
International Journal of Network Security, Vol.6, No.3, PP.342–353, May 2008 342

Cryptanalysis of Block Ciphers via Improvised
Particle Swarm Optimization and Extended

Simulated Annealing Techniques

Nalini N1 and G. Raghavendra Rao2

(Corresponding author: Nalini N)

Department of Computer Science and Engineering, Siddaganga Institute of Technology1

Tumkur-572103, Karnataka, India (Email: nalinaniranjan@hotmail.com)

National Institute of Engineering2

Mysore-570008, Karnataka, India. (Email: principal@nie.ac.in)

(Received Jan. 16, 2006; revised and accepted Feb. 21, 2006)

Abstract

Optimization heuristics have been pursued in recent years
as a viable approach in cryptanalysis. Even in simple ci-
phers where brute force method is successful, use of these
techniques demonstrates their potential application in at-
tacks of complex ciphers. This paper establishes the ap-
plicability of a couple of optimization heuristics to crypt-
analysis studies; one based on thermostatistical persis-
tency applied to simulated annealing and the other one
based on particle swarm principle. Though both methods
lead to successful attacks, our improvised version of group
swarm optimization yields better performance. As a ve-
hicle of demonstration of our concept, we choose simple
yet representative block ciphers such as computationally
tractable versions of DES, for our studies.

Keywords: Cryptanalysis, DES, heuristic optimization,
particle swarm optimization, simulated annealing, simpli-
fied DES

1 Introduction

Cryptanalysis is the study of methods for obtaining the
meaning of encrypted information. Cryptanalysis has co-
evolved together with cryptography, and the context can
be traced through the history of cryptography; new ci-
phers being designed to replace old broken designs and
new cryptanalytic techniques invented to crack the im-
proved schemes. In order to create a secure cryptosystem,
it will have to be designed against possible attacks. De-
sign of ciphers resistant to attacks needs a good exposure
to their strong and weak features, which is possible by
systematic cryptanalysis studies. Two fundamental goals
in computer science are finding algorithms with provably
good run times and with provably good or optimal so-
lution quality. A heuristic is an algorithm that gives up

one or both of these goals; for example, it usually finds
pretty good solutions, but there is no proof the solutions
could not get arbitrarily bad; or it usually runs reasonably
quickly, but there is no argument that this will always be
the case. Often, one can find specially crafted problem in-
stances where the heuristic will in fact produce very bad
results or run very slowly; however, these instances might
never occur in practice because of their special structure.
Therefore, the use of heuristics is very common in real
world implementations.

Here we have made an attempt to use heuristic tech-
niques in the cryptanalysis of simplified variants of DES
(Data Encryption Standard). Though such simplified ver-
sions are amenable to brute force attacks, studies reported
in this paper are useful in the cryptanalysis of other com-
plex ciphers and in exploring the weakness of ciphers. The
basic building blocks of most block ciphers being of simi-
lar nature, it is envisaged that our studies can be extended
to study attacks of other ciphers.

Particle swarm optimization [3] has demonstrated ex-
cellent promise as a heuristic technique in recent years.
We propose an extension to this concept by introducing a
unique concept of group of swarms. This technique when
applied to cryptanalysis of our candidate block cipher has
yielded better performance compared to the simulated
annealing algorithm implemented with thermostatistical
persistency principle [5] incorporated into it.

The rest of the paper is organized as follows. Section 2
presents a brief overview of the DES algorithm. The prin-
ciples of simulated annealing and thermostatistical persis-
tency are explained in Sections 3 and 4, along with the
experimental results. The underlying principle of parti-
cle swarm optimization (PSO) and our novel concept of
group PSO and the results obtained from this method are
presented in Section 5. More experimental results on the
cryptanalysis of simplified DES are presented in Section

International Journal of Network Security, Vol.6, No.3, PP.342–353, May 2008 343

Figure 1: Performs of DES, on P4, 1.7GHz processor

6. A brief discussion on linear and differential cryptanal-
ysis studies of such ciphers is presented in Section 7. The
paper concludes with Section 8.

2 Data Encryption Standard

Data Encryption Standard (DES) was designed by IBM
in 1970; later it was adopted as a standard. Here we
consider a ciphertext only attack on DES using heuris-
tic techniques. A detailed description of the algorithm is
provided in [7]. We have implemented the same in C lan-
guage on a P4 system. A performance of the code is given
in Figure 1. Here we consider text length of 964 bytes,
1928 bytes, 2892 bytes and 3856 bytes. In each case, we
recorded encryption time at each round, the decryption
time being the same. For the purpose of cryptanalysis,
the code is written so as to take number of rounds as
input for encryption and decryption.

2.1 Simplifying the Problem

For the purpose of cryptanalysis, two cases were consid-
ered.

1) Reduced number of rounds:
Here we considered only few rounds of DES algo-
rithm so as to simplify the problem. Typically in
cryptanalysis we used DES with four rounds.

2) Removing SBOX:
The strength of DES lies in the non-linearity induced
by SBOX, so we thought of initially eliminating the
SBOX in the encryption and decryption phases. But
looking into the algorithm, the elimination of SBOX
is not straightforward. From Section 2.2, it is clear
that each round takes 32-bit inputs Li−1 and Ri−1

from the previous round, and produces 32-bit outputs

13231302928

292827262524

252423222120

212019181716

171615141312

1312111098

987654

5432132

E

13231302928

292827262524

252423222120

212019181716

171615141312

1312111098

987654

5432132

E

2541122

6301319

932732

142482

1031185

2623151

17281229

2120716

P

2541122

6301319

932732

142482

1031185

2623151

17281229

2120716

P

Figure 2: Expansion and permutation

Table 1: Eliminating SBOX

1 2 3 4 5 6 9 10
11 12 15 16 17 18 21 22
23 24 27 28 29 30 33 34
35 36 39 40 41 42 45 46

Li and Ri, for 1 ≤ I ≤ 16, as follows;

Li = Ri − 1

Ri = Li−1 ⊕ f(Ri−1, Ki), where

f(Ri−1, Ki) = P (S(E((Ri−1)⊕Ki). (1)

From Equation (1), Ri−1 (32-bit) is expanded to 48-
bit; using the table shown in Figure 2 and it is XORed
with Ki. Result of this is subjected to SBOX, to get
32-bit output. To eliminate the SBOX, we use Table
1 after XOR operation in Equation (1). We have de-
rived the entries in the table from the expansion table
shown in Figure 2, by eliminating all those entries,
which occur second time.

2.2 DES Algorithms

INPUT: Plaintext m1, . . . , m64; 64-bit key K = k1,
. . . , k64 (including 8 parity bits)

OUTPUT: 64-bit cipher text block C = C1, . . . , C64
1. Key schedule: Compute sixteen 48-bit round keys Ki

from K.
2. (L0, R0)← IP (m1m2 . . .m64)
3. for I from 1 to 16, compute Li and Ri

a. Expand Ri− 1 = r1r2 . . . r32 from 32 to 48 bits,
T ← E(Ri− 1)

b. T ′ ← T ⊕Ki. Represent T ′ as eight 6-bit
character strings (B1 . . . B8) = T ′

c. T ′′ ← (S1(B1), S2(B2), · · · , S8(B8))
d. T ′′′ ← P (T ′′)

4. b1b2 . . . b64← (R16, L16)(Exchange final blocks L16,
R16)

5. C ← IP−1(b1b2 . . . b64)

International Journal of Network Security, Vol.6, No.3, PP.342–353, May 2008 344

3 Simulated Annealing (SA)

Simulated annealing [4] is based on the concept of an-
nealing. In physics, the tern annealing describes the pro-
cess of slowly cooling a heated metal in order to attain
a “minimum energy state”. A heated metal is said to be
in a state of “high energy”. The molecules in a metal
at a sufficiently high temperature move freely with re-
spect to each other. However when the metal is cooled,
the molecules lose their thermal mobility. If the metal is
cooled slowly, a “minimum energy state” is reached. To
apply the analogy of annealing to the field of combinato-
rial optimization, it is useful to think of the slowly cooled
metal as having reached a crystalline structure in which
the molecules are ordered and the energy is low. This is
analogous to the optimal solution to a problem which is
“ordered” and represents the lowest “cost” to solve the
problem being optimized, for a minimization problem.
The technique merges hill-climbing with the probabilis-
tic acceptance of non-improving moves. The search starts
at some initial state S = S0. There is a control parameter
T known as the temperature. This starts ‘high’ at T0 and
is gradually lowered. At each temperature, a number of
moves to new states are attempted. A candidate state is
randomly selected from the neighborhood of the current
state. The change in value of the cost function is calcu-
lated. If it improves the value of cost function, then a
move to that state is taken; if not, then it is taken with
some probability. Probabilistic acceptance is determined
by generating a random value in the range (0 . . . 1) and
performing the indicated comparison. The algorithm is
discussed below.

In a simulated annealing attack, the key is represented
as a string of N characters in the alphabet. A very simple
way of perturbing such a key is to swap the key elements
in two randomly chosen positions. This is the method
utilized in the following algorithm which describes a
simulated annealing attack on the cipher considered in
this paper.

Algorithm: Simulated Annealing
1. Generate a solution to the problem (randomly or

otherwise) and determine its cost.
2. Initialize the temperature T = T 0.
3. At temperature T , repeat J times...

a. Perturb the current solution to give a “Candidate”
solution.

b. Find the cost of the candidate solution and
determine the difference between its cost and the
cost of the current solution.

c. Using the cost difference (4E) and the
current temperature (T),

Pr(E1← E2) = e(−4E/KT), k = 1. (2)

This gives the probability that the candidate solution
should be accepted. Generate a random number in
the interval [0, 1]. If the random number is less
than the probability returned by Equation (2), then

the candidate is accepted.
d. If the candidate is accepted, then the current

solution and its cost are updated.
4. If the stopping criteria are satisfied, then discontinue;

otherwise, reduce the temperature T and repeat from
Step 3.

We have implemented the algorithm for cryptanalysis of
DES. Here we have experimented on various aspects of
SA.

3.1 Fitness Function or Cost

1) Monogram and bigram statistics:
To implement this fitness function, the frequency of
each character in the decrypted text is calculated.
This frequency is normalized by dividing it by the
total number of characters in the file. This normal-
ized frequency is then subtracted from the expected
frequency of the character in normal English text.
The absolute value of this difference is taken. The
differences for all characters are added together. The
normalization takes care that this value always lies
between 0 and 1.

The bigram is an extension of unigram to two char-
acters. Now rather than calculating frequency of in-
dividual character, we calculate frequency of “pairs”
of letters. For example, a pair “an” will always ap-
pear more frequently than pair “bt”. Again statistics
for the frequencies of these pairs are also available.
These statistics are compared with the statistics ob-
tained from the decrypted text.

To implement this fitness function, the frequency of
each pair of letters in the decrypted text is calcu-
lated. This frequency is normalized by dividing it by
the total number of pairs in the file. This normalized
frequency is then subtracted from the expected fre-
quency of the pair in normal English text. The abso-
lute value of this difference is taken. The differences
for all pairs are added together. The normalization
takes care that this value always lies between 0 and
1.

The fitness function based on monogram and bigram
is given by,

∑
{|SF [i]−DF [i]|+

∑
|SDF [i, j]

−DDF [i, j]|}/4, i = 1 to 26, j = 1 to 26.

Here the letters A . . . Z are referenced by the indices
1 . . . 26, SF [i] is the standard frequency of charac-
ter i in English, DF [i] is the measured frequency
of the character i in English. SDF is the standard
bigram frequency and DDF is the decoded bigram
frequency.

2) Count of intelligible characters represented by
ASCII:
This is the most simple, efficient and effective fitness

International Journal of Network Security, Vol.6, No.3, PP.342–353, May 2008 345

Figure 3: Coding schedules

function of all the fitness functions tried in our ex-
periments. To calculate fitness of a key, we simply
calculate the number of readable characters in the de-
crypted text (a−z and A−Z). We further normalize
this value by dividing this number by the size of the
file in bytes. For a perfect key, all the characters will
be readable and hence this value will be one. Since
our algorithms are implemented to solve minimiza-
tion problems, we simply subtract this value from 1
to get the fitness of a key.

Intuition behind this approach is that the message is
made up of readable characters. So the decrypted
text should also contain the readable characters.
More the intelligible characters, better is the key,
lower is the fitness value of the key. Since this ap-
proach does not require any table lookups, it is also
the most efficient approach seen so far.

In the experiments performed, it was found that this
function does give fair weight to the key. The fitness
value decreases more rapidly than other fitness func-
tion values. It also spans almost the complete range
from 0 to 1.

The formula for this fitness function can be given as
follows:

f = 1− c/n,

where c = number of characters falling in the range
a−z or A−Z; n = total number of characters in the
file.

3) Combination of different cost functions with different
weights: different weight factors to monogram and
bigram statistics have been assigned.

In one more approach of assigning the fitness values
to individuals, we used combination of more than one
fitness function and assigned weights to it. Thus the
new fitness value was calculated as follows:

f = α ∗ unigram + β ∗ bigram + µ ∗ intelligible char,

Figure 4: Cooling schedules

where α, β, and µ are the weights of the respective
fitness functions. This fitness function was also found
to be quite useful during our cryptanalysis studies.

3.2 Cooling Schedule

Cooling schedule is a very important component of simu-
lated annealing, it provides a way of accepting a candidate
solution with higher cost. This helps in overcoming local
minima. A cooling schedule should slowly decrease the
temperature. Figures 3 and 4 show some typical cool-
ing schedules those have been used with our simulated
annealing optimization, though many such profiles have
been studied by us. T i is the temperature for cycle i,
where i increases from 0 to N . The initial and final tem-
peratures, T 0 and TN respectively, are determined by the
user as is N . The last temperature profile under Figure 4
yields better results in terms of convergence, compared to
other temperature profiles.

3.3 Experimental Results

Experimental results are shown in Figures 5 and 6. It
is found that 4 round DES, even without SBOX, seems
to be strong enough against ciphertext only attack using
simulated annealing. This motivated us to explore other
heuristics.

4 Thermostatistical Persistency

SA is very inefficient at low temperature when it spends
most of the time refusing proposed transitions. Due to its
memoryless nature, it does not provide any means of re-
stricting the search space. However, the character of the
method changes from free search to quite specific mini-
mization.

In [2] Chardaire et al. introduced a method called
“Thermostatistical Persistency (TP)” to strengthen the
simulated annealing optimization technique. Basically, it

International Journal of Network Security, Vol.6, No.3, PP.342–353, May 2008 346

Figure 5: Simulated annealing for cryptanalysis of 4 round
of DES without Sbox, with combination of fitness func-
tions with weights 0.5, 0.3, 0.2 for intelligent characters,
mono and bigram resply. Initial cost=0.786687, cost at
saturation=0.423511, initial temperature=20, tempera-
ture at saturation=2.2222, time taken=93 hrs, length of
text=3856 bytes.

Figure 6: Number of bits matched with actual key during
experiment

aims at progressively limiting the configuration space dur-
ing the simulated annealing procedure. At a given tem-
perature, mean value of every bit being 1 or 0 is calcu-
lated. If it is greater than the threshold value, then the bit
is frozen assuming that with high probability it is tending
towards either 0 or 1. We have studied the cryptanalysis
of DES, with four rounds and SBOX, using thermostatis-
tical persistency. The results are shown in Figures 7 and
8. Following are some important observations:

1) Keeping SBOX in DES makes it difficult for crypt-
analysis.

2) From a comparison of the performance of different
fitness functions, we found that for this problem
number of intelligible characters as a fitness function
seems to be better in terms of performance.

3) The number of bits matched in the actual key and
the number of bits frozen appear to be coming close
to each other (Figure 8). But it is found that, some
bits frozen do not match with the actual key bits,
thus creating deadlock. In all cases, the output is
recorded after giving sufficient time for the process
to saturate.

5 Particle Swarm Optimization

In [3] Kennedy et al. propose a new technique called
Particle Swarm Optimization (PSO), which borrows the
idea from bird flocking, fish schooling, and swarm theory.
We have used this technique in the cryptanalysis of DES.
The results are shown in Figure 9.

5.1 The Principle

PSO shares many similarities with evolutionary compu-
tation techniques such as Genetic Algorithms (GA). The
system is initialized with a population of random solutions
and searches for optima by updating generations. How-
ever, unlike GA, PSO has no evolution operators such as
crossover and mutation. In PSO, the potential solutions,
called particles, fly through the problem space by follow-
ing the current optimum particles. Compared to GA, the
advantages of PSO are that PSO is easy to implement
and there are few parameters to adjust. PSO has been
successfully applied in many areas; function optimization,
artificial neural network training and fuzzy system con-
trol. PSO has been used in cryptography to solve the
tough problem of integer factorization.

PSO simulates the behavior of bird flocking. Suppose
a group of birds are randomly searching food in an area.
All the birds do not know where the food is. The effective
strategy is to follow the bird which is nearest to the food.
In PSO, each single solution is a “bird” in the search
space. We call it “particle”. All particles have fitness
values which are evaluated by the fitness function to be
optimized, and have velocities which direct the flying of

International Journal of Network Security, Vol.6, No.3, PP.342–353, May 2008 347

Figure 7: Thermostatistical persistency for cryptanalysis
of 4 round DES with Sbox Fitness function is INTEL-
LIGENT CHARACTER COUNT. Initial cost=0.758367,
cost at saturation=0.712471, initial temperature=20,
temperature at saturation=8.333, time taken=46 hrs.
Length of text=3956 bytes.

the particles. The particles fly through the problem space
by following the current optimum particles.

PSO is initialized with a group of random particles (so-
lutions) and then searches for optima by updating gen-
erations. In each iteration, each particle is updated by
following two “best” values. The first one is the best so-
lution (fitness) it has achieved so far. This value is called
pbest. Another “best” value that is tracked by the parti-
cle swarm optimizer is the best value, obtained so far by
any particle in the population. This best value is a global
best and is called gbest. When a particle takes part of the
population as its topological neighbors, the best value is
a local best and is called lbest.

After finding the two best values, the particle updates
its velocity and position with the following equations:

v[·] = v[·] + p incr ∗ rand() ∗ (pbest[·]− present[·])

+g incr ∗ rand() ∗ (gbest[·]− present[·])

present[·] = persent[·] + v[·], (3)

where, v[·] is the particle velocity, persent[·] is the cur-
rent particle (solution), pbest[·] and gbest[·] are defined
as stated before, rand() is a random number between
(0,1), p incr, g incr are learning factors. Usually p incr,
g incr = 2. However these values of p incr, g incr are
problem-dependent. As it can be easily seen, higher val-
ues of g incr help particles to move out of local minima.
Thus, usually in our experiments, we have taken higher
values of g incr.

Particles’ velocities on each dimension are clamped to
a maximum velocity Vmax. If the sum of accelerations
would cause the velocity on that dimension to exceed
Vmax, which is a parameter specified by the user, then
the velocity on that dimension is limited to Vmax.

In our implementation, each particle corresponds to a

Figure 8: Number of bits matched with actual key and
number of bits frozen

key. The fitness of a key is found by one of the fitness
functions discussed in the previous sections. Since DES
uses 7 - byte key, our search space is 7-dimensional. Thus
each byte corresponds to a separate direction. Vmax is
varied throughout the experiments. The range varied is
from 8-64. Remember that, a particle can take a maxi-
mum of 256 different values in each direction.

5.2 p incr and g incr

As we have seen, two parameters we can play around in
PSO are p incr and g incr. They are so called learning
factors of the algorithm. Higher values of p incr allows
a particle to move towards its direction of search faster.
Higher values of g incr allow all the particles to move
in the direction of group leader faster. These are very
essential parameters in PSO. In a discrete optimization
problem such as cryptanalysis of DES, it is better to have
higher values of g incr.

5.3 Algorithm

Input: Number of particles in the swarm, p incr, g incr,
pointer to fitness function.

Output: The key having the lowest fitness as found by
PSO.

Step 1: Generate particles randomly to form a swarm.
Step 2: Calculate the fitness function of each of the

particles. If the current position of the particle
is better than the previous history, update the
particle’s history to indicate this fact.

Step 3: Find out the best particle of the swarm. Update
the positions of the particles by Equation (3).

Step 4: If the maximum number of iterations has exceeded
or if the key with very low fitness value is found,
then go to Step 5 or else go to Step 2.

Step 5: Copy the best key obtained so far in the output
key variable and exit.

International Journal of Network Security, Vol.6, No.3, PP.342–353, May 2008 348

Figure 9: PSO with groups for cryptanalysis of round of DES without Sbox, population=30, pincrement=2, gincre-
ment=4, length of text=3826 bytes, initial cost=0.518019, cost at saturation=0.25910

5.4 The Group PSO

Here we discuss a unique variation of Particle Swarm Op-
timization. In the PSO algorithm that we have seen, there
is a single swarm made up of large number of particles.
Experiments show that increasing the number of parti-
cles in a single swarm does not give better results. It only
adds to more computation. In order to divide the search
space, we explore the option of “group of swarms”, a con-
cept proposed by us for the first time.

In this concept, there are many swarms active at a
given time. The swarms are initialized in such a way
that they are evenly distributed across the search space.
In ideal case, their movements should not overlap. To
achieve this, proper distribution of swarms across the
search space is important. Each of the swarms moves
through the search space independently irrespective of
other swarms. Each swarm has its own global best and
rest of the particles in that swarm try to follow that global
best.

The algorithm provided remains the same except that
there are many versions of this algorithm running at the
same time. This is an ideal situation for multiprocessor
systems or grids. However, in our experiments we have
implemented the group swarm algorithm for sequential
execution. The speedup achieved by the parallel version
or on grid could be an interesting thing to investigate.
Since there is little communication between swarms, there
are many opportunities to modify the algorithm so that
it suits well for parallel or distributed execution.

Figure 10: SDES cryptanalysis using SA, text
length=3856 bytes, time taken=25 seconds for combined
fitness function of unigram and intelligent character count

International Journal of Network Security, Vol.6, No.3, PP.342–353, May 2008 349

5.5 Experiments and Results

PSO and group PSO were used for cryptanalysis of 4-
round DES without Sbox. We summarize the results of
these experiments in this subsection. The experiment
shown in Figure 11 was performed on 4-round DES with-
out S-box. The fitness function used was unigram. As
we can see, the fitness value has started from about 0.5
and come down to 0.3 in about 3250 generations. Also,
we can see a rapid decrease in fitness function at the be-
ginning and the rate of decrease decreases as we run the
experiments for longer period. This is because as the fit-
ness value decreases, it becomes more and more difficult
to find a better key. This is the problem with all the algo-
rithms. PSO, in spite of being so simple, has performed
better than SA.

5.6 Experiments and Results

PSO and group PSO were used for cryptanalysis of 4-
round DES without Sbox. We summarize the results of
these experiments in this subsection. The experiment
shown in Figure 11 was performed on 4-round DES with-
out S-box. The fitness function used was unigram. As
we can see, the fitness value has started from about 0.5
and come down to 0.3 in about 3250 generations. Also,
we can see a rapid decrease in fitness function at the be-
ginning and the rate of decrease decreases as we run the
experiments for longer period. This is because as the fit-
ness value decreases, it becomes more and more difficult
to find a better key. This is the problem with all the algo-
rithms. PSO, in spite of being so simple, has performed
better than SA.

Also, PSO outperforms all other optimization tech-
niques in discrete optimization problems. In this case
also, we have observed similar findings. As we will see in
the next experiment, group PSO performs slightly better
than PSO.

Figure 12 shows the result of group PSO algorithm. In
this case, search space was divided into 100 swarms. At
the beginning, it was ensured that swarms start at dif-
ferent positions. But it is very difficult to ensure that
trajectories of the swarms do not intersect during the ex-
ecution. The X- axis here does not show the number of
generations, but it shows the number of generations mul-
tiplied by the number of swarms, i.e. 100.

As we can see, the fitness value has started from above
0.55 and has come down to 0.22. Number of function
evaluations is also quite high in this case. Also, the sat-
uration is not prominent in Figure 12. The decrease in
fitness value continues even after 3000 iterations.

Thus, PSO is a very promising approach for solving
the problems of cryptanalysis of DES and any discrete
optimization problem in general. However, this is a fairly
new technique and there is lot of scope for research in
this area. One of the ideas suggested in this paper, is the
exploration of group PSO in a parallel execution environ-
ment.

Table 2: 16-bit DES encryption/decryption algorithm
INPUT:16-bit data block,16 bit key
1. (Key Schedule) compute four 12 bit keys.
2. (L0, R0) = IP (m1, m2, . . . , m16), using Table 3,

L0 = m10 . . .m8
R0 = m9 . . .m7.

3. For i from 1 to 4, compute Li and Ri as shown
below.
a. Expand ri− 1 from 8 to 12 bits using EP shown

in Table 6.
T ← E(Ri− 1)

b. T ′ ← T ⊕Ki
c. T ′′ ← (S1(B1), S2(B2)). Here B1 and B2 are

first and last 6-bits of T ′′(for SBOX refer Table
8).
Using SBOX is identical to DES.

d. T ′′′ ← P (T ′′) using Table 7.
4. b1b2...b16← (R4, L4) (Exchange final blocks L16,

R16)
5. C ← IP−1 (b1b2 . . . b16)using Table 3.

The group PSO as compared to SA with thermostatis-
tical persistency performs better in terms of percentage
of successful attacks, overall execution time, and need to
tune various parameters of the algorithm leading to sim-
ple program development effort.

6 Cryptanalysis of Simplified DES

Since attacking DES with the heuristic techniques seems
to be harder due to the compute-intensive nature of the
problem, we have implemented SDES [6] and used heuris-
tics for cryptanalysis. The results of SDES cryptanalysis
are shown in Figure 10. In the experiments conducted,
we could retrieve the key and plaintext in all the cases.
We tried a combined fitness function based on the uni-
gram statistics and the number of ASCII representable
intelligible character count.

6.1 16-bit Key DES

We have designed 16-bit DES algorithm and used
heuristics for cryptanalysis of this cipher. The details are
shown in Tables 3 to 8.

Algorithm: Key Schedule
INPUT: 16-bit key K = K1 . . .K16
OUTPUT: Four 12-bit keys Ki, 1 ≤ i ≤ 4
1. Define vi, 1 ≤ i ≤ 4:vi = 1 for i ≤ ; vi = 2 otherwise.
2. T < −PC1(K); using Table 4 represent T as 8-bit

halves (C0, D0)
3. For i from 1 to 4 compute Ki as follows:

Ci← (Ci− 1← vi)
Di← (Di− 1← vi)
Ki← PC2(Ci, Di)

International Journal of Network Security, Vol.6, No.3, PP.342–353, May 2008 350

Figure 11: Convergence of PSO algorithm

Figure 12: Performance of group PSO

International Journal of Network Security, Vol.6, No.3, PP.342–353, May 2008 351

Table 3: IP and IP−1

10 2 12 4 14 6 16 8
9 1 11 3 13 5 15 7

Table 4: PC1

9 1 10 2 11 3 15 7
14 6 13 5 12 4 8 16

6.2 Cryptanalysis of 16-bit DES

16-bit DES is subjected to cryptanalysis using the SA
technique, with variation of the fitness functions. The re-
sults are shown in Figures 13 to 18. In these experiments,
the fitness function used is a combination of monogram
and intelligible ASCII character set. We have embedded
some concepts of thermostatistical persistency into these
SA experiments.

7 Other Related Approaches

Matsui [5] has reported results on linear cryptanalysis for
DES cipher and concludes that it is possible to attack
DES cipher with 243 known-plaintexts. Matsui [5] also re-
ports that if the plaintexts consist of natural English sen-
tences represented by ASCII codes, 8-round DES cipher
is breakable with 229 ciphertexts only. Biham and Shamir
[1] gave a general method for chosen plaintext attacks—
the differential cryptanalysis. Using a deep analysis of
the internal framework of the function, they use a chosen
bit-wise exclusion OR difference between two texts. Their
main result proves that it is possible to mount an attack
on DES with 247 chosen plaintexts. Both methods are
based on the concept of characteristic. This depends on
the propagation of the correlated piece of information. It
is associated to a probability which needs to be as biased
as possible.

Vaudenay [8] describes a method of statistical crypt-
analysis of DES, a combination and improvement of both
linear and differential cryptanalysis and suggests that the
linearity of Sboxes is not important. This study will mo-
tivate more research in the use of statistic experiments in
cryptanalysis.

We also studied linear and differential cryptanalysis of
a variant of SDES. To obtain a linear equation with high

Table 5: PC2

1 5 15 6
10 12 4 8
16 7 13 2

Table 6: Expansion permutation

1 2 3 4
3 4 5 6
5 6 7 8

Table 7: Permutation P8

7 1 5 2
8 3 6 4

Figure 13: SA for cryptanalysis of 16 bit DES. Length
of input text=3856 bytes, starting cost=0.713767, final
cost=0.062484, initial temperature=20, final tempera-
ture=19.980021, time taken=57.033026 seconds, success-
ful cryptanalysis.

Figure 14: Number of bits matched during experiment

International Journal of Network Security, Vol.6, No.3, PP.342–353, May 2008 352

Table 8: SBOX

S0

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S1

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

Figure 15: SA for cryptanalysis 16 bit DES, with fitness
function as Unigram Length of input text=3856 bytes,
time=508.060787 seconds. Successful cryptanalysis.

Figure 16: Number of bits matched.

Figure 17: SA for cryptanalysis 16 bit DES, with com-
posite fitness function. Length of input text=3856 bytes,
time=240.025867 seconds. Successful cryptanalysis.

Figure 18: Number of bits matched.

International Journal of Network Security, Vol.6, No.3, PP.342–353, May 2008 353

probability bias, we start with a statistical linear path
between the input and output bits of each Sbox. We then
extend this path to the entire cipher and finally reach
a linear expression without any intermediate value. For
the differential cryptanalysis, the attack was successful
and we were able to extract the entire subkey of round
2. These subkey bits are the actual 8 bits of the SDES
10 key bits, 2 bits still missing. The linear cryptanalysis
too was successful. Increase of plaintexts increases the
success rate of the method.

Both linear and differential cryptanalysis methods need
handling of large number of plaintexts.

8 Conclusions

Cryptanalysis has been formulated by several researchers
as an interesting optimization problem. Due to its com-
plex nature, several heuristics can be used to solve this
problem. However, it is hard to quickly demonstrate suc-
cess of these methods when applied to some of the com-
plex ciphers such as AES. At the same time, there is a
need to develop such techniques as a viable alternative to
brute force method, linear and differential cryptanalysis.
Thus there is a case to systematically develop these tech-
niques and use them to progressively simple to complex
ciphers. Towards this objective, we have demonstrated
that optimization heuristics such as simulated annealing,
its extension such as thermostatistical persistency and a
recent method such as particle swarm, hold promise in
cryptanalysis studies. We intend applying these methods
to more complex ciphers.

References

[1] E. Biham and A Shamir, “Differential cryptanalysis
of the full 16-round DES”, in Crypto’92, LNCS 740,
pp. 487-496, Springer-Verlag, 1993.

[2] P. Chardaire, J. L. Lutton, and A. Sutter, “Thermo-
statistical persistency: A powerful improving con-
cept for simulated annealing algorithms”, European
Journal of Operations Research, vol. 86, pp. 565-579,
1985.

[3] J. Kennedy and R. Eberhart, “Particle swarm opti-
mization”, in Proceedings of the IEEE International
Conference on Neural Networks, pp. 1942-1948, 1995.

[4] S. C. Krirkpatrick, J. D. Gellatt, and M. P. Vecchi,
“Optimization by simulated annealing”, Science, vol.
220, no. 4598, pp. 671-680, 1983.

[5] M. Matsui, “The first experimental cryptanalysis of
the data encryption standard”, in Crypto’94, LNCS
839, pp. 1-11, 1984.

[6] E. Schaefer, “A simplified data encryption standard
algorithm”, Cryptologia, vol. 20, no. 1, pp.77-84,
1996.

[7] B. Schneier, Applied Cryptography, 2nd Edition,
John Wiley & Sons, 1996.

[8] S. Vaudenay, “An experiment on DES statistical cry-
patanlysis”, Ecole Normal Superieure, Technical Re-
port, France, 1996.

Nalini. N received her B. E degree

from University BDT College of En-
gineering, Davanagere, Kuvempu Uni-
versity, India in the year 1996, her
M. S. (Software Systems) degree from
BITS, Pilani, Rajasthan, India in the
year 1999. She is currently pursuing
her Ph.D with the Visvesvaraya Tech-

nological University, Belgaum, India. Also she is working
as an Assistant Professor in the Department of Computer
Science and Engineering, Siddaganga Institute of Tech-
nology, Tumkur, India. She has presented more than six
papers at various National and International Conferences.
Her research interests are in the areas of Cryptography
and Optimization Heuristics.

G. Raghavendra Rao Completed
his BE, ME and Ph.D from University
of Mysore, Indian Institute of Science,
Bangalore and University of Mysore,
respectively. Has been teaching Com-
puter Science for the last 23 years.
Presently the Principal and also Head
of the Department of Computer Sci-

ence and Engg. at the National Institute of Engineering,
Mysore, India. He Has more than 25 papers in Inter-
national and National Journals and Conferences. His ar-
eas of interest include Genetic Algorithms, Cryptography,
Data mining, Webcommerce and Artificial Intelligence.
He is also the member of IEEE & ISTE.

