step 4.1 of Algorithm 2 requires r point
doublings. Nevertheless, the number of point additions
is reduced from l to d (for the worst cases) at the cost
of more memory space to store the precomputed results.
If the point P is the same for many multiplications, the
precomputations need to be done only once.

Algorithm 2: m-ary method for point multiplication

INPUT: P G, and a positive integer k = (kl–1 kl–2 …k1k0)2

OUTPUT: A=kP

Precomputation for window size of r and m = 2r

1. P0 O

2. For i = 1 to m – 1 do

2.1 Pi Pi–1 + P

3. A O

Main loop

4. For j = d – 1 down to 0 do

4.1 A mA

4.2 A A + Pi where i = (kr(j+1)–1… krj)2

5. Return A

Figure 2: m-ary method for point multiplication

2.2 Binary Field Arithmetic

On programmable processors, an element in GF (2m) is
often represented with a polynomial whose coefficients
belong to {0, 1}. The coefficients can be packed into
words, with each bit representing a coefficient. For

International Journal of Network Security, Vol.7, No.1, PP.141–150, July 2008 143

example, an element in GF (231), x29 + x + 1, can
be represented with a word 0x20000003 on a 32-bit
processor. If a polynomial has a degree of m and w is
the word size, the polynomial can be represented with
d(m + 1)/we words.

Addition. The addition of two polynomials a and b in
GF (2m) is just bitwise exclusive-or (xor) of the words
representing a and b.

Multiplication. The multiplication of two polynomials
of degree (m − 1) results in a polynomial of degree 2m −
2. The product needs to be reduced with respect to an
irreducible polynomial f(x) of degree m. An irreducible
polynomial with a few terms can be chosen to facilitate
fast reductions. In ECDSA, for example, the irreducible
polynomial f(x) in GF (2163) has only five terms: f(x) =
x163 + x7 + x6 + x3 + 1. The modular reduction can be
done during or after the polynomial multiplication.

The most straight-forward algorithm for polynomial
multiplications is the shift-and-add method as shown in
Figure 3, which is similar to the method for normal binary
multiplications. The difference is that the add operations
are in GF (2m). When multiplying two polynomials a(x)
and b(x), we can first set the partial product c(x) to 0
if a0 = 0 or to b(x) if a0 = 1. Then we scan the bits in
a(x) from a1 to am − 1. For each bit, b(x) is first shifted
to the left by one. If the scanned bit in a(x) is 1, the
new value of b(x) is also added to the partial product C.
The modular reduction can be integrated into the shift-
and-add multiplication. After each shift operation, the
degree of b(x) is checked. If b(x) has a degree of m, it can
be reduced tob(x) + f(x), where f(x) is the irreducible
polynomial. This method is suitable for hardware imple-
mentations where the shift operation can be performed in
parallel. However, it is less desirable for software imple-
mentations because shifting a polynomial stored in multi-
ple words is a slow operation that requires many memory
accesses.

Algorithm 3: Right-to-left shift-and-add field multiplication

INPUT: Binary polynomials a(x) and b(x) of degree at most m–1

OUTPUT: c(x) = a(x) • b(x) mod f(x)

1. If a0 = 1 then c(x) b(x); else c(x) 0

2. For i = 1 to m – 1 do

2.1 b(x) b(x) • x mod f(x)

2.1 If ai = 1 then c(x) c(x) + b(x)

3. Return c(x)

Figure 3: Shift-and-add algorithm for field multiplication

The comb algorithms are normally used for fast poly-
nomial multiplications [8]. Algorithm 4 in Figure 4 il-
lustrates the right-to-left comb algorithm. Suppose a(x)
and b(x) are two polynomials stored in t words and each
word consists of w bits. Unlike the shift-and-add algo-
rithm, which scans the bits in a(x) one by one sequen-
tially, the comb algorithm first tests bit 0 of all the words

in a(x), from a[0] to a[t − 1], i.e., bits a0, aw, a2w, and
so on. Then it tests bit 1 in all the words, then bit 2 in
all the words, and so on. Note that c(x) + b(x) • xjw in
Step 2.1 can be performed by aligning b(x) with proper
words in c(x). The only step that needs shift operations
is Step 2.2. Compared to the shift-and-add method, the
comb algorithm reduces the number of shift operations
from m − 1 to w − 1.

Algorithm 4: Right-to-left comb method for polynomial multiplication

INPUT: Binary polynomials a(x) and b(x) of degree at most m–1

OUTPUT: c(x) = a(x) • b(x)

1. c(x) 0

2. For k = 0 to w – 1 do

2.1 For j = 0 to t – 1 do

If bit k of a[j] is 1 then c(x) c(x) + b(x)• x
jw

2.2 If k w – 1 then b(x) b(x) • x

3. Return c(x) mod f(x)

Figure 4: Right-to-left comb method for field multiplica-
tion

The left-to-right comb algorithm, as shown in Figure 5,
is similar to the right-to-left comb algorithm, but it tests
the bits in the words of a(x) from the left to the right,
i.e., from the most significant bit to the least significant
bit. The shift operations are performed on partial product
c(x) in Step 2.2, not on b(x). Because c(x) is twice as
long as b(x), the left-to-right comb algorithm is a little
bit slower.

Algorithm 5: Left-to-right comb method for polynomial multiplication

INPUT: Binary polynomials a(x) and b(x) of degree at most m–1

OUTPUT: c(x) = a(x) • b(x)

1. c(x) 0

2. For k = w – 1 down to 0 do

2.1 For j = 0 to t – 1 do

If bit k of a[j] is 1 then c(x) c(x) + b(x) • x
jw

2.1 If k 0 then c(x) c(x) • x

3. Return c(x) mod f(x)

Figure 5: Left-to-right comb method for field multiplica-
tion

The left-to-right comb algorithm does have some ad-
vantages though. In addition to keeping the input polyno-
mials unchanged, it can employ the sliding window tech-
nique to reduce the number of shift operations [8]. By
scanning the bits in a(x) with a window of a fixed size,
the algorithm can multiply more than one bit with b(x)
at a time. The partial product c(x) is then shifted to
left by the window size. The products of b(x) and ev-
ery possible value of bits in a window are precomputed
and stored in a table. Algorithm 6 shows the left-to-right
comb method with windows of width s = 4, where the
number of windows in one word is d = dw/se. The slid-
ing window method reduces the number of shifts at the
cost of storage overhead. A larger window size leads to
fewer shift operations but requires more space to save the
precomputed results.

International Journal of Network Security, Vol.7, No.1, PP.141–150, July 2008 144

Algorithm 6: Left-to-right comb method with windows of width s = 4

INPUT: Binary polynomials a(x) and b(x) of degree at most m–1

OUTPUT: c(x) = a(x) • b(x)

1. Compute Bu = u(x)•b(x) for all polynomials u(x) of degree 3

2. c(x) 0

3. For k = d – 1 down to 0 do

3.1 For j = 0 to t – 1 do

Let u = (u3, u2, u1, u0), where ui is bit (4k + i) of a[j]

c(x) c(x) + Bu• x
jw

3.2 If k 0 then c(x) c(x) • x
4

4. Return c(x) mod f(x)

Figure 6: Left-to-right comb method with windows

The squaring of a polynomial is much efficient than
normal multiplications, taking advantage of the fact
that the representation of a(x)2 can be obtained by
inserting 0’s between consecutive bits in a(x)’s binary
representation [17]. For example, if a(x) is represented
with 0xFFFF, a(x)2 = 0x55555555 mod f(x).

Modular reduction. A modular reduction is needed in
the multiplication and squaring algorithms to reduce the
degree of the product below m. The modular reduction is
done with polynomial long division. Let c(x) be a poly-
nomial of degree i where i ≤ 2m − 2, and f(x) be the
irreducible polynomial of degree m. We can reduce the
degree of c(x) by eliminating the highest term xi.

c(x) = c(x) + f(x) • xi−m. (2)

The process is repeated until the degree of c(x) is
smaller than m.

If the irreducible polynomial f(x) is stored in memory
like regular polynomials, i.e., its coefficients are packed
into words, Formula (2) can be done by first shifting f(x)
to the left by (i − m) bits, and then adding the result to
c(x). A polynomial shift is needed for every term that
has a degree of m or larger. If memory space is not a
concern, the number of shift operations can be reduced
by precomputing f(x) • xj for j = 0, 1 . . . w − 1, where
w is the number of bits in a word [8]. This technique is
adopted in Algorithm 7 shown in Figure 7. In the figure,
Step 1 performs the precomputation. If f(x) is the same
for many reductions, Step 1 does not have to be done for
every reduction. In Step 2, bits in c(x) are scanned one by
one from the highest 1. The 1’s are eliminated by adding
f(x) to c(x). Because of the precomputation, Step 2.1
does not require shift operations on f(x).

If f(x) has only a few terms, it can be represented
more efficiently with an array that stores the position of
the terms. To perform the operations in Formula (2), we
can calculate the position of the terms after the shift left
operation and flip the corresponding bits in c(x).

A faster modular reduction algorithm was described
in [8]. It works for irreducible polynomials in which
the difference between the degrees of the first two
terms is larger than the word size. An example of such
polynomials is f(x) = x163 + x7 + x6 + x3 + 1, in which

Algorithm 7: Modular reduction (one bit at a time)

INPUT: Binary polynomials c(x) of degree at most 2m–2

OUTPUT: c(x) mod f(x)

1. Compute uk(x) = f(x) • x
k
, for 0 ? k ? w – 1

2. For i = 2m – 2 down to m do

2.1 If ci = 1 then

Let j = (i – m) / w and k = (i – m) – w j

c(x) c(x) + uk(x) • x
jw

3. Return (c[t–1], …, c[1], c[0])

Figure 7: Modular reduction one bit per time

the degree of the leading term is much larger than that
of the second term. With these types of irreducible
polynomials, multiple terms in c(x) can be eliminated at
a time. In typical software implementations, w terms can
be eliminated at the same time, where w is the word size.

Inversion. The calculation of λ in Formula (1) needs a
division in GF (2/6m), which is normally done with an
inversion followed by a multiplication. To divide a(x) by
b(x), we first obtain b(x)−1, the inverse of b(x), and then
compute a(x) • b(x)−1. The classic algorithm for com-
puting the multiplicative inverse is Extended Euclidean
Algorithm (EEA) [8].

The Almost Inverse Algorithm (AIA) in [17] is based on
EEA. But unlike EEA, AIA eliminates the 1 bit in poly-
nomials from the right to the left. AIA is expected to take
fewer iterations than EEA. However, AIA does not give
the inverse directly and needs an additional reduction to
generate the inverse. Modified Almost Inverse Algorithm
(MAIA), a modification of AIA, gives the inverse directly
[8]. We do not list the details of these algorithms. The
reader is referred to references [8] and [17].

3 ECC on General-Purpose Pro-

cessors

In this Section, we compare the performance of ECC al-
gorithms on general-purpose processors. The algorithms
are implemented with C on a Debian Linux system. All
the code is compiled with gcc 3.3.5 with -O3 option. Ta-
ble 1 summarizes the performance of the field arithmetic
operations on a Pentium 4 processor at 3 GHz. We used
the five binary elliptic curves that NIST recommended for
ECDSA [15].

3.1 Addition

As expected, the addition of polynomials is the fastest
field operation. For each field, Table 1 shows two algo-
rithms, one for the addition of two polynomials and the
other for three polynomials. As we can see, adding three
polynomials is faster than invoking the addition of two
polynomials twice. The addition of three polynomials re-
duces the number of memory accesses because the results
from the first addition do not have to be saved to memory

International Journal of Network Security, Vol.7, No.1, PP.141–150, July 2008 145

and then loaded back for the second addition. Combining
two additions in one loop also reduces the control over-
head. We did similar optimizations to the shift left and
add operations.

3.2 Modular Reduction

Since all the irreducible polynomials in ECDSA have ei-
ther three or five terms, we use an array to store the
position of the terms.

Three reduction algorithms discussed in Section 2.2 are
compared in Table 1. The first algorithm (by bit) elimi-
nates one term at a time while the second one (by word)
eliminates up to 32 terms each time as the word size on
Pentium 4 is 32. The second algorithm is about 27x to 37x
faster than the first algorithm. The third algorithm also
eliminates 32 terms at a time, but is optimized specifically
for a fixed irreducible polynomial. The third algorithm is
the fastest of the three for all the key sizes. However, it
requires different implementations for different irreducible
polynomials and for processors of different word sizes.

Generally, field operations become slower as the
operand size increases. However, we noticed that the
modular operations may be faster on larger operands.
The reason is that the irreducible polynomials have dif-
ferent numbers of terms. The irreducible polynomials in
GF (2233) and GF (2409) have three terms while the others
have five terms.

3.3 Multiplication

Three multiplication algorithms are compared in Table 1.
The first one is the right-to-left comb algorithm. As we
discussed in Section 2, it is slightly faster than the left-to-
right comb algorithm because the shift operations are not
performed on the partial product. The second multipli-
cation algorithm is the left-to-right comb algorithm with
a window size of four bits. With the space overhead for
storing 16 precomputed products, the second algorithm
is 1.8 to 2.2 times faster than the right-to-left comb algo-
rithm.

The third multiplication algorithm presented in Table
1 is the squaring algorithm. Our implementation utilizes

a table of 16 bytes to insert 0’s into a group of four bits.
As we can see, squaring is much faster than regular mul-
tiplications. When m = 163, the squaring is about six
times faster than the comb algorithm with a window of 4
bits. When m increases, the ratio becomes even larger.

A modular reduction is needed in the multiplication
algorithms. We used the second modular reduction algo-
rithm (by word) that eliminates 32 terms at a time.

3.4 Inversion

The inverse operation is the most time-consuming opera-
tion. Table 1 compares three inverse algorithms. The first
one is EEA and the second one is MAIA. Although MAIA
may take fewer iterations than EEA, our implementations
show that MAIA is about 50% to 70% slower than EEA
for all the key sizes. Our results confirm the findings in
[8], although they are contrary to those in [17, 18].

By profiling EEA, we noticed that most of the exe-
cution time was spent on two functions, b length and
b shiftleft xor. b length searches for the highest 1 in
a polynomial. It is used to obtain the degree of polyno-
mials. b shiftleft xor shifts a polynomial to the left
and adds the result to another polynomial. It is used
to perform the shift and add operations in EEA. When
m = 163, b length accounts for 55.6% of the total exe-
cution time, and b shiftleft xor for 25.5%.

To accelerate EEA, we tried to minimize the overhead
on determining the degree of polynomials. In addition
to optimizing b length, we also reduced the number of
times we call b length. After the improvements, the time
spent on b shiftleft xor increased to 41.0%, and that
on b length decreased to around 23.8%. When m = 163,
the optimized EEA has a speedup of 1.3 over the original
implementation.

The inversion is still the slowest field operation after
the improvements. Projective coordinate systems are op-
tions to avoid expensive inversions with the cost of more
multiplication operations [4, 8, 11]. One of the fastest pro-
jective coordinate systems is the one proposed by Lopez
et al. in [11]. In this system, a projective point (X, Y, Z),
Z 6= 0 corresponds to the affine point (X/Z, Y/Z2) and
the equation of the elliptic curve is changed to

Y 2 + X • Y • Z = X3 • Z + a • X2 • Z2 + b • Z4.

To compare different coordinate systems, we look at
how many multiplications and inversions need to be done
in a point doubling or addition operation. We do not
count squaring operations because they are much faster
than multiplications. In the affine coordinate system we
have discussed so far, a point addition needs one inversion
and two multiplications. In the projective coordinate sys-
tem, a point addition does not require inversion; however,
it needs 14 multiplications, as shown in Table 2 [8]. In
the table, I and M denote inversion and multiplication,
respectively. In the left-to-right binary algorithm, point
additions are done with mixed coordinates as the interme-
diate results are represented with projective coordinates

International Journal of Network Security, Vol.7, No.1, PP.141–150, July 2008 146

Table 2: Cost of point additions and doublings[8]
Coordinate General General addtion Doubling

system addition (mixed coordinates)
Affine 1I, 2M - 1I, 2M

Projectuve
(X/Z, Y, Z2) 14M 9M 4M

while the base point is with the affine coordinates. As-
sume that half of the scalar bits are 1’s. The projective
coordinate can achieve a better performance only when
a field inversion is at least 3.7 times slower than a mul-
tiplication. When the right-to-left binary algorithm is
adopted, however, both the intermediate point and the
base point have to be represented with projective coor-
dinates. Hence, the projective coordinates outperform
the affine coordinates only when a field inversion is 5.3
times slower than a multiplication. In our implementa-
tions, the optimized EEA is about 2.6 times slower than
the right-to-left comb multiplication in a 32-bit system for
m = 163. When m = 571, the cost ratio of inversion and
multiplication is about 3.66. Therefore, adopting projec-
tive coordinates does not provide performance advantages
in these cases.

3.5 Field Operations with Different Word

Sizes

We now examine how the word size of processors affects
the choice of algorithms. Table 3 lists the performance of
163-bit binary field operations with different word sizes.

Generally, as the word size decreases, the time needed
for each operation increases. Modular reduction by bit is
an exception. In this algorithm, the function that searches
for the highest 1 in a word accounts for a significant por-
tion of the total execution time. As a result, the function
is slower on 32-bit words than on 8-bit words. Another ex-
ception is that right-to-left comb algorithm is faster with

16-bit words than with 32-bit words. This is because when
the word size decreases, the number of shift operations in
the comb algorithm deceases although each shift opera-
tion takes longer time. Overall, the difference between the
right-to-left comb algorithm and the left-to-right comb al-
gorithm with 4-bit windows becomes smaller as the word
size reduces to 8.

We also noticed that the performance of inversion de-
grades faster than that of multiplication. With 32-bit
words, the inversion is only 2.6 times slower than the
right-to-left comb algorithm. When the word size changes
to 8 bits, the inversion is about 4.7 times slower. As a re-
sult, adopting projective coordinates would provide better
performance although more storage space is needed.

3.6 Performance of Point Multiplication

Table 4 summarizes the performance of scalar point mul-
tiplications. The algorithm we implemented here is the
basic binary algorithm that requires about m/2 additions
and m doublings. The binary field arithmetic algorithms
we used include the right-to-left algorithm for filed multi-
plications and the ”by word” modular reduction. As for
inverse, the results of both the original and the optimized
EEA are presented. Please note that all the algorithms
we chose do not require precomputations. This is critical
for systems with a small amount of memory. Also, the
algorithms are not specific for processors of a particular
word size.

We compiled the same set of algorithms for three dif-
ferent word sizes, 8, 16, and 32 bits, and measured the
performance on a Pentium 4 at 3 GHz. Although the
physical word size is always 32-bit on Pentium 4, we use
only 8 bits (or 16 bits) of the datapath when the specified

International Journal of Network Security, Vol.7, No.1, PP.141–150, July 2008 147

word size is 8 bits or 16 bits. For each word size, the first
two rows are the execution time of a scalar point multipli-
cation in millisecond. The first row is for the original EEA
and the second row for the optimized EEA. The third row
is the speedup of the optimized EEA. We can see that the
optimized EEA accelerates the scalar point multiplication
significantly. The speedups range from 1.48 to 1.75 on 32-
bit systems. The speedups are smaller when the word size
is 8, ranging from 1.23 and 1.31.

As expected, ECC has a better performance with a
larger word size, and the performance decreases as the key
size increases. However, the performance degradation is
worse with small word sizes. A 571-bit multiplication is
18.8 times slower than a 163-bit multiplication with 32-bit
words while the ratio is 28 times with 8-bit words.

4 ECC on an 8-bit Processor

This section evaluates the ECC implementations on an
8-bit processor Atmega 128 [1]. Atmega 128 is a low-
power microcontroller based on the AVR architecture. It
contains 128 KB of FLASH program memory and 4 KB of
data memory. ATmega128 can be operated at frequencies
up to 16 MHz and execute most instructions in one cycle.
Atmega 128 and other microcontrollers in its family have
been used in many wireless sensor networks [1, 5].

Our ECC implementation can be compiled in 8-bit
mode for the AVR architecture with avr-gcc 3.3.2. We
simulated the binary code with Avrora [19], a set of simu-
lation and analysis tools developed at UCLA for the AVR
microcontrollers. On Atmega 128, it takes about 151 mil-
lion cycles to perform a 163-bit scalar multiplication with
the original EEA, as shown in Table 5. Assuming a clock
rate of 8 MHz, it is about 19.0 seconds per multiplication.
The optimized EEA reduces the number of cycles to 133
million and takes 16.7 seconds.

We can improve the performance of ECC by replacing
the general modular reduction with the fastest algorithm
fixed for the particular irreducible polynomial. The sub-
stitution results in a speedup of 1.2 over the optimized
EEA. The scalar point multiplication can now be done in
13.9 seconds.

Table 5: Performance of 163-bit ECC on Atmega 128
Number of Time

cycles (sec.)
EEA 151,796,532 19.0

EEA(opt.) 133,475,171 16.7
EEA (opt.) with

fast modular reduction 111,183,513 13.9
Projective coordinates 120,072,952 15.0

Projective coordinates with
fast modular reduction 97,770,030 12.2

Since the cost ratio of inversion and multiplication
is around 4.7 on 8-bit processors, projective coordinates

have better performance than affine coordinates. This can
be seen in Table 5. The projective coordinate performed
slightly (about 12%) better than affine coordinates. How-
ever, more memory space is required to store points in
projective coordinates.

The memory usage of our implementations is summa-
rized in Table 6. The implementation reported in [13]
takes 34 seconds and needs 34 KB of memory. Our im-
plementation is about 2.7 times faster and needs less than
half the memory.

Table 6: Memory requirements of ECC
Sections Size (byte)

.data 142
.text 10462
.bss 674

.stab 2448
.stabstr 2029

Total 15755

Table 7 lists the execution time percentage of the three
most time-consuming operations in 163-bit ECC. 69.5%
of the execution time is on inversion, more than twice
as much as multiplication (25.7%) and squaring (3.6%)
combined.

Table 7: Important operations in 163-bit ECC
Operations Time

Multiplication 25.7%
Squaring 3.6%
Inversion 69.5%

5 Architectural Support for ECC

This section investigates several architectural supports for
ECC and then discusses how these supports will affect our
choice of coordinate systems.

5.1 Extension of Instruction Set Archi-

tecture

We evaluated the performance of ECC on the Atmega
system with several ISA improvements, hoping to find
cost-effective methods for improving ECC’s performance
on 8-bit processors. We compared improved systems with
the baseline, the best result in Table 5. The compari-
son is presented in Table 8. The first thing we did is to
rewrite critical routines in ECC with assembly language,
by which we achieved a speedup of 1.18. The assem-
bly code also provides a basic infrastructure for exploring
new instructions. Based on the assembly code, we exper-
imented with three instructions: binary field multiplica-
tions, shift instructions with variable shift amounts, and
most-significant 1 instruction.

International Journal of Network Security, Vol.7, No.1, PP.141–150, July 2008 148

While integer multiplication instructions are available
in most processors, the multiplications in GF (2m), which
are needed in ECC over binary field, are not supported ef-
ficiently. Recently, some new instructions have been pro-
posed to accelerate binary field multiplications in proces-
sors. For example, binary field multiplication instructions
can achieve a speedup of more than 20 times on 64-bit
processors [6].

Table 8: Comparison of architectural techniques
Method Number of Speedup

cycles
Baseline 111,183,513 1

Critical routines in
assembly language 94,223,316 1.18

Hardware supported
GF (2m) multiplication 86,862,119 1.28
Shift by multiple bits 36,938,044 3.01

Most significant
bit 1 instruction 92,652,927 1.20

All ISA improvements 28,581,879 3.89

To evaluate the effectiveness of binary field multipli-
cation instructions on 8-bit processors, we modified the
Avrora simulator and included binary filed multiplication
instructions. As described in [6], the multiplication can
be supported in three different ways. 1) The higher and
lower halves of the product are written in parallel to two
registers. 2) Two separate instructions write either the
lower or the higher half of the product to two registers.
3) Only one instruction that generates the lower half of
the product is defined. Thus, a full multiplication also
requires a bit-level reverse instruction that reverses the
order of bits in a register.

Our implementation took method 1. We included an
instruction that generates both higher and lower halves
of the product and places them into registers R0 and R1.
For example, the following instruction multiplies two 8-bit
source registers RS0 and RS1 and stores the 16-bit product
into R0 and R1.

GFMUL RS0, RS1

We found that the hardware supported binary filed mul-
tiplication is not very effective in accelerating ECC on
8-bit processors if the inverse operation is performed. It
achieves a speedup of 1.28 over baseline and gains only
8% improvement over the assembly version. The reason
is that the inverse operation accounts for the most of the
execution time. On the other hand, the hardware sup-
ported binary field multiplications do improve the perfor-
mance of polynomial multiplications and thus change the
performance ratio of inversion and multiplication. As a
result, projective coordinates become a better choice and
provide better performance.

As mentioned in Sections 3.3 and 3.4, the shift instruc-
tion is used extensively in the implementation of ECC.
However, the shift instruction in the AVR instruction set

can shift only one bit each time. Thus we added a shift
instruction that supports an arbitrary shift amount. This
type of instructions is supported in many processors but
not available in existing AVR instruction set. Because of
the short instruction words, the shift amount cannot be
specified in the shift instruction explicitly. In our imple-
mentation, we decided to use register R0 to store the shift
amount. For example, the following two instructions shift
Rs to left by 5 bits and store the result in Rd.

LDI R0, 5
SHIFT.L Rd, Rs

The shift instruction gives us the best performance im-
provement of the three methods we evaluated. It achieves
a speedup of 3.01 as shown in Table 8. The shift instruc-
tion with arbitrary shift amounts only accelerates opera-
tions like inversion in which the shift amounts are often
more than one. It does not help the multiplication opera-
tions in which shift amounts are always one. Because the
inversion accounts for a large portion of the total execu-
tion time (see Table 7), the shift instruction results in a
large speedup.

The third instruction we experimented is to find the
index of the most significant 1 in a register. This instruc-
tion helps us determine the degree of a polynomial. As
described in Section 3.4, b length is an important func-
tion. The optimizations on the function have accelerated
inversion by a speedup of 1.3. With the most significant
1 instruction, we can accelerate the inversion operation
further. The most significant 1 instruction is defined as
follows.

MSB Rd, Rs

The instruction store in Rd the position of the most signif-
icant 1 in Rs. For example, when Rs = 1, Rd is 0. When
Rs = 8, Rd is 3.

While integer multiplication instructions are available
in most processors, the multiplications in GF (2m), which
are needed in ECC over binary field, are not supported ef-
ficiently. Recently, some new instructions have been pro-
posed to accelerate binary field multiplications in proces-
sors. For example, binary field multiplication instructions
can achieve a speedup of more than 20 times on 64-bit
processors [6].

Table 8 shows that the MSB instruction can increase
the speedup over the baseline to 1.20 even if used alone.
The benefit of MSB is not significant on 8-bit micropro-
cessors because it is relatively fast to locate the most sig-
nificant 1 among 8 bits. However, the instruction will
have larger speedups on 32 or 64-bit microprocessors.

With all the three instructions, we reduced the scalar
point multiplication of ECC on 8-bit microcontroller to
28,581,879 cycles, achieving a speedup of 3.89 over our
baseline architecture.

International Journal of Network Security, Vol.7, No.1, PP.141–150, July 2008 149

5.2 Elliptic Curve Point Representations

The performance ratio of inversion and multiplication has
changed as we added new instructions. As a result, adopt-
ing projective coordinates may become preferable. Table
9 illustrates how the performance of inversion and multi-
plication is affected by the new instructions.

With the new instructions, Inversion is 3.4 times faster
than in the baseline architecture. Nevertheless, the multi-
plication operation has been accelerated even more. Com-
pared with the baseline architecture, the new instructions
result in a speedup of 9.6 for multiplications. Conse-
quently, the performance ratio of inversion and multipli-
cation has been increased significantly from 5.6 to 15.9.

Since the inversion is now much more expensive than
the multiplication, it is desirable to adopt projective coor-
dinates to represent the points on the curve. We adopted
the projective coordinates discussed in Section 3.4 and
implemented the left-to-right binary algorithm with the
point additions in mixed coordinates. Table 10 shows the
performance comparison between affine and projective co-
ordinates. As expected, the projective coordinates have
better performance. They are more than twice faster than
affine coordinates and achieve a speedup of 8.23 over the
baseline architecture. Assuming a clock rate of 16MHz, a
163-bit ECC can be performed in about 0.85 seconds.

Table 10: Performance for different coordinates
Coordinate Number of Speedup

system cycles
Affine 28,581,879 3.89

Projective
(X/Z, Y/Z2) 13,515,076 8.23
∗Compared with the baseline performance in Table 8

6 Conclusions and Discussions

In this paper, we studied the software implementations of
ECC and examined how some architectural features, such
as word size and ISA, affect the performance of ECC. We
first examined the algorithms for ECC over binary filed.
After comparing algorithms for the major field operations
that are required in ECC, we identified a set of efficient
algorithms suitable for resource-constrained systems. We
also compared the performance of these algorithms for
different word sizes. The change of word sizes result in
different choices of algorithms. We simulated our imple-
mentations on an 8-bit microcontroller. Our implemen-
tations are more than twice faster than previous results
without instruction set architecture extensions or hard-
ware accelerations.

We also evaluated three instructions for accelerating
ECC: binary field multiplications, shift with arbitrary
shift amounts, and index of most significant 1. Com-
bining all three instructions, we can achieve a speedup
of 3.89. More importantly, the new instructions make the

projective coordinates a better choice for point represen-
tations. The projective coordinates achieves a speedup of
8.23 over the baseline architecture. It takes about 0.85
seconds to perform a 163-bit scalar point multiplication
on 8-bit AVR processors at 16MHZ.

We only focus on software implementation of ECC in
this paper. Application-specific hardware can be inte-
grated into processors to accelerate the multiplication and
inversion operations further. When new hardware is im-
plemented, the performance of multiplication and inver-
sion should be evaluated to choose the best point repre-
sentations for better performances.

References

[1] Atmel Corporation, 8-bit Microcontroller with 128K
Bytes In-System Programmable Flash: ATmega 128,
2004.

[2] I. Blake, G. Seroussi, and N. Smart, Elliptic Curves
in Cryptography, Cambridge University Press, 1999.

[3] Y. Choi, H. W. Kim, and M. S. Kim, “Implemen-
tation of elliptic curve cryptographic coprocessor
over GF (2163) for ECC protocols,” in Proceedings
of the 2002 International Technical Conference on
Circuits/Systesm, Computers, and Communications,
pp. 674-677, July 2002.

[4] D. Chudnovsky and G. Chudnovsky, “Sequences of
numbers generated by addition in formal groups and
new primality and factoring tests,” Advances in Ap-
plied Mathematics, vol. 7, pp. 385-434, 1987.

[5] I. Crossbow Technology, MICA2: Wireless Measure-
ment System, http://www.xbow.com/Products/
Product pdf files/Wireless pdf/6020-0042-
4 A MICA2.pdf.

[6] A. M. Fiskiran and R. B. Lee, “Evaluating instruc-
tion set extensions for fast arithmetic on binary finite
fields,” in Proceedings of the International Confer-
ence on Application-Specific Systems, Architectures,
and Processors (ASAP’04), pp. 125-136, Sep. 2004.

[7] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C.
Shantz, “Comparing elliptic curve cryptography and
RSA on 8-bit CPUs,” Proceedings of Cryptographic
Hardware and Embedded Systems (CHES’04), pp.
119-132, 2004.

[8] D. Hankerson, J. Hernandez, and A. Menezes, “Soft-
ware implementation of elliptic curve cryptogra-
phy over binary fields,” Proceedings of Workshop
on Cryptographic Hardware and Embedded System,
LNCS 1965, pp. 1-24, 2000.

[9] C. Karlof, N. Sastry, and D. Wagner, “TinySec: a
link layer security architecture for wireless sensor
networks,” SenSys’04, pp. 162-175, Nov. 2004.

[10] N. Koblitz, “Elliptic curve cryptosystems,” Mathe-
matics of Computation, vol. 48, pp. 203-209, 1987.

[11] J. Lopez and R. Dahab, “Improved algorithms for
elliptic curve arithmetic in GF (2n),” in Cryptography
- SAC’98, vol. 1556, pp. 201-212, 1999.

International Journal of Network Security, Vol.7, No.1, PP.141–150, July 2008 150

Table 9: Performance ratio of binary field inversion and multiplication
Method Inversion Multiplication Inv./Mul.

(number of cycles) (number of cycles) ratio
Baseline 397985 71580 5.6

Optimized 118642 7479 15.9

[12] J. Lopez and R. Dahab, “High-speed software mul-
tiplication in F (2m),” Proceedings of Indocrypto’00,
pp. 203-212, 2000.

[13] D. J. Malan, M. Welsh, and M. D. Smith, “A public-
key infrastructure for key distribution in TinyOS
based on elliptic curve cryptography,” in First An-
nual IEEE Communications Society Conference on
Sensor and Ad Hoc Communications and Networks,
pp. 71-80, Oct. 2004.

[14] V. Miller, “Uses of elliptic curves in cryptography,”
Advances in Cryptology: proceedings of Crypto’85,
pp. 417-426, 1986.

[15] National Institude of Standards and Technology,
Digital Signature Standard, FIPS Publication 186-2,
Feb. 2000.

[16] A. Perrig, R. Szewczyk, et al., “SPINS: security pro-
tocols for sensor networks,” Wireless Networks, vol.8,
no. 5, pp. 521-534, Sep. 2002.

[17] R. Schroeppel, H. Orman, S. O’Malley, and O.
Spatscheck, “Fast key exchage with elliptic curve sys-
tems,” in Advances in Cryptogaphy (Crypto’95), pp.
43-56, 1995.

[18] J. Solinas, “Efficient arithmetic on Koblitz curves,”
Designs, Codes and Cryptography, vol. 19, pp. 195-
249, 2000.

[19] B. L. Titzer, D. K. Lee, and J. Palsberg, “Avrora:
scalable sensor network simulation with precise tim-
ing,” in Proceedings of IPSN’05, pp. 477-482, April
2005.

[20] S. Zhu, S. Setia, and S. Jajodia, LEAP: Efficient Se-
curity Mechanisms for Large-Scale Distributed Sen-
sor Networks, Technique Report, Aug. 2004.

Z. Jerry Shi is an assistant professor in the Department
of Computer Science and Engineering at the University
of Connecticut. He received his Ph. D. in Electrical
Engineering from Princeton University in June 2004.
His research areas are in computer architecture, cryp-
tography, sensor networks, and high performance, secure
computer systems.

Hai Yan is a Ph. D. student at the University of Con-
necticut. His research interests include computer secu-
rity for sensor networks and computer architecture. Hai
has an M. S. in computer science from Wuhan University,
Wuhan, China.

