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Abstract

One of the biggest challenges facing digital investigators
is the sheer volume of data that must be searched in lo-
cating the digital evidence. How to efficiently locate the
evidence relating to the computer crime while maintaining
accuracy is becoming a research focus. In this paper, we
introduce a two-tier method to automate the process of lo-
cating the digital evidence, which first employ a one-class
Support Vector Machine (SVM) outlier detector to fil-
ter out insignificant records for forensic investigators and
then use a group of one-class SVM classifiers (trained with
the expert knowledge or interested samples for an investi-
gator based on a different feature vector) to further ana-
lyze the output of the outlier detector to improve the ac-
curacy of investigation. The effectiveness of the proposed
method for locating digital evidence is demonstrated us-
ing the public datasets: KDD Cup99 (Knowledge Discov-
ery and Data-mining) intrusion detection dataset.

Keywords: Data mining, digital forensics, feature calcu-
lation, support vector machine

1 Introduction

A digital investigation is a process where investigators
develop and test hypotheses that answer questions about
digital events. This process is achieved using the scientific
method where an investigator develops a hypothesis based
on the existing evidence that he finds and then tests the
hypothesis by looking for additional evidence that shows
the hypothesis is true or false [4]. During the process
of a digital investigation, the step of searching for dig-
ital evidence to support or refute the hypothesis is one
of the most time consuming tasks. Digital evidence is
a kind of digital data that contains reliable information
that support or refute a hypothesis about the incident
being investigated [5]. The most common technique to
search for digital evidence is the “string search” based on
keywords provided by the investigators. This method is
usually simple and effective, but it requires investigators

to assemble a list of words specific to the investigated in-
cident beforehand. Recently, Brain Carrier proposed a
target definition method using outlier analysis to auto-
mate the process of the searching for digital evidence [5],
and the results of the experiment show that the method
is feasible, but the false positive rate is still high. More
research into the false rates of evidence searches is needed
to improve the process of digital forensics with automated
techniques. In this paper, we propose a new outlier de-
tection method based on SVM to speed up the searching
process for digital evidence while improving the accuracy
of locating potential evidence.

The remainder of this paper is organized as follows.
Section 2 provides the introduction of generalized SVM
algorithm. Section 3 introduces the automated technique
of locating digital evidence that is based on SVM. Section
4 describes the process and results of experiments that
use our proposed methods to find network session that
are potential evidence. Finally Section 5 concludes the
paper.

2 Support Vector Machine

The SVM is a maximal margin algorithm that is based
mainly on work performed by Vladimir N. Vapnik and
coworkers, which was presented first in 1992 [1]. The
SVM was primarily constructed to solve binary classifica-
tion problems, and now has been improved to solve multi-
classification problems. It has much better qualities than
other data mining techniques: good capacity for general-
ization; less susceptible to overfitting; efficient in dealing
with the problem of local optimum, etc.

The basic principle of SVM is to map feature vectors
to a high dimensional space and to search a hyperplane
that not only separates the training vectors from different
classes, but also maximizes this separation by making the
margin as large as possible. This can be illustrated by a
binary classification problem (see Figure 1), and described
as follows:

1) Assume training dataset T = {(X1, Y1), · · · (Xi, Yi)
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Figure 1: SVM hyperplane

, · · · (Xl, Yl)} ∈ (χ×γ)l, where x ∈ χ = Rn, yi ∈ γ =
{+1,−1}, i = 1, · · · , l;

2) Seek an optimal hyperplane, such as {H |x·w+b = 0}
in Figure 1, between classes of points such that the
distance between the closest points is maximized. It
is equivalent to the solution of the following optimiza-
tion problem:

Minimize 1

2
wT w + CΣl

i=1
ξi

Subject to yi(w
T Φ(Xi)) ≥ 1 − ξi, ξi > 0.

Where training vectors xi are mapped into a higher
dimensional space by the function Φ(•)Rn → Rm,
m > n, that can be linear or nonlinear; C > 0 is the
penalty parameter of the error term; w is a vector in
a high dimensional space Rm;

3) Transfer the above optimization problem into its dual
problem. The above optimization problem is equiva-
lent to the dual:

Minimize 1

2
Σ1

i=1
Σl

j=1
yiyjαiαjKΦ(xi, xj) + Σl

j=1
αj

Subject to Σl
i=1

yiαi = 0, 0 ≤ αi ≤ C.

Where KΦ(xi, xj) = (Φ(xi) · Φ(xi)) is a kernel func-
tion. Calculate and gain the optimal answer α∗ =
(α∗

1
, α∗

2
, · · ·α∗

l )
T ;

4) Calculate w∗ and b∗. Here w∗ = Σl
i=1

yiα
∗
i Φ(xi), and

choose {α∗
j | 0 ≤ α∗

j ≤ C} and calculate the b∗ =

yj − Σl
i=1

yiα
∗
i KΦ(xj , xi);

5) Calculate the decision function:

f(x) = sgn((w∗ · Φ(x)) + b∗)

= sgn(Σl
i=1

yiα
∗
i KΦ(x, xi) + b∗).

The above SVM algorithm is actually a supervised
two-class classifier, so if we want to train the SVM, we
must have the labelled datasets consisting of both posi-
tive (normal) samples and negative (abnormal) samples.

 

Figure 2: Outlier detection framework for searching for
digital evidence

It is most impractical in the process of investigation to ac-
quire enough training datasets. Luckily, Scholkopf and his
coworkers have proposed a method to adapt the SVM al-
gorithm to the one-class classification problem [12], which
is called a one-class SVM algorithm. The basic strategy
of a one-class SVM algorithm is to identify “outliers” in
normal samples and regard them as anomalous samples,
and then the standard classification SVM techniques are
employed. Therefore we can use this quality of one-class
SVM to build an evidence model with unlabelled datasets
that is easier to acquire. Section 3 details the proposed
methods about how to use SVM to locate digital evidence.

3 Proposed Methods for Search-

ing Digital Evidence

Usually outlier detection techniques can be applied in con-
ditions as follows: to cleanse the training dataset dur-
ing the data preprocessing process of data mining; and
to gain anomalous data sets of outliers that are often of
particular interest to users. The process of searching for
digital evidence mainly uses the second aspect of the func-
tions of outlier detection techniques in order to identify
potentially interested data or content that guides investi-
gators to further searching. The process often is carried
out when digital investigators have collected some known
evidence for collecting more relative evidence. But some-
times there is no relative evidence with the current inves-
tigated event before investigating, so digital investigators
need the guide to locate a piece of digital evidence in the
case of being lost during the “looking for a needle” in a
bottle of “data”. Trying to resolve the above problem,
this paper introduces a method of searching digital evi-
dence automatically. Our method employs the one-class
SVM technique as an outlier analysis method to find dig-
ital evidence from the file system image or captured net-
work traffic dataset, which is relative to the investigated
incident in time or space.

Unfortunately, it is difficult for investigators to choose
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a point which can keep a low false negative rate while
keeping a low false positive rate when using outlier de-
tection techniques. We resolve this problem by using a
two-tier approach that combines outlier detection to re-
duce false negative rate with postprocessor to reduce false
positive rate (see Figure 2). Datasets needing investiga-
tion are first preprocessed, and attributes describing the
target object are extracted from investigated datasets by
the Feature Calculator. Then the Outlier Detector is em-
ployed to learn the ”outlier-ness” of the records of interest
to the investigators and to eliminate the records that have
a high-probability of being normal. Then the outliers de-
tected by the Outlier Detector and the rest of the records
are passed on to Postprocessor which can be regarded as
a secondary classifier to further determine whether they
are false positives from the outlier detector or potential
evidence with the support of existing knowledge consist-
ing of expert knowledge and existing evidence samples.
Records outputted by the postprocessor will be labelled
as potential evidence samples that can be used as existing
knowledge in the next iteration, and passed on to the Tar-
get Object unit to define or update the searching targets
for further investigation. Repeat the above steps until
the evidence of an incident which refutes or supports an
investigation hypothesis [3] have been acquired. The for-
mal description of the above components is detailed in the
following sections respectively.

3.1 Feature Calculator

Feature Calculator (FC) is responsible for extracting fea-
tures from the original investigated data source. Feature
extraction and selection from the available data is impor-
tant to the effectiveness of the methods employed because
the great capability in selecting the suitable features of a
classifier can lead directly to faster training and more ac-
curate results. Usually the selection of what kinds of fea-
tures depends on the target objects defined or constructed
by the forensic investigator. In theory, the more easily to
select features, the more specific the target object is. In
fact, it is very difficult to define a clear target object be-
fore carrying out a forensic investigation of an incident.
But it is comparatively easy to identify the category the
investigated incident belongs to. So we categorize the tar-
get object into five different classes R2L, DOS, Probe,
U2R, Normal for network forensics. Where R2L de-
notes unauthorized access from a remote machine, such as
guessing a password; DOS denotes denial-of-service, such
as smurf attack; U2R denotes unauthorized access to lo-
cal superuser privileges, such as various “buffer overflow”
attacks; “probe” denotes surveillance and other probing,
such as host or port scanning [14].

Under the network environment, there are many traffic
features that can be used for intrusion detection or event
analysis, such as, source address and port number, desti-
nation address and port number, timestamp, etc. Stolfo
and his team have researched this topic in-depth and cal-
culated 41 different features in all applied to various in-

cidents. For more detail information about feature cal-
culation, please refer to [9, 14]. However using too many
features for various incidents will cause the problem of
over-fitting of both the Outlier Detector and the Post-
processor, which will increase the cost of calculation and
reduce accuracy. The best way is to select a subset of
features used for the investigation. We analyzed various
combinations of features for their contribution to the Out-
lier Detector and the Postprocessor accuracy according
to the method proposed in [10]. The result of analyzing
about the relationship between incident category and its
feature subset is described in Table 1.

3.2 Outlier Detector Using One-class

SVM

After extracting and selecting the suitable features, the
next step is to eliminate records that have a very high
probability of being normal through an outlier detector.
Although almost any anomaly detection methods could be
applied, we employ a commonly used one-class Support
Vector Machine (SVM) with a modified Gaussian (RBF)
kernel. The standard RBF kernel function is based on
the Euclidean Distance function. One weakness of the
basic Euclidean distance function is that if one of the in-
put attributes has a relatively large range, then it can
overwhelm the other attributes. For example, if there
are two attributes (A1 and A2), and A1 can have val-
ues from 1 to 10000, and A2 has values only from 1 to
10, then A2’s influence on the distance function could be
overwhelmed by A1’s influence. Besides this, it can not
effectively handle applications with both continuous and
nominal attributes. So we redefine the RBF kernel func-
tion as:

KΦ(x, y) = e
−‖D(x,y)‖

δ2 .

Where D(x, y) is the Heterogeneous Value Difference
Function (HVDM)[15] and defined as:

D(x, y) = (Σm
i=1

d2

i (xi, yi))
1
2 .

Where m is the number of attributes, di is the distance
function for ith attribute and defined as:

di(xi, yi) =







1, xi or yi unknown
dvdm(xi, yi), xi and yi are nominal
ddiff (xi, yi), xi and yi are numeric

where dvdm(xi, yi) = Σk
j=1

|
Ni,x,j

Ni,x
−

Ni,y,j

Ni,y
|, ddiff (xi, yi)

= |xi−yi|
4σi

, and

• σi is the standard deviation of the numeric values of
ith attribute;

• Ni,x is the number of instances in the training set T
that have value x for ith attribute;

• Ni,x,j is the number of instances in T that have value
x for ith attribute and output class j;
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Table 1: Relationship between categories and feature subsets

Category Feature subset vector Marker

R2L [3,5,6,32,33] FSV(r2l)
DOS [1,5,6,23,24,25,26,32,36,38,39] FSV(dos)
Probe [3,5,6,23,24,32,33] FSV(probe)
U2R [2,3,5,6,24,32,33] FSV(u2r)
Normal [1,2,3,4,5,6,10,17,23,27,28,29,33,36,39] FSV(norm)

Note: the numbers in the above “Feature Subset Vector” column are corresponding to the serial number of 41
various quantitative and qualitative features extracted in [14].

• K is the number of output classes in the problem
domain.

A one-class SVM uses the above kernel function
which transforms the unlabelled examples into a high-
dimensional feature space, and learns the support region
for “normal” data. In order to maximally separate the
“normal” data from the origin via a hyperplane bound-
ary, the one-class SVM needs to resolve the following
quadratic programming problem:

Minimize 1

2
wT w + 1

vl
Σl

i=1
ξi − p

Subject to yi(w · Φ(xi)) ≥ p − ξi, ξi ≥ 0, i = 1, · · · , l.

Where ξi is the slack parameter which associated with
each data example and denotes the possibility that some
of the training examples can be misclassified [13]; the pa-
rameter v ∈ (0, 1) controls the trade off between maxi-
mizing the distance from the origin and containing most
of the data in the region created by the hyperplane, and
is the upper bound on the ratio of outliers in training
dataset [13]; the parameter ρ is the offset, and the dis-
tance between the margin and the origin is ρ ‖ w ‖. For a
more detailed explanation of SVM algorithm, see Section
2.

The Outlier Detector is trained on unlabelled dataset
consisting of feature vector FSV (norm) to gain a gener-
alized profile of “normal” activity. By excluding a large
portion of the fringe normal records from the original
dataset, the outlier detector can identify, with high con-
fidence, that certain subset of records are not anomalous.
The rest of the original dataset will be anomalous, but
with high false positives, and actually they are the data
points needed to pay attention by investigators. Usually
the False Positives (FP) of a classifier is in conflict with its
True Positives (TP), so we have to improve the FP rate
of the classifier at the cost of its TP rate, and vice versa.
In theory the ideal balance point will be the nearest point
from the top-left point in the Receiver Operating Char-
acteristic (ROC) curve [15]. See Figure 3, the ideal point
will be the point T . However, most of the time the TP
rate at the point T is not equal to 1, which means that
a portion of samples are misclassified as normal, that is
to say, some potential evidence will be missed after the
processing of the Outlier Detector. In order to reduce the
probability of missing potential evidence samples, we can

 

Figure 3: Ideal detection point

select the balance point from the Expected Zone in Fig-
ure 3. The Detection Rate of the point S in Figure 3 can
be a number equal or near to 100%. Finally the output
of the Outlier Detector that is deemed anomalous will be
passed on to the Postprocessor for further classification
to reduce the false positive rate.

Note that the Outlier Detector needs not create a
model for anomalous data, but if there are some known
anomalous examples which can be used as training data
for the secondary classifier in the Postprocessor, it can
improve the accuracy of the outlier detector.

3.3 Postprocessor

The Postprocessor functions as a group of classifiers used
to filter false positives from the output of the Outlier De-
tector. While many artificial intelligence methods could
be applied to this task, we still employ one-class SVM al-
gorithm with a modified Gaussian (RBF) kernel to imple-
ment a group of classification models trained from anoma-
lous records. For a more detailed explanation of SVM
algorithm, see Section 3.2. In order to support inves-
tigation on various network incidents, the Postprocessor
builds four models with FSV(r2l), FSV(dos), FSV(probe),
and FSV(u2r) respectively. An investigator can choose
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one of the models (such as FSV(dos) model) to filter the
false positives under the support of existing evidence or
knowledge (see Figure 4(a)), or the union of multiple mod-
els, such as (see Figure 4(b)), to systematically evaluate
the output of each classifier under the support of forensic
experts.

The output of the Postprocessor will be the potential
evidence or evidence snippet, and a forensic investigator
can define new target objects or employ other tools (such
as keyword searching tool) on the bases of the output for
further investigation.

4 Experiments and Results

In this section, we introduce the experiment methods and
present initial results of the use of our proposed method
to detect outlier in intrusion detection databases. In all
experiments we employ a SVM tool called LIBSVM [6]
and the modified RBF kernel.

4.1 Dataset

The data for our experiments was prepared by the 1999
DARPA intrusion detection evaluation program from
MIT Lincoln Labs [9]. The following experiments are
based on the 10% train data subset with 494,021 data
records. Each record has 41 attributes for each connec-
tion plus one class label, and the class label will only be
used for testing, not participation in the classification.

4.2 Methods

Due to the raw dataset being collected in a simulated
network attack environment, the proportion of attack in-
stances to normal ones in the KDD training dataset is very
high (over 400%). It is almost impossible in a true net-
work environment and it also breaches the basic precondi-
tion of efficiently classification of interested instances for
the investigators. So we filtered some of attack instances
from the original and keep the proportion of attack in-
stances (outliers) in the range of [1%, 1.5%].

The goal of the experiment is to separate the outlier
from the above datasets and identify the impact of the
Outlier Detector on the secondary classifier both in accu-
racy and required training data size. In order to achieve
the goals, we constructed different training data and test
data from each above dataset by means of randomly se-
lecting sub-dataset with certain ratio of normal data to
attack data, and then different experiments were carried
out for each class which was regarded as an outlier or po-
tential interested instances by forensic investigators. The
test datasets constructed for evaluating the performance
of our proposed methods is described as follows:

• DS(r2l): DataSet(normal) ∪ DataSet(r2l);

• DS(dos): DataSet(normal) ∪ DataSet(dos);

• DS(probe): DataSet(normal) ∪ DataSet(probe);

• DS(u2r): DataSet(normal) ∪ DataSet(u2r);

• DS(norm): DataSet(normal) ∪ DataSet(r2l) ∪
DataSet(u2r) ∪ DataSet(dos) ∪ DataSet(probe).

Besides this, in order to build the classification mod-
els for the Postprocessor, we randomly selected different
number (K) of attack samples from the filtered attack
samples, and trained the classifiers.

In order to measure the performance of the proposed
method, the ROC curve is used. The ROC curve is a plot
of detection accuracy against the false positive rate [15].
It can be obtained by varying the detection threshold.
Detection rate and false positive rate may be defined as
follows:

Detection rate = TP/(TP + FN)

False positive rate = FP/(FP + TN).

Where TP denotes true positives, FN denotes false nega-
tives, FP is false positives and TN is true negatives. Be-
sides this, both the Outlier Detector and the Postproces-
sor employ the SVM algorithm, and we hope that our
SVMs can detect outliers with high accuracy, while clas-
sifying normal examples with great confidence. This is
controlled to a great degree by the parameter v. In order
to reduce the complexity of the experiments, all exper-
iments were performed with constant value of v (0.125)
selected by a great deal of experiments.

4.3 Analysis of Results

Five experiments have been done with the datasets gen-
erated in the above section. The results of experiments
in Division Mode are presented in Figure 5(a-d).

In the above figures, the parameter K is the number
of corresponding interested samples for training the Post-
processor classifier. From the figures, we can see that the
Outlier Detector has good performance in rate of detec-
tion, especially in Figure 5(a) the Detection Rate reaches
92% while FP rate 0.43%. Besides this, when the results
of the Detector Outlier were pipelined to the Postpro-
cessor which was trained with the fewer training samples
(about K = 50), the Postprocessor greatly reduces the
false positives generated by the Outlier Detector while
keeping the same detection rate. For the experiment in
Union Mode, we got a similar conclusion (see Figure 6).
From the results of these experiments we can also con-
clude that the proposed methods can keep good accuracy
when automating the analysis process of locating the po-
tential evidence, and the proposed method could be used
in the practice of network forensic investigation.

From all experiments, we also noted that when the pa-
rameter K is smaller, the false positives would become
even worse than the results of the Outlier Detector. In
order to further evaluate the impact of the parameter K
on the False Positive, we did a group of evaluating exper-
iments with DS(dos), DS(probe), DS(r2l), DS(u2r) and
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(a) Division Mode (b) Union Mode

Figure 4: Running mode of the postprocessor
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(a) ROC curves with DS(dos)
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(b) ROC curves with DS(probe)
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(c) ROC curves with DS(r2l)
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(d) ROC curves with DS(u2r)

Figure 5: ROC curves in division mode
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Figure 6: ROC curves in union mode with DS(norm)
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Figure 7: Relation curves between parameter K and false
positives

DS(norm) datasets individually. The results of experi-
ments are presented in Figure 7 which shows the rela-
tionship between the parameter K and the False Positive
rate when the detection rate is a constant (90%). From
the Figure 7, we can draw the conclusion that the increase
of the parameter K will help decrease the False Positive
at the very start, and this trend will tend to smooth with
the increase of K. So we can conclude further that the pa-
rameter K should have an ideally critical value which will
benefit the decrease of the False Positive to a great de-
gree. In our experiments, the critical value of K is about
100. The critical value of K depends on both the inter-
ested type of event and the quality of training data. In
practice, the selection of K will become even worse, and
how to determine the value of K will be a challenging
topic in theory.

5 Conclusions

Digital forensics presents a great number of new and in-
teresting challenges to computer security researchers. Es-
pecially the huge volume of data to be analyzed often
frustrated the forensic investigators. In the paper, we
proposed the forensic framework to automate and speed
up the process of locating the potential evidence in the
network forensics, which based on the one-class SVM al-
gorithm with a modified Gaussian (RBF) kernel to im-
plement a group of classification models to screen out the
potential evidence. Besides this, we used a two-tier ap-
proach that combines outlier detection to reduce false neg-
ative rate with postprocessor to reduce false positive rate.
From the results obtained in these early experiments, we
believe that the proposed method has promise for the au-
tomation of digital forensic investigation.

Further experiments should be conducted with differ-
ent learning algorithms and paradigms to allow perfor-
mance comparisons with the proposed approach. Since
the Postprocessor still requires an investigator to supply
the training data or expert knowledge to build classifica-
tion model which increases the burden of the investiga-
tor, therefore we suggest that an effective unsupervised-
learning method could be employed. This is one of our
future goals.
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