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Abstract

The nature of the RSA public modulus N as a composite
of at least two secret large primes was always considered
as a major obstacle facing the RSA function sharing with-
out the help of a trusted dealer. The incorporated parties
must agree on a suitable RSA modulus with no infor-
mation revealed to them about its prime factors. Enor-
mous number of trials must be performed before a suitable
modulus is established. According to the number theory,
for two `-bit primes modulus, the number of trials is in
the order of O(`2). Efforts have been made to reduce
the quadratic slowdown in the generation process, how-
ever, most of these protocols allow the joint generation
of a multi-prime RSA modulus (an RSA modulus with at
least three prime factors), which is a drift from standard.
Other protocols require distributed primality tests over a
shared secret modulus which is an extensive task. In this
paper, we introduce a simple yet an efficient idea to allow
two parties to jointly generate a two-prime RSA modulus
with a running time complexity O(`). In our protocol,
the distributed primality test is performed over a public
modulus. Consequently, the expected running time will
be reduced from several days to only few minutes. The
protocol can be extended to the multiparty case. How-
ever, for clarity, in this paper, we focus on the two-party
case.
Keywords: Digital signature, homomorphic encryption,
Primality tests, secret sharing, standard RSA sharing,
two-party computations

1 Introduction

A valid RSA public modulus N is a product of distinct
odd primes, N =

∑n
i=1 qi, n ≥ 2. In case n = 2, the

cryptosystem is spoken off as standard RSA or two-prime
RSA, otherwise, it is a multi-prime RSA. e is the public
exponent while d is the private exponent satisfying ed =
1 mod φ(N), where φ(N) is the RSA secret Euler totient.
For distributed trust purposes, the private exponent is to
be shared among two or more parties, a straight forward
way to do so is to additively share d = (d1+d2) mod φ(N)

among two parties for example. In order to sign the hash h
of a message, each party generates her partial signature as
Si = hdi mod N . The final signature is S = S1S2 mod N .
For fault tolerance and availability purposes, the private
exponent is to be shared among three or more parties
using the techniques of threshold cryptography [3, 12, 13,
14].

The problem with RSA is that the RSA public mod-
ulus N is a composite of at least two large primes, these
primes must be kept secret from the players. The play-
ers need to agree on a modulus N and be convinced that
N is a product of two large primes with no information
revealed to them about its factorization. The nature of
the modulus N of the RSA function increased the difficul-
ties to share the RSA keys without the help of a trusted
dealer over other signature schemes which only require
large public primes such as DSS [15, 17, 18, 25].

2 Previous Work

Over the past decade, the RSA function sharing prob-
lem attracted many researchers in the field of cryptog-
raphy to reach an efficient and secure solution. Boneh
and Franklin [5] showed how to generate the RSA keys
without the help of the dealer, several phases of their
protocols utilize reduced versions of information theoretic
private multiparty computations. Clifford Cocks [10] has
proposed another but unproven solution for the two party
RSA function sharing, the protocol was extended for the
multiparty case in [11], the computational intractability
of his problem is weaker than RSA. Blackburn et al [4]
have investigated Cocks protocol by adding verifiability
to his scheme to face malicious behavior of the two par-
ties. Frankel, Mackenzie and Yung [16] have improved the
security of the Boneh-Franklin protocol. Later, Poupard
and Stern [28] showed a different protocol for two Parties
to jointly generate an RSA key. Niv Gilboa [20] con-
structed three protocols for the two-party RSA key gen-
eration, the first is based on the (1-out-of-2) - oblivious
transfer of strings, the second is based on an efficient poly-
nomial evaluation technique, the third uses special type
of homomorphic encryption function.
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In the above protocols, due to the way the modulus is
generated –as a product of two `-bit random numbers cho-
sen simultaneously– the probability that such generated
modulus is a product of exactly two primes is (ln 2.`)−2

according to the prime number theorem requiring a num-
ber of trials in the order of O(`2). Since ` ranges from 512
to 1024 bits depending on the security level and policy,
the running time to reach a suitable modulus is several
days using average processing speed which is quite a bur-
den.

The method of Boneh and Horwitz [6] – Confining itself
to the three-party case – achieves an O(`) running time.
Straub [31] took up ideas of Boneh-Horwitz and Gilboa
to obtain an efficient algorithm tailored to the two-party
scenario. The methods introduced in [6, 31] allow the
generation of a three-prime RSA modulus of length 3`
in an expected running time of O(`). Although the run-
ning time drops efficiently, the modulus is a three-prime
modulus not a standard one.

In the above protocols, if trial division test (spoken off
as trivial division test) is performed to test if the picked
random strings are not divisible by small primes, the num-
ber of trials required to find a suitable modulus drop by
a factor of lg ` [4, 10, 11].

The recent three-party protocol of [23] was to com-
pletely eliminate the need for distributed primality tests
in the three-prime RSA shared generation process, since
the three parties select their random parameters originally
as primes, the protocol is a one trial protocol and hence
it is extremely fast. This protocol was extended for the
multiparty threshold case in [22]. The robustness prop-
erty to tolerate malicious behavior of the parties during
the RSA function sharing protocol of [22] was discussed
in [21].

Different from the above protocols, efforts have been
made in [1] to eliminate the quadratic slowdown in the
shared generation of the RSA modulus. However, the
protocol requires that the incorporated parties perform
distributed primality tests over a shared secret modulus
resulting in an extensive computation and communication
complexities on per trial basis.

3 Motivations and Contributions

The work in this paper is motivated by the observation
that existing protocols that contribute in eliminating the
quadratic slowdown [6, 21, 22, 23, 31] are multi-prime
RSA protocols and fail to consider the standard RSA. An-
other major efficiency drawback in the three-prime RSA
function sharing protocols of [6, 23, 31] is that the gen-
erated RSA modulus is of bit-length 3` while the actual
security is only 2` since each party knows one prime fac-
tor. Each party is faced with the problem of factoriz-
ing the other two primes. The protocol of [1] performs
distributed primality tests over a shared secret modulus.
Although the protocol of [1] contributes in reducing the
quadratic slowdown, the computation and communication

complexities are extensively high on per trial basis.
The contributions of this paper is to introduce a simple

yet an efficient idea to eliminate this annoying slowdown
in the shared generation of a two-prime RSA modulus.
The number of trials in our protocol is reduced to O(`)
requiring several minutes to reach a suitable modulus and
consequently, the expected running time is significantly
improved. In our protocol, the distributed primality test
is to be performed over a public modulus not a shared
secret one, which significantly contributes in improving
efficiency.

4 Related Protocols

We review several protocols which are closely related to
the protocol presented in this paper. An approach pro-
posed by Boneh and Horwitz [6] to combat the quadratic
slowdown is as follows: Alice picks a random `-bit prime
p and a random `-bit integer ra, Bob picks a random `-
bit prime q and a random `-bit integer rb and Carol picks
a random `-bit integer rc. Using a private distributed
computation they compute N = pq(ra + rb + rc) with
no information revealed about the full factorization of N .
The three parties run a distributed primality test to test
that ra + rb + rc is exactly a prime.

In the two-party protocol of Straub [31], the two parties
Alice and Bob construct a 3`-bit modulus of the form (ra+
rb)qaqb where ra, rb are arbitrary `-bit random numbers
and qa, qb are `-bit primes. Alice holds ra, qa while Bob
holds rb, qb. A suitable modulus is found after an expected
time of O(`).

In the recent protocol of [23], Alice picks a random `-
bit prime qa, Bob picks a random `-bit prime qb and Carol
picks a random `-bit prime qc. They share the computa-
tion of the RSA modulus N = qaqbqc with no information
revealed to any of them about the full factorization of
N . The protocol ends with Alice only knows qa, Bob
only knows qb and Carol only knows qc, in addition to
the published modulus N . Their technique is as follows:
Bob picks two `-bit random numbers ra and rc such that
qb = ra + rc. Bob secretly delivers ra to Alice and rc to
Carol. Alice and Carol run a private distributed compu-
tation to compute N = (ra + rc)qaqc.

Although the above protocols contribute in speeding
up the shared generation of an RSA modulus, the mod-
ulus is a three-prime modulus which is a drift from the
standard settings.

5 The Model

In the communication model, the two parties, Alice and
Bob are connected such that any of them can communi-
cate with the other through a private and authenticated
channel.

In the adversary model, we assume a passive adver-
sary, which means that this adversary can see and learn
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all information sent to or from the corrupted party with-
out compromising the correct behavior of this party. The
parties follow the execution steps of the protocol word for
word but they are willing to learn any information leaked
during execution. This commonly used security model is
well-known as the honest-but-curious scenario.

6 Our Basic Idea

The two-prime RSA function sharing protocols [4, 5, 10,
11, 16, 20, 28] follow a common strategy. Consider two
parties Alice and Bob. Alice picks two `-bit random se-
cret integers a1, a2 and Bob picks two `-bit random secret
integers b1, b2. Using private distributed computations,
they jointly compute N = (a1 + b1)(a2 + b2), then, they
employ a distributed primality test to test whether or not
N is a composite of exactly two primes. This simultane-
ous and joint testing of the two factors of N (biprimality
test) is inefficient and is the main reason for the quadratic
slowdown.

The idea is to avoid such simultaneous testing and to
find a way to share and test each prime factor individually
and independently without compromising their secrecy.
If we are able to share and test a1 + b1, share and test
a2 + b2 independently over a public modulus (unlike the
protocol in [1]), then to jointly compute N , the quadratic
slowdown is eliminated and the computation complexity
is significantly improved.

7 Two-Party Private Computa-
tions

In this section we describe the building block used in our
protocol.

7.1 Secret Sharing Notion

Let R be a ring and let s ∈ R be a secret. Assume that
Alice holds the pair x, a ∈ R while Bob holds the pair
y, b ∈ R where

s = x + y = ab.

The pair (x, y) is called an additive sharing of s while the
pair (a, b) is called a multiplicative sharing of s.

The protocol described in this paper requires a subrou-
tine for two parties to switch from multiplicative sharing
of a secret value to additive sharing of this value. Namely,
Alice holds a while Bob holds b such that ab = s, Alice and
Bob run a subroutine which we will call it mult-to-sum,
at the end of this subroutine Alice holds x and Bob holds
y such that x + y = s, with no information leaked to any
of them about s or the multiplicative shares.

The mult-to-sum subroutine can be implemented by
different techniques, it may be implemented by Homo-
morphic encryption which is essentially a public key cryp-
tosystem with a useful homomorphic property [31]. It

can also be implemented via oblivious transfer of strings
[2, 7, 9, 19, 24, 26, 29, 30]. Different techniques for the
mult-to-sum and its inverse, sum-to-mult have been
used for the efficient sharing of the RSA function in
[6, 20, 23, 31].

7.2 The Underlying Primitive: Oblivious
Transfer

Rabin [29] proposed the concept of oblivious transfer
(OT) in the cryptographic scenario. In this case the
sender has only one secret bit m and would like to have the
receiver to get it with probability 1/2, on the other hand,
the receiver does not want the sender to know whether it
gets m or not. For OT1

2, the sender has two secrets m1

and m2, the receiver will get one of them at the receiver’s
choice. The receiver does not want the sender to know
which bit he chooses and the receiver must not know any
information other than what he has chosen.

OT1
n is a natural extension of the OT1

2 to the case of
n secrets. However, constructing OT1

n from OT1
2 is not

a trivial problem. OT1
n is also known as ”All or nothing

disclosure of secrets (ANDOS)” [7, 19, 24, 30]. Oblivious
transfer is a fundamental primitive in many cryptographic
applications and secure distributed computations and has
many applications such as private information retrieval
(PIR), fair electronic contract signing, oblivious secure
computation, etc. [2, 7, 9, 26, 27].

The main objective of the oblivious transfer protocols
in [27] by Noar and Pinkas was to improve the efficiency
and security of the protocols in [2]. Through out the
work in this paper, we will consider the protocols of [27]
due to several reasons. First, they prove efficiency over
previous protocols, second, there are no number theoretic
constraints on the strings to be obliviously transferred,
third, the protocols have bandwidth-computation trade-
offs which make them suitable for variety of applications.

The underlying OT. The OT protocols of [27]
operate over a group Zq of prime order, more precisely,
Gq is a subgroup of order q of Z∗p where p is prime
and q|p − 1. Let g be a generator group and assume
that the Diffie-Hellman assumption holds. In their OT1

2:
The sender owns two strings M0 and M1. He chooses a
random element C ∈ Zq and publishes it. The chooser
picks a random 1 ≤ k ≤ q and sets pkσ = gk where
σ ∈ {0, 1} is the chooser’s choice. The chooser also
computes pk1−σ = C/pkσ and sends pk0 to the sender.
The sender picks a random R and computes gR and CR,
he also computes pkR

0 and pkR
1 = CR/pkR

0 . The sender
sends gR as well as the two encryptions, H(pkR

0 , 0)⊕M0

and H(pkR
1 , 1)⊕M1 to the chooser, where H is a random

oracle modelled by a suitable hash function. The chooser
is able to decrypt his choice using pkσ.

In their OT1
n: The sender owns n strings,

M0, · · · ,Mn−1. He picks n − 1 random values
C1, · · · , Cn−1 and publishes them, he also picks a ran-
dom R and sends gR to the chooser. The chooser selects
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a random k and sets pkσ = gk where σ ∈ {0, · · · , n−1} is
his choice, it holds that pki = Ci/pk0 ∀i = (1, · · · , n− 1).
The chooser sends pk0 to the sender. the sender computes
pkR

0 as well as pkR
i = CR

i /pkR
0 ∀i = (1, · · · , n − 1). The

sender sends gR to the chooser as well as the encryption
of each Mi, H(pkR

i , w, i)⊕Mi where w is a random string
known to both parties. Finally, the chooser is able to
decrypt his choice using pkσ.

7.3 The Mult-to-Sum Subroutine

Now, we describe the subroutine to convert from mul-
tiplicative sharing of a secret to additive sharing of the
same secret.This subroutine will be called frequently in
our protocol. Let R be a publicly known ring and let
ρ = log |R|. Let ` ≤ ρ. Alice holds an `-bit secret value
a ∈ R and Bob holds an `-bit secret value b ∈ R. Alice
and Bob want to additively share ab with no information
revealed about a or b. The protocol is as follows:

• Bob selects uniformly at random ` ring elements
c0, · · · , c`−1 and defines ` pairs of ring elements
(t(0)0 , t

(1)
0 ), · · · , (t(0)`−1, t

(1)
`−1). He sets t

(0)
i = ci and

t
(1)
i = 2ib + ci ∀i = (0, · · · `− 1).

• Let the binary representation of a be a`−1, · · · , a0,
Alice and Bob performs ` invocations of OT1

2. In
the i-th invocation, Alice chooses t

(ai)
i from the pair

(t(0)i , t
(1)
i ).

• Alice sets x =
∑`−1

i=0 t
(ai)
i while Bob sets y =

−∑`−1
i=0 ci.

Correctness. In the above subroutine, x =
∑`−1

i=0 t
(ai)
i =∑`−1

i=0 ai2ib + ci and consequently, x + y = ab over R.
Our protocol requires that x + y = ab over the integers.
This is easily attained if we choose ρ > 2` where ` is the
bit-length of a and b. This is also the reason why we
did not use homomorphic encryption methods, since they
do not perform over the integers. They require a prime
field to perform. The mult-to-sum subroutine is able to
compute additive shares of aibj for small integers i, j by
setting ρ > (i + j)`.

8 Our Protocol

In this section we give the complete description of our
protocol. Alice and Bob want to agree on a two-prime
RSA modulus N with no information revealed to any of
them about the factorization of N . They also want to
share the private exponent d. The protocol is as follows.

8.1 Sharing and Testing the Prime Fac-
tors

• Alice picks an `-bit random secret integer a1 and an
`-bit random secret prime pa.

• Bob picks an `-bit random secret integer b1 and an
`-bit random secret prime pb.

The task now is to check whether or not (a1 + b1) is a
prime, the reader must notice that pa and pb are not fac-
tors of the final RSA modulus N , they are here to help
testing (a1 + b1) and to preserve the privacy of a1 and b1.
Alice and Bob securely compute N1 = (a1 + b1)papb as
follows:

• Alice locally computes A = a1pa while Bob locally
computes B = b1pb.

• Alice and Bob run the mult-to-sum subroutine to
compute additive shares of Apb. At the end, Alice
holds xa while Bob holds xb such that Apb = xa +xb.

• Alice and Bob run the mult-to-sum subroutine to
compute additive shares of Bpa. At the end, Alice
holds ya while Bob holds yb such that Bpa = ya +yb.

• Alice computes and sends xa + ya to Bob while Bob
computes and sends xb + yb to Alice.

• Both parties are able to compute, N1 = xa + xb +
ya + yb.

Now, Alice and Bob are ready to perform the distributed
primality test (Distributed Fermat’s test) to check the
primality of (a1 + b1). Assuming for an instant that
φ(N1) = (a1 + b1 − 1)(pa − 1)(pb − 1). Of course, this
is not true unless (a1 + b1) is also a prime. They both
agree on a random g ∈ Z∗N1

and proceed:

• Alice computes and sends Ga = g(a1−1)(pa−1)modN1

to Bob while Bob computes and sends Gb =
gb1(pb−1)modN1 to Alice.

• Alice computes and sends G′b = Gpa−1
b modN1 to Bob

while Bob computes and sends G′a = Gpb−1
a modN1

to Alice.

• Both parties are able to compute, G = G′aG′b =
gφ(N1)modN1. They check G for unity.

The above computations is repeated for fresh quantities
a1, b1, pa, pb until G = 1. Since pa and pb are originally
picked as primes, according to number theory, Alice and
Bob will reach a suitable prime (a1 + b1) in an expected
number of trials ofO(`). Once a suitable prime is reached,
they repeat the above protocol to share another prime
(a2 + b2) in exactly the same way. Each prime requires
a number of trials of O(`). It is also nice to notice that
the independent sharing and testing of each prime factor
allows parallel computations. Hence, the running time
to share two primes is in the order of O(`). If trivial
primality test is performed on the picked random integers,
the complexity improves to O(`/lg`).
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8.2 Joint Computation of the Modulus N

Let N1 = (a1 + b1)papb and let N2 = (a2 + b2)qaqb. Al-
ice holds a1, a2, pa, qa while Bob holds b1, b2, pb, qb where
(a1 + b1), (a2 + b2), pa, pb, qa, qb are all primes. Alice and
Bob securely compute the RSA modulus N = (a1 +
b1)(a2 + b2) as follows:

• Alice computes and sends Na = (N1N2)/(paqa) to
Bob.

• Bob computes and sends Nb = (N1N2)/(pbqb) to Al-
ice.

• It is obvious that both Alice and Bob can compute
N .

Lemma. Under the assumption that, 1) The mult-to-sum
subroutine is secure, 2) The factorization of a composite
of two or more large primes is infeasible, 3) The RSA as-
sumption holds, the privacy of Alice and Bob is preserved.

8.3 Sharing the RSA Euler Totient φ(N)

Alice and Bob want to compute additive shares of φ(N) =
(a1+b1−1)(a2+b2−1). This can be done noninteractively
as follows:

• Alice computes φa = N − a1 − a2 + 1.

• Bob computes φb = −b1 − b2.

It is clear that φa + φb = φ(N).

8.4 Sharing the Private Exponent

Alice and Bob agree on a public key, e. They want to
compute additive shares of the private key, d. We recall
the efficient GCD algorithm of [8] to compute inverses
over the shared secret φ(N). Alice picks two random se-
cret numbers λa, Ra and Bob picks two random secret
numbers λb, Rb. Following the recommendations in [8],
the secrets λa, λb are much greater than φ(N) (i.e. in the
order of O(N2)) while Ra, Rb are in the order of O(N3).
Alice and Bob want to jointly compute the quantity γ
where

γ = λφ(N) + Re = (λa + λb)(φa + φb) + (Ra + Rb)e.

• Alice and Bob run the mult-to-sum subroutine
twice. At the end of the first run, Alice holds x1

while Bob holds y1 such that λaφb = x1 + y1. At the
end of the second run, Alice holds y2 while Bob holds
x2 such that λbφa = x2 + y2.

• Alice computes and sends γa = x1 + y2 +λaφa +Rae
to Bob while Bob computes and sends γb = x2 +y1 +
λbφb + Rbe to Alice.

• Both parties are able to compute γ = γa + γb.

Assuming that gcd(γ, e) = 1, the parties run the Eu-
clidean algorithm to find the pair (x, y) such that xγ +
ye = 1 which must exist. Since xR + y = e−1 mod φ(N),
one may set d = xR+y. Additive shares of d can be com-
puted easily, Alice sets da = xRa + y, Bob sets db = xRb.
Clearly, d = da + db.

9 Improving the Mult-to-Sum
Subroutine

One may argue that the computation complexity of our
protocol is hidden in the number of oblivious transfers
invoked when executing the mult-to-sum subroutine. In
this section we introduce an efficiency improvement to
the mult-to-sum subroutine. Since this subroutine is
used frequently in our protocol, in this section, we aim
to speedup the computation in order to improve the com-
putation complexity of our protocol. We also need to dive
into the details of the OT1

2 invocation.

9.1 The Subroutine using OT1
2

As a warmup and to declare our idea, in this subsection
we give a complete description of the mult-to-sum
subroutine using the efficient OT1

2 from [27]. Let R be a
public ring and let ρ2 = log2 |R|, each element in R can
be represented by ρ2 bits. Let the binary representation
of a ∈ R be aρ2−1, · · · , a0. Alice holds a ∈ R while Bob
holds b ∈ R. p is a prime and q|p − 1, g is a generator
group. The protocol to additively share ab over R is as
follows:

1 - Offline initializations:

Bob performs the following offline computations:

• Picks a random C ∈ Zq and publishes it.

• Picks a random R, computes gR and CR.

• Picks ρ2 random elements in R, s0, · · · , sρ2−1

and sets ρ2 pairs of elements in R,
(t(0)0 , t

(1)
0 ), · · · , (t(0)ρ2−1, t

(1)
ρ2−1) such that, t

(j)
i =

j2ib + si ∀i = (0, · · · , ρ2 − 1), j = (0, 1).

Alice performs the following offline computations:

• Picks ρ2 random values K0, · · · ,Kρ2−1 and computes
pk

(i)
ai = gKi .

• Computes pk
(i)
1−ai

= C/pk
(i)
ai ∀i = (0, · · · , ρ2 − 1).

2 - Online computations and transfers:

Bob sends gR to Alice. Alice computes the decryp-
tion keys, (gR)Ki = (pk

(i)
ai )R ∀i = (0, · · · , ρ2 − 1). Alice

and Bob performs ρ2 OT1
2 oblivious transfer of strings.

In the i-th invocation:

• Alice sends pk
(i)
0 to Bob.
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Table 1: Computation complexity of the subroutine using OT1
2

Overheads Alice Bob
Offline Computations ρ2 exponentiations 2 exponentiations
Online Computations ρ2 exponentiations + ρ2 decryptions ρ2 exponentiations + 2ρ2 encryptions.

Communications ρ2 group elements One group element + 3ρ2 string elements

• Bob computes (pk
(i)
0 )R and (pk

(i)
1 )R = CR/(pk

(i)
0 )R.

• Bob sends the two encryptions, H[(pk
(i)
0 )R, wi, 0] ⊕

t
(0)
i and H[(pk

(i)
1 )R, wi, 1] ⊕ t

(1)
i and the random wi

to Alice.

• Alice is able to decrypt her choice using the decryp-
tion key pk

(i)
ai .

After the ρ2 OT’s are completed, Alice computes
x =

∑ρ2−1
i=0 t

(ai)
i while Bob computes y =

∑ρ2−1
i=0 si. It

follows that x + y = ab over R.

Complexity evaluation. By investigating the
above subroutine, Alice performs ρ2 offline modular
exponentiations on the form gKi while Bob performs two
offline modular exponentiations gR and CR. Considering
the online computations, Alice performs ρ2 modular
exponentiations on the form (gR)Ki and ρ2 decryptions
while Bob performs ρ2 modular exponentiations on the
form (pk

(i)
0 )R and 2ρ2 encryptions. Regarding commu-

nication overheads, Alice sends ρ2 group elements pk
(i)
0

while Bob sends one group element gR and 3ρ2 string
elements. The results are summarized in Table 1.

9.2 The Subroutine Using a General
Radix

The trick is to generalize the radix r, through which
the secret parameter a is represented and to employ
OT1

r instead of OT1
2. Let ρ2 = log2 |R|, then a can be

encoded into ρ2 bits aρ2−1, · · · , a0. Let ρr = logr |R|
where r is a general radix. a can also be represented
by ρr symbols (alphabets) αρr−1, · · · , α0, each alphabet
αi ∈ {0, · · · , r − 1} (e.g. r = 16 for the Hexadecimal
representation). Now, one may write, a =

∑ρr−1
i=0 riαi.

It is obvious that, ρr = ρ2/ log2 r. We show that such
attempt improves the computation complexity of the
protocol. Alice holds a ∈ R while Bob holds b ∈ R, the
protocol to additively share ab over R is as follows:

1 - Offline initializations:

Bob performs the following offline computations:

• Picks r−1 random values C1, · · · , Cr−1 and publishes
them.

• Picks a random R and computes gR, CR
0 , · · · , CR

r−1.

• Picks ρr random elements in R, s0, · · · , sρr−1. He
also defines ρr sets of elements in R,
(t(0)0 , · · · , t

(r−1)
0 ), · · · , (t(0)ρr−1, · · · , (t(r−1)

ρr−1 ).

• Sets t
(j)
i = jrib+si ∀i = (0, · · · ρr−1), j = (0, · · · , r−

1).

Alice performs the following offline computations:

• Picks ρr random values K0, · · · ,Kρr−1 and computes
pk

(i)
αi = gKi ∀i = (0, · · · , ρr−1) and computes pk

(i)
0 =

Cαi
/pk

(i)
αi .

• Computes pk
(i)
j 6=ai

= Cj/pk
(i)
0 ∀i = (0, · · · , ρ2−1), j =

(0, · · · , r − 1).

2 - Online computations and transfers:

Bob sends gR to Alice. Alice computes the decryp-
ion keys, (gR)K0 , · · · , (gR)Kρr−1 . Alice and Bob perform
ρr OT1

r’s. In the i-th invocation:

• Alice sends pk
(i)
0 to Bob.

• Bob computes (pk
(i)
0 )R and without any further ex-

ponentiations, he computes pk
(i)
j = CR

j /(pk
(i)
0 )R

∀j = (1, · · · , R− 1).

• Bob sends the encryption of each t
(j)
i ,

H[(pk
(i)
j )R, wi, j] ⊕ t

(j)
i and the random wi to

Alice.

• Alice decrypts her choice, αi among the r choices
using pk

(i)
αi .

After the ρr oblivious transfers are accomplished,
Alice computes x =

∑ρr−1
i=0 t

(αi)
i while Bob computes

y =
∑ρr−1

i=0 si. It follows that x + y = ab over R.

Complexity evaluation. Considering the offline
overheads, Alice performs ρr modular exponentiations
on the form gKi while Bob performs r modular ex-
ponentiations on the form gR, CR

1 , · · · , CR
r−1. When

Alice and Bob come online, Alice performs ρr modular
exponentiations on the form (gR)Ki and ρr decryptions
while Bob performs ρr modular exponentiations on the
form (pk

(i)
0 )R and rρr encryptions. Alice sends ρr group

elements while Bob sends (rρr + ρr) string elements.
These complexities are summarized in Table 2.
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Table 2: Complexity evaluation of the subroutine using a general radix
Overheads Alice Bob

Offline Computations ρr exponentiations r exponentiations
Online Computations ρr exponentiations + ρr decryptions ρr exponentiations + rρr encryptions

Communications ρr group elements 1 group element + ρr(1 + r) string elements

Table 3: Complexity comparison and evaluation (ρ2 = 1024 bits)
- Offline exp. Online exp. Enc. + Dec. communications

group elements, string elements

r ρr + r 2ρr ρr(1 + r) ρr + 1, ρr(1 + r)
r = 2 1026 2048 3072 1025, 3072
r = 4 516 1024 2560 513, 2560
r = 16 272 512 4352 257, 4352
r = 256 384 256 32896 129, 32896
r = 216 65600 128 4194368 65, 4194368

9.3 Comparison and Evaluation

We prefer to compare our results through a numerical
example. Typical numerical setting is ρ2 = 1024 bits.
In this case, ρr = 1024/ log2 r. Table 3 describes the
complexities of the protocol for different values of r.

Notice that when the radix r = 4, all overheads are
reduced, this provides an absolute improvement over the
conventional case, r = 2. when r = 16, the communica-
tion overheads start to grow but still comparable to the
conventional case. When r = 256 the offline computation
complexity starts to grow slightly whereas the communi-
cation overheads grow rapidly. In all cases, the required
online exponentiations – which are computationally ex-
pensive – are significantly reduced as r increases.

10 Conclusions

In this paper, we introduced a simple yet an efficient idea
to eliminate the quadratic slowdown in the joint genera-
tion of a two-prime RSA modulus. We allow the sharing of
a two-prime RSA function in a running time of O(`). Al-
though we restricted the discussion to the two-party case,
the protocol can be extended to the multiparty case. We
also introduced an idea by which we can speedup the un-
derlying subroutine and further improve the computation
complexity.
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