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Abstract

Real time network monitoring for intrusions is offered
by various host and network based intrusion detection
systems. These systems largely use signature or pattern
matching techniques at the core and thus are ineffective
in detecting unknown anomalous activities. In this pa-
per, we apply signal processing techniques in intrusion
detection systems, and develop and implement a frame-
work, called Waveman, for real time wavelet-based anal-
ysis of network traffic anomalies. Then, we use two met-
rics, namely percentage deviation and entropy, to evalu-
ate the performance of various wavelet functions on de-
tecting different types of anomalies like Denial of Service
(DoS) attacks and portscans. Our evaluation results show
that Coiflet and Paul wavelets perform better than other
wavelets in detecting most anomalies considered in this
work.

Keywords: Entropy, intrusion detection, network traffic
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1 Introduction

Intrusion detection and network security is of increasing
significance in today’s world. An exponential rise in the
use of networks (and the Internet) has subsequently led
to various types of exploits and malicious activities, each
having its own negative impact. Many organizations have
faced attacks from unknown entities, with sometimes un-
known motives. As the reliance on network resources
increases, so does the need to secure them. There are
various methods of monitoring for intrusions in current
practice; our work is based on a network-based, signal
processing approach. Network-based intrusion detection
differs from host-based techniques in that a host-based
technique analyzes activities on the local host machine,
and is not concerned directly with the analysis of net-
work traffic. Both network-based and host-based tech-
niques involve sampling of available data, preprocessing,

pattern matching and/or transform analysis, and policy
based actions. The feature of pattern or signature match-
ing approach is the identifying feature: based on known
models, current data can be evaluated against them to flag
alerts. However, in the case of an unknown anomaly, this
approach is ineffective. On the other hand, the feature
of the signal processing approach is monitoring the point
of change, applying transforms to the data and flagging
events based on thresholds, and it is the approach that
we adopt in this work.

To investigate the effectiveness of signal processing
techniques (wavelet specifically) applied on network traf-
fic anomaly detection, we develop a framework called
Waveman, which use an open source tool called LastWave
[1] to provide a real time analysis of network traffic. We
have developed and evaluated wavelet filters based on a
heuristic approach. Four different families of wavelets,
namely Coiflet, Morlet, Daubechies, and Paul, are used
in this work. To evaluate the various wavelets consid-
ered in this paper, we have used passive as well as active
methods. As defined in [17], a “passive” method of eval-
uation refers to a technique in which current traffic is
monitored for anomalies, while an “active” method refers
to a technique which injects traffic as stimulus to the net-
work and studies the resulting effects. For passive eval-
uation we used the data obtained from a Virginia-based
registrar of Internet domain names, EnetRegistry, Inc.,
and for active evaluation, the 1999 MIT Lincoln Labora-
tory Intrusion Detection System Evaluation data set was
used. From these data sets, we have analyzed five differ-
ent anomalies; three are Denial of Service (DoS) attacks
from the active data set, and two are scanning anoma-
lies taken from the passive data set. The DoS attacks
also include a distributed attack (DDoS) that uses many
compromised hosts to launch an attack against a single
victim. The scanning anomalies are characteristic of black
hat hacking and worm activity. While various Intrusion
Detection Systems (IDS) use pattern matching [6, 29] and
application-specific parameter correlating [19] techniques
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to identify and block such anomalies, in this work we use
a change point monitoring approach [30] aiming to detect
all types of anomalies, known or unknown.

There are two main contributions of this paper: to
achieve a real time wavelet analysis of network traffic,
and to evaluate different wavelets for their performance
on identifying network anomalies like Denial of Service
(DoS) attacks, floods and port scans. The first objective
was achieved by the Waveman framework we developed.
Then, after different wavelet filters were designed for use
in Waveman, the second objective is achieved by using
two metrics, namely percentage deviation and entropy, to
evaluate these wavelet filters when they are applied on
the two data sets containing a variety of anomalies.

It has been discovered that ethernet traffic exhibits self-
similarity in nature [21], from which stems the reasoning
that the aggregation or decomposition of a network traffic
signal contains similar amount of “burstiness”. Thus, a
few samples of such a signal would contain an equivalent
variance of a longer signal of the same type. Wavelet-
based techniques exploit this self-similarity property and
analyze signals at various levels of decomposition, which
is demonstrated to be effective in this work.

2 Background and Related Work

2.1 Signal Processing and the Fourier

Transform

Mathematical transforms are applied to a signal to per-
form processing and obtain further details than what is
available in the original signal. The Fourier transform is
a traditional method for the spectral analysis. For many
applications, it is necessary to obtain information regard-
ing the spectral contents of a time-series signal, rather
than its amplitude in time domain. The Fourier trans-
form does provide frequency contents of the signal, but
does not provide information regarding “where in time”
those frequencies exist. Hence, if one is only interested
in the spectral components of the signal then the Fourier
transform is useful, but if one is interested in the time
locality information, then the Fourier Transform is not
enough. Therefore, for most real world applications, the
FT is not suitable for non-stationary signals, including
the signal obtained from sampling network traffic.

The Short Time Fourier Transform (STFT) performs
time-localized analysis for non-stationary signals, but it
suffers from the drawbacks due to the Uncertainty Princi-
ple [27]. This principle states that it is impossible to know
the exact time-frequency representation of a signal, i.e.
one cannot know what spectral components exist at what
instances of times. What one can know is limited by the
time intervals in which a certain band of frequencies ex-
ist, which is a time resolution problem. These resolution
problems relate to the STFT in that, a narrow window
offers good time resolution but poor frequency resolution,
and a wide window results in good frequency resolution

but poor time resolution.

The wavelet transform overcomes the resolution prob-
lems of the STFT by using a varying window size. The
wavelet transform coefficients contain the results due to
analysis from all window sizes. A discrete version of a
Continuous Wavelet Transform (CWT) enables its com-
putation by digital computers; however, it is not a true
discrete transform. Such wavelet series is simply a sam-
pled version of the CWT, and the information it pro-
vides is highly redundant as far as the reconstruction
of the signal is concerned. This redundancy requires a
large amount of computation time and resources. The
Discrete Wavelet Transform (DWT), on the other hand,
provides sufficient information both for analysis and syn-
thesis of the original signal, with a significant reduction
in the computation time. The discrete version of such a
decomposition thus involves an iterative process; in each
iteration, a signal of length x is the input, and two or
more signals are derived from it. In the analysis, a spe-
cially designed filter F is used, which operates on x and
eliminates the coefficients not related to the required out-
put F (x). A low pass filter L produces a low-frequency
output L(x). H1, H2, . . . , Hr produce a high frequency
output Hi(x) and can be thought of as discrete differen-
tiation. Further iterations produce a further decomposed
L(x) : L2(x), H1L(x), · · · , HrL(x). Finally, a family of
output signals of the form HiL

j−i(x) is obtained, where
j is the number of low pass filtering iterations performed
to obtain the final signal. A larger value of j corresponds
to a lower frequency signal. The values of the derived sig-
nals HiL

j−1(x) are known as the ”wavelet coefficients”.
In brief, a synthesis operation takes as input the signals
obtained from the decomposition phase, and reproduce
the original signal. We are mainly concerned with the
decomposition of the raw signal for the purpose of this
work.

A filter Hi has k vanishing moments if Ĥ(0) = Ĥ ′(0) =
. . . = Ĥ(k−1)(0) = 0, where Ĥ is the Fourier series of
H . An indication of the vanishing points affecting the
analysis has been given in [4], so we do not address this
issue in this paper.

2.2 Motivation and Related Work

In [4], Barford et al. implement a wavelet analysis of
Cisco NetFlow [10] data. A three month long signal con-
taining different kinds of anomalies was analyzed. It was
found that an increase in the local variance of a time-
series signal that is generated from raw traffic strongly
indicated an anomaly. Wavelet analysis on a raw traf-
fic signal allows for observation on many different levels
of traffic, by removing certain components of the signal
at each level, and generating wavelet coefficients. This
feature extraction at different levels is known as Multi-
Resolution Analysis (MRA), and has gained popularity
as the method of analysis for non-stationary signals. The
High and Mid frequency portions are normalized to have
variance 1. The variability of these parts is computed
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using a moving window. A deviation algorithm can then
identify anomalies based on thresholding the variable part
of the signal generated from the wavelet coefficients at dif-
ferent frequency levels. All the analyses in the work were
done with the same wavelet system, but justification of
the choice of that wavelet was left open.

In [17], Huang et al. proposes a wavelet based method,
called WIND, to detect network failures and other prob-
lems. The energy function of a signal with exponentially
increasing arrival time of components shows that the val-
ues are roughly constant across all scales, which could
refer to the white noise of a signal. However, the wavelet
transform of a signal that is comprised of values taken at
different sample points exhibits details hidden within the
signal. The authors have suggested methods by which this
system could be used to plot the RTT values of a network
path. It has been shown that the self similar nature of
network traffic [21] does not allow conventional methods
of analysis to provide statistics about local periodicities
in the signal.

In [18], the authors use wavelets to detect congestion
on shared links in networks. The technique suggests that
two paths sharing a congested link have a high correla-
tion between their one way delays. This correlation has
been monitored, and wavelet denoising is used to remove
noise due to queuing delay and mild congestion. Thresh-
olding is applied to arrive at a binary decision regarding a
shared link being congested. The authors have found the
Daubechies 6 wavelet has the most correlation with the
congestion implementation and hence it was used as the
mother wavelet for wavelet denoising in this work. The su-
perior characteristics of wavelets for denoising have been
demonstrated.

The motivation for this work is to justify the assump-
tions that wavelets can be used to develop a real time net-
work intrusion detection system and that some wavelets
perform better than the others when used in a real time
network intrusion detection system. For this purpose, it
is necessary to monitor traffic on the fly and use different
wavelet filters to analyze the monitored traffic. Through
experiments on traffic data sets we aim to identify the
wavelet(s) that perform better in this regard. We believe
that this knowledge could indeed be useful in developing
such an intrusion detection system.

3 Implementation

3.1 Initial Testing and Tuning

We use LastWave 2.03 [1], an open source signal process-
ing command language developed by Emmanuel Bacry.
LastWave constitutes the core of our framework, and is
used for all the analysis. Then we prepare sample flow
files, based on Cisco IOS flow exports. These flows are ex-
ported from Cisco routers running cflowd, and contain per
flow information such as source IP address, destination IP
address, source port, destination port, packets, bytes etc.
A signal is extracted from these flow files and analyzed

using some of the wavelets supplied with the software.
We note that as of this writing, a similar QoS and traffic
engineering protocol called IP Flow Information eXport
(IPFIX) [11] is being considered for standardization by
the IETF. Vermont [20] is an open source flow monitor
for IPFIX, similar to nProbe [14] for Cisco’s NetFlow. A
signal is extracted from these flow files and analyzed using
some of the wavelets supplied with the software.

Next, in preparation of the framework for real time
analysis, libpcap and tcpdump are used to capture, filter
and analyze raw traffic. Initially we have to use some tests
to establish some parameters for the wavelets, for exam-
ple the window size. Therefore we start with filtered data
to observe only the known anomalies, without any back-
ground traffic. For example, to observe a Neptune attack
involving TCP SYN packets, the following tcpdump filter
is applied:

tcpdump -r enet tcpdump 09 30 2004 ’tcp[13] & 0x02
= 2’ dst port not 22 and dst port not 80 and dst port not
53 -w enet tcpdump 09 30 2004.SYN

This filter reads only the TCP SYN packets (tcp[13]
is the base filter for TCP packets, 0x02 = 2 checks
if the SYN bit is set) from the raw data, removes
SSH, HTTP and DNS packets by examining the TCP
header, and writes the filtered contents to the new file
enet tcpdump 09 30 2004.SYN, in libpcap format. This
file is then replayed at an interface to observe the actual
attack.

After initial tests establish the parameters for the
wavelets, unfiltered traffic is analyzed. This paper
presents only data resulting from unfiltered data, in order
to demonstrate that our findings are applicable to arbi-
trary network traffic.

3.2 Waveman Framework

We design and implement a framework, called Waveman,
to carry out a real time wavelets analysis. A represen-
tation of the Waveman framework is shown in Figure 1.
Traffic is captured at an available interface using libpcap.
Two counters corresponding to packet and byte counts are
incremented on a per packet basis. It was observed that
for the types of attacks analyzed in this work, there was
a strong positive correlation between the packet and byte
counts for the duration of the traces. So, it was assumed,
for this work, either metric could be chosen without loss
of generality over the other. This may not be the case
for other types of attacks not considered in this work.
To manage the capturing and sampling, two processes
are used: one to capture the traffic on a per packet ba-
sis and update the appropriate byte and packet counters,
and the other to access these counters via shared memory
(shmget()), every 5 seconds.

Next, a time series signal is implemented in the form
of a linked list data structure. A time series signal of
packets vs. time (sampled every 5 seconds) is built, pre-
pared and sent to LastWave. Since LastWave can also be
used as a scripting language, we develop our own scripts
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Figure 1: Framework of Waveman, a wavelet-based real time network traffic analysis

for the analysis, which are executed on a per analysis ba-
sis. The first three coefficients are of value to us (since
any greater coefficients of the analysis would contain very
sparse information), and these are calculated as the out-
put of LastWave (Coeff1, Coeff2, Coeff3 in Figure 1).

LastWave output is then processed, for purpose of nor-
malization and ease of calculation of percentage devia-
tions. The window we work with is five minutes long; i.e.
five minutes worth of traffic, sampled every five seconds
(these values are consistent with general network moni-
toring practices). Hence our window contains sixty sam-
ples. For the most part, this window size seemed suitable
for the types of anomalies (and their short lengths) we
are concerned with. This size is also consistent with the
fact that a small window is good for localization. Sev-
eral intermediate scripts are written in Perl to process
and prepare the data for the next phase. The percentage
deviations are calculated and recorded at each analysis.
These values are normalized for ease of comparison.

In the last stage, Gnuplot is used to plot the graphs
in the form of JPEG files, and an Apache Web server is
used to serve the current results of the analysis to remote
viewers. The graphs were plotted every five seconds by
default, providing an updated real time snapshot of the
current analysis every five seconds. Most of the frame-
work and analysis work was done on a Pentium 4 (Hyper-
threaded), 1 GB RAM, Gigabit interface NIC, running
Fedora Core 3, and initial development and testing was
done on a Dual Xeon (Hyperthreaded), 1 GB RAM, Gi-
gabit NIC, running RHEL 3.

3.3 Wavelets

The wavelets that have been evaluated in this work are
of the common families used in many research and com-
mercial applications. The following representative ex-
amples of the wavelet functions are provided: Coiflet
(COIF), Morlet (MORE), Daubechies (DAUB), and Paul
(PAUL/MEX), as shown in Figure 2. The parameters
(length/order) of each of these functions are varied. It

Figure 2: Wavelets evaluated in this work: (a) a Coiflet
wavelet, (b) a Daubechies wavelet, (c) a Morlet wavelet,
and (d) a Mexican hat or Paul wavelet
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has been noted in [4] that a common method of deciding
upon a wavelet for a certain time series signal is to choose
a wavelet that most matches the variations in the data
itself. This is an adequate technique when one is dealing
with (semi)stationary signals, where the signal frequen-
cies are constant throughout the signal. However, in the
case of non-stationary signals (like network traffic), we
do not have this privilege. Hence, no single wavelet can
be easily matched to all the types of traffic and/or the
anomalies discussed in this paper.

4 Evaluation

4.1 Anomalies Analyzed

Once the Waveman framework for the real time analy-
sis was in place, we evaluate it with different anoma-
lies. These anomalies include three types of Denial of
Service (DoS) attacks, namely Neptune, Smurf and Mail-
bomb, and two types of portscan traffic, namely a simple
portscan (ipsweep), and a stealth scan. The traffic that
contains three DoS attacks was taken from the MIT Lin-
coln Laboratory Intrusion Detection System Evaluation
Data [16], and the portscan traffic was collected from ERI,
a domain name service company. A brief description of
each anomaly is as follows.

1) Neptune Attack:

Also known as a SYN flood attack, Neptune attack
targets all TCP/IP implementations. When a tcpd
server receives a SYN message, it reserves some of its
resources for the expected connection (called half-
open connections) and sends a “SYN-ACK” message
to the requesting client. When the client receives
the SYN-ACK message, it replies by sending back
an “ACK” message to the server. If the server re-
ceives the ACK message, the connection is fully es-
tablished and the two computers can start exchang-
ing data messages over the connection. However, the
data structure that a tcpd server uses to record all
half-open connections is of finite size, which can be
made to overflow if there is a large increase in half-
open connections. When the half-open connection
table on the victim server is full, the server is un-
able to accept any new incoming connection requests
until the table is emptied out. Timeouts associated
with each connection assure that the entry will even-
tually be cleared, but the attacker can keep up with
a steady stream of SYN connection requests, which
may lead to the crash of the victim [8].

2) Mailbomb:

A large number of e-mail messages are sent to a vic-
tim user, by a compromised host connecting to the
SMTP port of the mail server directly. This attack
can result in thousands of unwanted messages deliv-
ered to a single user’s account. In the Lincoln Lab
data, this attack was crafted via a Perl program that

created mail messages and connected to the SMTP
port of the victim machine directly. The program
was designed to accept the email addresses of the
victims and the number of e-mail messages to send.
A typical attack would send a total of around 10 MB
of spurious mail to a user. In the simulation, the at-
tack was not enough to effect the performance of the
server or cause system failure (thereby compromis-
ing its security), but was more of a nuisance for the
particular user targeted as the victim.

3) Smurf Attack:

ICMP is a Layer-3 protocol which is used to convey
status and error information including notification of
network congestion and of other network transport
problems. The smurf attack involves the attacker
sending ICMP echo packets to the broadcast address
of several subnets with the source address spoofed
to be that of the victim’s. This causes all hosts on
each subnet to respond with ICP echo replies to the
victim’s address. ICMP echo replies are sent back by
all the active hosts on each of these subnets. Ampli-
fication is achieved by using the broadcast address,
resulting in a large flood of echo replies to the vic-
tim [9]. The victim and target subnet may suffer
degraded network performance to the point that the
network cannot be used.

4) Portscan:

Portscan involves a remote host scanning TCP ports
on victim machines running vulnerable services.
There are two types of portscans. The first type
is called vertical sweep, in which a single host is
scanned for all open ports to determine what services
are currently provided by the host. The second type
is called horizontal sweep, in which a whole branch
of network prefix could be scanned for the same open
port. Vertical sweep is generally used by an attacker
actively looking for open ports on an isolated ma-
chine, while horizontal sweep is usually the result of
a worm on a compromised host, looking for other
vulnerable machines. This simple scan involves the
remote host sending TCP SYN packets to the cor-
responding port(s), and confirms that a port is open
when the local host responds with an ACK. Very fast
scans are possible in this way [24]. Several variations
of this anomaly are possible, most of which attempt
to conceal the scanner from the victim network. One
of such variations is discussed in more detail in the
following sub-section.

5) Stealth Scan:

A stealth scan is called so because it is more dif-
ficult to detect, and many intrusion detection and
prevention systems allow it to go unnoticed. Instead
of sending a TCP SYN packet to a port on the tar-
get host like in a simple portscan, a FIN packet is
sent to the port in question. According to RFC 793
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[28], the correct response for a closed port to such a
packet is to send a RST packet to the remote host. If
the port is open, the FIN packet is dropped, and no
packet is sent in response. It should be noted how-
ever, that Microsoft, Cisco, BSDI, HP/UX, MVS,
and IRIX OSes do not exhibit this behavior (they
deviate from RFC 793); they send RST packets from
open ports as well. This behavior can be used by an
attacker to determine which OS is running on remote
machines [24].

A plot of each anomaly analyzed in this work is shown
in Figure 3.

Figure 3: Plots of network traffic corresponding to the
various anomalies analyzed in this work. (a) shows a Nep-
tune attack, (b) a Mailbomb attack, (c) a Smurf attack,
(d) a portscan and (e) a Stealth scan

4.2 Data Sets

As stated earlier, the above data has been taken from two
data sets; they are discussed as follows.

1) MIT Lincoln Laboratory IDS Evaluation Data Set

This is second (1998, 1999, 2000) in a series of
data sets created at MIT, under a DARPA spon-
sored project to evaluate intrusion detection sys-
tems, and to guide research directions. The net-
work testbed shown below was modelled after a small
Air Force base, including host computers that were
attacked, and traffic generators that produced live
traffic. The network is shown in Figure 4. Of the
hosts shown, Calvin and Hobbes were used for the
attacks, Solomon was used to sniff the inside traffic
and Locke was used to sniff the outside traffic. This
data set contains six weeks of traffic. Raw tcpdump
files, with labeled attacks, were available for use in
this work. It should be noted that the synthetic na-
ture of Lincoln Lab data sets is not without criticisms
[23].

2) EnetRegistry, Inc. data set (ERI)

ERI is an ICANN accredited registrar of Internet
domain names. This research was partially sup-
ported by them in that they permitted capturing of
raw traffic at their border routers, for use in this
work. The second author was the system and net-
work administrator for two server farms, one of which
was collocated at a data center in northern Virginia.
The traffic was collected at the data center routers.
These “routers” are actually Dell PowerEdge 1750
servers, running Debian Woody Linux. These acted
as routers as well as firewalls for the (separate) down-
stream LAN and DMZ networks as shown in Figure
5. The LAN is the trusted network, with restricted
access, and the DMZ (Demilitarized Zone) is the
non-trusted network, in which the public production
servers are located. Rules are defined regarding the
flow of traffic between the LAN and the Internet, the
DMZ and the Internet and the LAN and DMZ. Two
routers were used for redundancy. Both routers have
100BaseFX connections to the upstream ISP routers.
ERI has two IP branches of 32 addresses each. Ap-
proximately ten weeks of traffic was collected.

Figure 5: The ERI network at the collocated data center
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Figure 4: The MIT Lincoln Laboratory Simulation Network. (Source: http://www.ll.mit.edu/IST/ideval/
docs/1999/Network Topology.gif)

4.3 Procedure

To pinpoint the aforementioned attacks, we referred to the
attack database (MIT), and manually searched through
the raw data (ERI). Once the start and end points for
the required attacks were established, the trace files were
cut close to those points using tethereal, to obtain a new
trace containing a few minutes of traffic leading up to
the attack, the attack itself, and a few minutes of normal
traffic after the attack. The number of sample points was
calculated for each trace.

Next, the wavelet filters were designed. LastWave
came with Daubechies 3 and Coiflet wavelets with ar-
bitrary lengths. These wavelets were modified to fit our
framework. Each wavelet listed above was designed with
varying lengths.

Finally, the necessary options were set in the frame-
work (the wavelet to use, window length, etc), and the
analysis was started. At the same time, the attack traf-
fic was replayed over an interface. All testing was done
on an isolated network; none of the involved traffic was
forwarded to any other network. Analysis began after
waiting for the window to fill with samples (60 samples,
5 minutes). Thereafter, for the duration of the attack,
the window was analyzed, the 1st, 2nd and 3rd wavelet
coefficients noted, and then the window was slid forward
one sample. Once the trace was complete, the analysis
and traffic replay were manually stopped. At this point,
the results were saved, the wavelet parameters and/or the
attack traffic changed for the next iteration, and the anal-
ysis was started again. Thus we analyzed a total of 13
wavelets (4 COIF, 3 DAUB, 3 MEX, 3 MORE), each on
5 anomalies, and three coefficients per analysis. It should

be noted here that the first coefficient of the analysis con-
tains the high frequency information of the signal, which
is usually “noise”. The second coefficient, corresponding
to the second octave for this work, contains the bulk of
the information, and is of the most interest to us. The
third coefficient (third octave) contains very sparse data,
and is of less value.

4.4 Evaluation Metrics

In order to evaluate the performance of various wavelet
functions on detecting different types of anomalies, we
employ two metrics, namely percentage deviation and en-
tropy.

1) Percentage Deviation

To compare and contrast the characteristics of the
analyses, the percentage deviation of the coefficient
value is calculated for each analysis. For all the sam-
ple points in a coefficient, the median is calculated.
Then the percentage deviation PD for a sample value
x is calculated as

PDx = (x − median) ∗ 100.

The rationale behind this is that those coefficients
that display a lower PD are better, because the
amount of deviation from the origin is indicative of
an anomaly. To be more specific, a “better” wavelet
should show a larger deviation at the locations of the
start and end of an anomaly and show smaller devi-
ations at all other locations in the signal, such that
the contrast is larger and the anomaly is more iden-
tifiable. Since every trace contains only one or two
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anomalies (unless otherwise noted), a ”good” candi-
date for the analysis would have the least deviation
compared to the others.

Then, the mean PD per analysis is calculated as

PDavg =
1

n

n∑
i=1

PDi,

where n is the window size. Thus, for a trace which
is N samples long, we have (N − n) PD values. A
PDavg value is calculated for each analysis, and these
PDavg values form the basis of the evaluation.

A typical point in the analysis of an NP anomaly us-
ing a COIF wavelet is shown in Figure 6. The plot
on the left contains the time series signal correspond-
ing to the raw traffic captured at the interface. The
analysis is on approximately 130 samples, or a lit-
tle over 12 minutes into the trace. The plots on the
right correspond to the current window, which is 60
samples of the signal, up to its termination. The first
plot from the top is a representation of this window.
The following three plots are the first, second and
third coefficients of the analysis. It can be seen that
the first and second coefficients contain most of the
information of the signal. Also shown are the per-
centage deviations for each coefficient, at this point
in the analysis.

Figure 6: Example of an analysis in progress

2) Entropy

In addition to percentage deviation, we also use an
entropy-based method [2] to evaluate the perfor-
mance of wavelets. Entropy is a type of informa-
tion measure of disorder in signals and systems. A
spontaneous change in a system disperses energy and
increases its entropy. While the measurement of en-
tropy is limited within the probability density func-
tion, one can extend the measure of information via
the definition of the Rényi information as follows:

Hr(x) =
1

1 − r
log(

∫ Tmax

0

f r
x(t)dt), 0 < r < ∞, r 6= 1.

Note that r = 1 corresponds to the definition of the
classical entropy. In order to consider general mea-
sure of information, we substitute r = 3, such that
the value of the function does not need to be lim-
ited to between 0 and 1. For a discrete series of N

samples, the entropy H is given by

H3(x) = −
1

2
log(

1

N

N∑
i=1

f3
x(i)).

An entropy analysis of the wavelet coefficients may be
indicative of the properties of the wavelets, as shown
in the evaluation results in next section.

5 Evaluation Results

During the analysis, it soon became evident that the
first and second coefficients (corresponding to analysis
at the first two octaves), had the sufficient information
we require; any larger coefficients generally contained too
sparse information to be of any value. Hence, for simplic-
ity and clarity, we refer to just the first two coefficients
for the remainder of this work.

Figure 7: Mean deviation on various anomalies for (a)
Coiflet wavelets, (b) Daubechies wavelets, (c) Mexican
hat wavelets, and (d) Morlet wavelets

5.1 Results Based on Percentage Devia-

tion

As is seen in Figure 7(a), the COIF.21 (Coiflet wavelet,
length 21), with the lowest mean deviation (variance) val-
ues, shows the best characteristics across all the anoma-
lies. The second best one is COIF.41 (Coiflet wavelet,
length 41). The comparative results can be seen in the
graphs. The anomalies are shown on the x axis, and the
different wavelets on the y axis. The values plotted are
the mean percentage deviations, per wavelet per anomaly.
It can be seen that the Daubechies wavelets (Figure 7(b))
show poor characteristics for most anomalies, perform-
ing slightly better for the SM and PS attacks. Figures
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8, 9, and 10 in the next subsection display the devia-
tions in time, to compare the effectiveness in localizing
the attack. The start and end points of the anomalies are
marked by boxes in Figures 8, 9, and 10. Recall that ac-
cording to our definition, a ”better” wavelet should show
a larger deviation at the locations of the start and end of
an anomaly, and show smaller deviations at all other lo-
cations in the signal. This feature of good localization in
time, along with low mean deviation values compose the
characteristics of a good wavelet for this kind of analysis.
Note that although the MORE wavelets (Figure 7(d)) at-
tain low mean deviation values, they do not exhibit good
localization in time, hence are not considered to be appro-
priate for these analyses. Hence, we consider the ability
of the filter to exhibit favorable characteristics such as low
number of false positives and negatives.

In [4], an indication of the lengths of the filters affecting
the analysis has been suggested. Here, we demonstrate
the varying characteristics of the lengths of the filters. It
can be easily noted that non uniform characteristics are
displayed for the same wavelet, but with different lengths.
In the case of the better performing COIF, we increased
the length of the filter to up to the window size, approx-
imately 60 samples to see the effect. As is noted in the
following graphs, the COIF.21 outperformed the COIF.41
and COIF.61 in terms of localization in time, and low
mean deviation values. Similar traits are shown for the
other filters as well.

5.2 Thresholds

On comparing the coefficients and PDavg values, it is
evident that the MORE and DAUB wavelets perform
poorly. Furthermore, it has been established in [4] that
the MORE wavelet does not show good localization in dis-
crete wavelet transforms, like what we have attempted in
this work. It is more suitable for continuous transforms.
Of the remaining wavelets, the COIF and MEX wavelets
seem to show the best characteristics. From the experi-
mental results, we can effectively claim that for the COIF
and MEX wavelets, a 50 percent or greater deviation in
frequency components strongly suggest an anomaly, when
analyzed with a window size of 60 samples. Varying the
window lengths and/or filter lengths may possibly lead to
changes to these threshold values.

What follows is the per-anomaly based analysis, for a
window length of sixty samples. The analyses of each
of the five anomalies using different wavelets are con-
ducted. Due to space limit, we only show the analyses
of Naptune attack, Mailbomb attack, and portscan in
Figures 8, 9, and 10 respectively. The percentage de-
viations are shown on the y axis, for each wavelet, for
each anomaly. For the sake of brevity, we have included
the second coefficient data only. All the data has been
normalized. The legend of each graph follows the format:
”anomaly.wavelet.coefficient.length.normalized”. For ex-
ample, in the first plot, NP.DAUB.2.11.NM refers to a
NP attack, analyzed using the DAUB wavelet of length

Figure 8: Analysis of Naptune attack using different
wavelets

11 samples. In addition, the data corresponds to the
second coefficient of the analysis, and is normalized.
Again, a better wavelet will show a large deviation at the
locations of the anomaly start and end, with minimum
deviations at all other locations in the signal. The start
and end points of the anomalies have been marked by the
addition of rectangles.
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Figure 9: Analysis of Mailbomb attack using different
wavelets

5.3 Results Based on Entropy

The evaluation results of using the entropy-based method
as explained in IV.D.2 are shown in Figure 11. For this
analysis, the window length was taken as one minute, and
entropies were calculated for this window, analyzed ev-
ery five seconds. All the wavelets were analyzed, against
the Neptune attack. Figure 11(a) refers to the entropy

Figure 10: Analysis of Portscan using different wavelets

function plots for the trace, for the Coiflet (upper plot)
and Daubechies (lower) wavelets respectively. We can
see that the Daubechies wavelet shows better character-
istics for this attack (for a one-minute window) than the
Coiflet wavelet. For verification and comparison, we show
alongside it the evaluation results of percentage deviation
method applied on the same trace, in Figure 11(b); the
Daubechies does indeed show better characteristics than
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the Coiflet for this trace (for a one-minute window), ac-
cording to this method as well.

Hence, we can derive the conclusion that the
entropy-based method and the percentage deviation-
based method generate consistent evaluation results in
this case and they can both be used to evaluate the effec-
tiveness of the wavelets on detecting and analyzing net-
work anomalies.

Figure 11: Results of entropy-based evaluation

6 Concluding Remarks

In this paper, we present a framework for real time
wavelet analysis of network traffic. We have also eval-
uated various wavelets for the sole purpose of detecting
short-term anomalies like Denial-of-Service attacks and
port scans. Evaluation of the wavelets was based on
twofold criteria: to have good localization in time char-
acteristics, and to have a low mean deviation over the
duration of the signal. The evaluation results show that
Coiflet and Mexican Hat wavelets have better character-
istics when faced with the anomalies considered in this
work, based on a five-minute, sixty-sample window. We
believe that the knowledge and experience obtained in this
work could indeed be used to develop a wavelet-based real
time intrusion detection system.

For future work, we will extend the framework to pro-
vide automated classification of anomalies detected in net-
work traffic. To achieve this, we will construct a profile
for each type of anomalies that describes common charac-
teristics despite different strength and duration of single
anomalous event. Additionally, we will employ multiple
wavelet functions (of the same family) in parallel, each
using a different window length, to detect anomalies of
different strengths and durations.
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ch/õetiker/webtools/rrdtool/

[26] D. Plonka, “FlowScan: A network traffic flow re-
porting and visualization tool,” in Proceedings of the
14th Systems Administration Conference, New Or-
leans, Louisiana, 2000.

[27] R. Polikar, The Wavelet Tutorial: The En-
gineer’s Ultimate Guide to Wavelet Analysis,
http://users.rowan.edu/p̃olikar/WAVELETS/
WTtutorial.html

[28] J. Postel, Transmission Control Protocol, RFC 793,
Sep. 1981.

[29] Snort, http://www.snort.org/
[30] H. Wang, D. Zhang, and K. G. Shin, “Change-

point monitoring for detection of DoS attacks,” IEEE
Transactions on Dependable and Secure Computing,
vol. 1, no. 4, pp. 193-208, 2004.

Chin-Tser Huang received the B.
S. degree in computer science and in-
formation engineering from National
Taiwan University, Taipei, Taiwan, in
1993, and the M. S. and Ph. D. de-
grees in computer sciences from the
University of Texas at Austin in 1998
and 2003, respectively. He joined the

faculty at the University of South Carolina at Columbia
in 2003 and is now an Assistant Professor in the Depart-
ment of Computer Science and Engineering. His research
interests include network security, network protocol de-
sign and verification, and distributed systems. He is the
director of the Secure Protocol Implementation and De-
velopment (SPID) Laboratory at the University of South
Carolina. He is the author (along with Mohamed Gouda)
of the book Hop Integrity in the Internet, published by
Springer in 2005. He is a member of Sigma Xi, Upsilon
Pi Epsilon, IEEE, and ACM.

Sachin Thareja has a B. S. in Com-
puter Science from Ambedkar Univer-
sity, India, and an MS in Computer
Science from the University of South
Carolina, USA. His interests lie in
Network Programming, Protocols and
Security, Systems Administration and
Engineering, and Open Source imple-

mentations of these aspects of computing. During his
Research Assistantship at USC he worked on signal pro-
cessing techniques of analyzing network traffic, under the
guidance of Dr. Chin-Tser Huang. He has worked for En-
etRegistry Inc., Yamaha Music Interactive, and currently
as a Network Systems Programmer for Bloomberg LP in
New York City.

Yong-June Shin received the B. S.
degree from Yonsei University, Seoul,
Korea, in 1996 with early completion
honors and the M.S degree from The
University of Michigan, Ann Arbor, in
1997. He received the Ph. D. de-
gree from the Department of Electrical
and Computer Engineering, The Uni-

versity of Texas at Austin, in 2004. Upon graduation,
he joined the Department of Electrical Engineering, The
University of South Carolina, Columbia, as an Assistant
Professor. His research interests include time-frequency
analysis, wavelets, and higher order statistical signal anal-
ysis. His fields of application are power transmission and
distribution, communications systems, measurement and
instrumentation.


